

 Navigation

 	
 index

 	
 next |

 	Data Plane Development Kit 16.04.0 documentation

DPDK documentation

	Getting Started Guide for Linux

	Getting Started Guide for FreeBSD

	Xen Guide

	Programmer’s Guide

	Network Interface Controller Drivers

	Crypto Device Drivers

	Sample Applications User Guide

	Testpmd Application User Guide

	FAQ

	Release Notes

	Contributor’s Guidelines

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Getting Started Guide for Linux

	1. Introduction
	1.1. Documentation Roadmap

	2. System Requirements
	2.1. BIOS Setting Prerequisite on x86

	2.2. Compilation of the DPDK

	2.3. Running DPDK Applications

	3. Compiling the DPDK Target from Source
	3.1. Install the DPDK and Browse Sources

	3.2. Installation of DPDK Target Environments

	3.3. Browsing the Installed DPDK Environment Target

	3.4. Loading Modules to Enable Userspace IO for DPDK

	3.5. Loading VFIO Module

	3.6. Binding and Unbinding Network Ports to/from the Kernel Modules

	4. Compiling and Running Sample Applications
	4.1. Compiling a Sample Application

	4.2. Running a Sample Application

	4.3. Additional Sample Applications

	4.4. Additional Test Applications

	5. Enabling Additional Functionality
	5.1. High Precision Event Timer HPET) Functionality

	5.2. Running DPDK Applications Without Root Privileges

	5.3. Power Management and Power Saving Functionality

	5.4. Using Linux Core Isolation to Reduce Context Switches

	5.5. Loading the DPDK KNI Kernel Module

	5.6. Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

	5.7. High Performance of Small Packets on 40G NIC

	6. Quick Start Setup Script
	6.1. Script Organization

	6.2. Use Cases

	6.3. Applications

	7. How to get best performance with NICs on Intel platforms
	7.1. Hardware and Memory Requirements

	7.2. Configurations before running DPDK

	7.3. Example of getting best performance for an Intel NIC

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

1. Introduction

This document contains instructions for installing and configuring the Data Plane Development Kit (DPDK) software.
It is designed to get customers up and running quickly.
The document describes how to compile and run a DPDK application in a Linux application (linuxapp) environment,
without going deeply into detail.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on.
Also, provides the answers to frequently asked questions in FAQ format.

	Getting Started Guide (this document): Describes how to install and configure the DPDK; designed to get users up and running quickly with the software.

	Programmer’s Guide: Describes:

	The software architecture and how to use it (through examples), specifically in a Linux application (linuxapp) environment

	The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and
an application) and guidelines for porting an application

	Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

	API Reference: Provides detailed information about DPDK functions, data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

2. System Requirements

This chapter describes the packages required to compile the DPDK.

Note

If the DPDK is being used on an Intel® Communications Chipset 89xx Series platform,
please consult the Intel® Communications Chipset 89xx Series Software for Linux Getting Started Guide.

2.1. BIOS Setting Prerequisite on x86

For the majority of platforms, no special BIOS settings are needed to use basic DPDK functionality.
However, for additional HPET timer and power management functionality,
and high performance of small packets on 40G NIC, BIOS setting changes may be needed.
Consult the section on Enabling Additional Functionality
for more information on the required changes.

2.2. Compilation of the DPDK

Required Tools:

Note

Testing has been performed using Fedora 18. The setup commands and installed packages needed on other systems may be different.
For details on other Linux distributions and the versions tested, please consult the DPDK Release Notes.

	GNU make.

	coreutils: cmp, sed, grep, arch, etc.

	gcc: versions 4.5.x or later is recommended for i686/x86_64. Versions 4.8.x or later is recommended
for ppc_64 and x86_x32 ABI. On some distributions, some specific compiler flags and linker flags are enabled by
default and affect performance (-fstack-protector, for example). Please refer to the documentation
of your distribution and to gcc -dumpspecs.

	libc headers, often packaged as gcc-multilib (glibc-devel.i686 / libc6-dev-i386;
glibc-devel.x86_64 / libc6-dev for 64-bit compilation on Intel architecture;
glibc-devel.ppc64 for 64 bit IBM Power architecture;)

	Linux kernel headers or sources required to build kernel modules. (kernel - devel.x86_64;
kernel - devel.ppc64)

	Additional packages required for 32-bit compilation on 64-bit systems are:
	glibc.i686, libgcc.i686, libstdc++.i686 and glibc-devel.i686 for Intel i686/x86_64;

	glibc.ppc64, libgcc.ppc64, libstdc++.ppc64 and glibc-devel.ppc64 for IBM ppc_64;

Note

x86_x32 ABI is currently supported with distribution packages only on Ubuntu
higher than 13.10 or recent Debian distribution. The only supported compiler is gcc 4.8+.

Note

Python, version 2.6 or 2.7, to use various helper scripts included in the DPDK package.

Optional Tools:

	Intel® C++ Compiler (icc). For installation, additional libraries may be required.
See the icc Installation Guide found in the Documentation directory under the compiler installation.

	IBM® Advance ToolChain for Powerlinux. This is a set of open source development tools and runtime libraries
which allows users to take leading edge advantage of IBM’s latest POWER hardware features on Linux. To install
it, see the IBM official installation document.

	libpcap headers and libraries (libpcap-devel) to compile and use the libpcap-based poll-mode driver.
This driver is disabled by default and can be enabled by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y in the build time config file.

2.3. Running DPDK Applications

To run an DPDK application, some customization may be required on the target machine.

2.3.1. System Software

Required:

	Kernel version >= 2.6.34

The kernel version in use can be checked using the command:

uname -r

	glibc >= 2.7 (for features related to cpuset)

The version can be checked using the ldd --version command.

	Kernel configuration

In the Fedora OS and other common distributions, such as Ubuntu, or Red Hat Enterprise Linux,
the vendor supplied kernel configurations can be used to run most DPDK applications.

For other kernel builds, options which should be enabled for DPDK include:

	UIO support

	HUGETLBFS

	PROC_PAGE_MONITOR support

	HPET and HPET_MMAP configuration options should also be enabled if HPET support is required.
See the section on High Precision Event Timer (HPET) Functionality for more details.

2.3.2. Use of Hugepages in the Linux Environment

Hugepage support is required for the large memory pool allocation used for packet buffers
(the HUGETLBFS option must be enabled in the running kernel as indicated the previous section).
By using hugepage allocations, performance is increased since fewer pages are needed,
and therefore less Translation Lookaside Buffers (TLBs, high speed translation caches),
which reduce the time it takes to translate a virtual page address to a physical page address.
Without hugepages, high TLB miss rates would occur with the standard 4k page size, slowing performance.

2.3.2.1. Reserving Hugepages for DPDK Use

The allocation of hugepages should be done at boot time or as soon as possible after system boot
to prevent memory from being fragmented in physical memory.
To reserve hugepages at boot time, a parameter is passed to the Linux kernel on the kernel command line.

For 2 MB pages, just pass the hugepages option to the kernel. For example, to reserve 1024 pages of 2 MB, use:

hugepages=1024

For other hugepage sizes, for example 1G pages, the size must be specified explicitly and
can also be optionally set as the default hugepage size for the system.
For example, to reserve 4G of hugepage memory in the form of four 1G pages, the following options should be passed to the kernel:

default_hugepagesz=1G hugepagesz=1G hugepages=4

Note

The hugepage sizes that a CPU supports can be determined from the CPU flags on Intel architecture.
If pse exists, 2M hugepages are supported; if pdpe1gb exists, 1G hugepages are supported.
On IBM Power architecture, the supported hugepage sizes are 16MB and 16GB.

Note

For 64-bit applications, it is recommended to use 1 GB hugepages if the platform supports them.

In the case of a dual-socket NUMA system,
the number of hugepages reserved at boot time is generally divided equally between the two sockets
(on the assumption that sufficient memory is present on both sockets).

See the Documentation/kernel-parameters.txt file in your Linux source tree for further details of these and other kernel options.

Alternative:

For 2 MB pages, there is also the option of allocating hugepages after the system has booted.
This is done by echoing the number of hugepages required to a nr_hugepages file in the /sys/devices/ directory.
For a single-node system, the command to use is as follows (assuming that 1024 pages are required):

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

On a NUMA machine, pages should be allocated explicitly on separate nodes:

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages

Note

For 1G pages, it is not possible to reserve the hugepage memory after the system has booted.

2.3.2.2. Using Hugepages with the DPDK

Once the hugepage memory is reserved, to make the memory available for DPDK use, perform the following steps:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

The mount point can be made permanent across reboots, by adding the following line to the /etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

For 1GB pages, the page size must be specified as a mount option:

nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

2.3.3. Xen Domain0 Support in the Linux Environment

The existing memory management implementation is based on the Linux kernel hugepage mechanism.
On the Xen hypervisor, hugepage support for DomainU (DomU) Guests means that DPDK applications work as normal for guests.

However, Domain0 (Dom0) does not support hugepages.
To work around this limitation, a new kernel module rte_dom0_mm is added to facilitate the allocation and mapping of memory via
IOCTL (allocation) and MMAP (mapping).

2.3.3.1. Enabling Xen Dom0 Mode in the DPDK

By default, Xen Dom0 mode is disabled in the DPDK build configuration files.
To support Xen Dom0, the CONFIG_RTE_LIBRTE_XEN_DOM0 setting should be changed to “y”, which enables the Xen Dom0 mode at compile time.

Furthermore, the CONFIG_RTE_EAL_ALLOW_INV_SOCKET_ID setting should also be changed to “y” in the case of the wrong socket ID being received.

2.3.3.2. Loading the DPDK rte_dom0_mm Module

To run any DPDK application on Xen Dom0, the rte_dom0_mm module must be loaded into the running kernel with rsv_memsize option.
The module is found in the kmod sub-directory of the DPDK target directory.
This module should be loaded using the insmod command as shown below (assuming that the current directory is the DPDK target directory):

sudo insmod kmod/rte_dom0_mm.ko rsv_memsize=X

The value X cannot be greater than 4096(MB).

2.3.3.3. Configuring Memory for DPDK Use

After the rte_dom0_mm.ko kernel module has been loaded, the user must configure the memory size for DPDK usage.
This is done by echoing the memory size to a memsize file in the /sys/devices/ directory.
Use the following command (assuming that 2048 MB is required):

echo 2048 > /sys/kernel/mm/dom0-mm/memsize-mB/memsize

The user can also check how much memory has already been used:

cat /sys/kernel/mm/dom0-mm/memsize-mB/memsize_rsvd

Xen Domain0 does not support NUMA configuration, as a result the --socket-mem command line option is invalid for Xen Domain0.

Note

The memsize value cannot be greater than the rsv_memsize value.

2.3.3.4. Running the DPDK Application on Xen Domain0

To run the DPDK application on Xen Domain0, an extra command line option --xen-dom0 is required.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

3. Compiling the DPDK Target from Source

Note

Parts of this process can also be done using the setup script described in
the Quick Start Setup Script section of this document.

3.1. Install the DPDK and Browse Sources

First, uncompress the archive and move to the uncompressed DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile
mk/ scripts/ tools/

The DPDK is composed of several directories:

	lib: Source code of DPDK libraries

	drivers: Source code of DPDK poll-mode drivers

	app: Source code of DPDK applications (automatic tests)

	examples: Source code of DPDK application examples

	config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

3.2. Installation of DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

where:

	ARCH can be: i686, x86_64, ppc_64

	MACHINE can be: native, ivshmem, power8

	EXECENV can be: linuxapp, bsdapp

	TOOLCHAIN can be: gcc, icc

The targets to be installed depend on the 32-bit and/or 64-bit packages and compilers installed on the host.
Available targets can be found in the DPDK/config directory.
The defconfig_ prefix should not be used.

Note

Configuration files are provided with the RTE_MACHINE optimization level set.
Within the configuration files, the RTE_MACHINE configuration value is set to native,
which means that the compiled software is tuned for the platform on which it is built.
For more information on this setting, and its possible values, see the DPDK Programmers Guide.

When using the Intel® C++ Compiler (icc), one of the following commands should be invoked for 64-bit or 32-bit use respectively.
Notice that the shell scripts update the $PATH variable and therefore should not be performed in the same session.
Also, verify the compiler’s installation directory since the path may be different:

source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh ia32

To install and make targets, use the make install T=<target> command in the top-level DPDK directory.

For example, to compile a 64-bit target using icc, run:

make install T=x86_64-native-linuxapp-icc

To compile a 32-bit build using gcc, the make command should be:

make install T=i686-native-linuxapp-gcc

To prepare a target without building it, for example, if the configuration changes need to be made before compilation,
use the make config T=<target> command:

make config T=x86_64-native-linuxapp-gcc

Warning

Any kernel modules to be used, e.g. igb_uio, kni, must be compiled with the
same kernel as the one running on the target.
If the DPDK is not being built on the target machine,
the RTE_KERNELDIR environment variable should be used to point the compilation at a copy of the kernel version to be used on the target machine.

Once the target environment is created, the user may move to the target environment directory and continue to make code changes and re-compile.
The user may also make modifications to the compile-time DPDK configuration by editing the .config file in the build directory.
(This is a build-local copy of the defconfig file from the top- level config directory).

cd x86_64-native-linuxapp-gcc
vi .config
make

In addition, the make clean command can be used to remove any existing compiled files for a subsequent full, clean rebuild of the code.

3.3. Browsing the Installed DPDK Environment Target

Once a target is created it contains all libraries, including poll-mode drivers, and header files for the DPDK environment that are required to build customer applications.
In addition, the test and testpmd applications are built under the build/app directory, which may be used for testing.
A kmod directory is also present that contains kernel modules which may be loaded if needed.

ls x86_64-native-linuxapp-gcc

app build hostapp include kmod lib Makefile

3.4. Loading Modules to Enable Userspace IO for DPDK

To run any DPDK application, a suitable uio module can be loaded into the running kernel.
In many cases, the standard uio_pci_generic module included in the Linux kernel
can provide the uio capability. This module can be loaded using the command

sudo modprobe uio_pci_generic

As an alternative to the uio_pci_generic, the DPDK also includes the igb_uio
module which can be found in the kmod subdirectory referred to above. It can
be loaded as shown below:

sudo modprobe uio
sudo insmod kmod/igb_uio.ko

Note

For some devices which lack support for legacy interrupts, e.g. virtual function
(VF) devices, the igb_uio module may be needed in place of uio_pci_generic.

Since DPDK release 1.7 onward provides VFIO support, use of UIO is optional
for platforms that support using VFIO.

3.5. Loading VFIO Module

To run an DPDK application and make use of VFIO, the vfio-pci module must be loaded:

sudo modprobe vfio-pci

Note that in order to use VFIO, your kernel must support it.
VFIO kernel modules have been included in the Linux kernel since version 3.6.0 and are usually present by default,
however please consult your distributions documentation to make sure that is the case.

Also, to use VFIO, both kernel and BIOS must support and be configured to use IO virtualization (such as Intel® VT-d).

For proper operation of VFIO when running DPDK applications as a non-privileged user, correct permissions should also be set up.
This can be done by using the DPDK setup script (called setup.sh and located in the tools directory).

3.6. Binding and Unbinding Network Ports to/from the Kernel Modules

As of release 1.4, DPDK applications no longer automatically unbind all supported network ports from the kernel driver in use.
Instead, all ports that are to be used by an DPDK application must be bound to the
uio_pci_generic, igb_uio or vfio-pci module before the application is run.
Any network ports under Linux* control will be ignored by the DPDK poll-mode drivers and cannot be used by the application.

Warning

The DPDK will, by default, no longer automatically unbind network ports from the kernel driver at startup.
Any ports to be used by an DPDK application must be unbound from Linux* control and
bound to the uio_pci_generic, igb_uio or vfio-pci module before the application is run.

To bind ports to the uio_pci_generic, igb_uio or vfio-pci module for DPDK use,
and then subsequently return ports to Linux* control,
a utility script called dpdk_nic _bind.py is provided in the tools subdirectory.
This utility can be used to provide a view of the current state of the network ports on the system,
and to bind and unbind those ports from the different kernel modules, including the uio and vfio modules.
The following are some examples of how the script can be used.
A full description of the script and its parameters can be obtained by calling the script with the --help or --usage options.
Note that the uio or vfio kernel modules to be used, should be loaded into the kernel before
running the dpdk_nic_bind.py script.

Warning

Due to the way VFIO works, there are certain limitations to which devices can be used with VFIO.
Mainly it comes down to how IOMMU groups work.
Any Virtual Function device can be used with VFIO on its own, but physical devices will require either all ports bound to VFIO,
or some of them bound to VFIO while others not being bound to anything at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU group in which your device is in.
Therefore, the bridge driver should also be unbound from the bridge PCI device for VFIO to work with devices behind the bridge.

Warning

While any user can run the dpdk_nic_bind.py script to view the status of the network ports,
binding or unbinding network ports requires root privileges.

To see the status of all network ports on the system:

./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
0000:82:00.0 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe
0000:82:00.1 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe

Network devices using kernel driver
===================================
0000:04:00.0 'I350 1-GbE NIC' if=em0 drv=igb unused=uio_pci_generic *Active*
0000:04:00.1 'I350 1-GbE NIC' if=eth1 drv=igb unused=uio_pci_generic
0000:04:00.2 'I350 1-GbE NIC' if=eth2 drv=igb unused=uio_pci_generic
0000:04:00.3 'I350 1-GbE NIC' if=eth3 drv=igb unused=uio_pci_generic

Other network devices
=====================
<none>

To bind device eth1,``04:00.1``, to the uio_pci_generic driver:

./tools/dpdk_nic_bind.py --bind=uio_pci_generic 04:00.1

or, alternatively,

./tools/dpdk_nic_bind.py --bind=uio_pci_generic eth1

To restore device 82:00.0 to its original kernel binding:

./tools/dpdk_nic_bind.py --bind=ixgbe 82:00.0

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

4. Compiling and Running Sample Applications

The chapter describes how to compile and run applications in an DPDK environment.
It also provides a pointer to where sample applications are stored.

Note

Parts of this process can also be done using the setup script described the
Quick Start Setup Script section of this document.

4.1. Compiling a Sample Application

Once an DPDK target environment directory has been created (such as x86_64-native-linuxapp-gcc),
it contains all libraries and header files required to build an application.

When compiling an application in the Linux* environment on the DPDK, the following variables must be exported:

	RTE_SDK - Points to the DPDK installation directory.

	RTE_TARGET - Points to the DPDK target environment directory.

The following is an example of creating the helloworld application, which runs in the DPDK Linux environment.
This example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the DPDK target environment,
calls the various functions to initialize the DPDK environment,
then launches an entry point (dispatch application) for each core to be utilized.
By default, the binary is generated in the build directory.

cd examples/helloworld/
export RTE_SDK=$HOME/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

ls build/app
 helloworld helloworld.map

Note

In the above example, helloworld was in the directory structure of the DPDK.
However, it could have been located outside the directory structure to keep the DPDK structure intact.
In the following case, the helloworld application is copied to a new directory as a new starting point.

export RTE_SDK=/home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

4.2. Running a Sample Application

Warning

The UIO drivers and hugepages must be setup prior to running an application.

Warning

Any ports to be used by the application must be already bound to an appropriate kernel
module, as described in Binding and Unbinding Network Ports to/from the Kernel Modules, prior to running the application.

The application is linked with the DPDK target environment’s Environmental Abstraction Layer (EAL) library,
which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
 [--socket-mem=MB,...] [-m MB] [-r NUM] [-v] [--file-prefix] \
 [--proc-type <primary|secondary|auto>] [-- xen-dom0]

The EAL options are as follows:

	-c COREMASK:
An hexadecimal bit mask of the cores to run on. Note that core numbering can
change between platforms and should be determined beforehand.

	-n NUM:
Number of memory channels per processor socket.

	-b <domain:bus:devid.func>:
Blacklisting of ports; prevent EAL from using specified PCI device
(multiple -b options are allowed).

	--use-device:
use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

	--socket-mem:
Memory to allocate from hugepages on specific sockets.

	-m MB:
Memory to allocate from hugepages, regardless of processor socket. It is
recommended that --socket-mem be used instead of this option.

	-r NUM:
Number of memory ranks.

	-v:
Display version information on startup.

	--huge-dir:
The directory where hugetlbfs is mounted.

	--file-prefix:
The prefix text used for hugepage filenames.

	--proc-type:
The type of process instance.

	--xen-dom0:
Support application running on Xen Domain0 without hugetlbfs.

	--vmware-tsc-map:
Use VMware TSC map instead of native RDTSC.

	--base-virtaddr:
Specify base virtual address.

	--vfio-intr:
Specify interrupt type to be used by VFIO (has no effect if VFIO is not used).

The -c and option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows
(assuming the platform has four memory channels per processor socket,
and that cores 0-3 are present and are to be used for running the application):

./helloworld -c f -n 4

Note

The --proc-type and --file-prefix EAL options are used for running
multiple DPDK processes. See the “Multi-process Sample Application”
chapter in the DPDK Sample Applications User Guide and the DPDK
Programmers Guide for more details.

4.2.1. Logical Core Use by Applications

The coremask parameter is always mandatory for DPDK applications.
Each bit of the mask corresponds to the equivalent logical core number as reported by Linux.
Since these logical core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from platform to platform,
it is recommended that the core layout for each platform be considered when choosing the coremask to use in each case.

On initialization of the EAL layer by an DPDK application, the logical cores to be used and their socket location are displayed.
This information can also be determined for all cores on the system by examining the /proc/cpuinfo file, for example, by running cat /proc/cpuinfo.
The physical id attribute listed for each processor indicates the CPU socket to which it belongs.
This can be useful when using other processors to understand the mapping of the logical cores to the sockets.

Note

A more graphical view of the logical core layout may be obtained using the lstopo Linux utility.
On Fedora Linux, this may be installed and run using the following command:

sudo yum install hwloc
./lstopo

Warning

The logical core layout can change between different board layouts and should be checked before selecting an application coremask.

4.2.2. Hugepage Memory Use by Applications

When running an application, it is recommended to use the same amount of memory as that allocated for hugepages.
This is done automatically by the DPDK application at startup,
if no -m or --socket-mem parameter is passed to it when run.

If more memory is requested by explicitly passing a -m or --socket-mem value, the application fails.
However, the application itself can also fail if the user requests less memory than the reserved amount of hugepage-memory, particularly if using the -m option.
The reason is as follows.
Suppose the system has 1024 reserved 2 MB pages in socket 0 and 1024 in socket 1.
If the user requests 128 MB of memory, the 64 pages may not match the constraints:

	The hugepage memory by be given to the application by the kernel in socket 1 only.
In this case, if the application attempts to create an object, such as a ring or memory pool in socket 0, it fails.
To avoid this issue, it is recommended that the --socket-mem option be used instead of the -m option.

	These pages can be located anywhere in physical memory, and, although the DPDK EAL will attempt to allocate memory in contiguous blocks,
it is possible that the pages will not be contiguous. In this case, the application is not able to allocate big memory pools.

The socket-mem option can be used to request specific amounts of memory for specific sockets.
This is accomplished by supplying the --socket-mem flag followed by amounts of memory requested on each socket,
for example, supply --socket-mem=0,512 to try and reserve 512 MB for socket 1 only.
Similarly, on a four socket system, to allocate 1 GB memory on each of sockets 0 and 2 only, the parameter --socket-mem=1024,0,1024 can be used.
No memory will be reserved on any CPU socket that is not explicitly referenced, for example, socket 3 in this case.
If the DPDK cannot allocate enough memory on each socket, the EAL initialization fails.

4.3. Additional Sample Applications

Additional sample applications are included in the ${RTE_SDK}/examples directory.
These sample applications may be built and run in a manner similar to that described in earlier sections in this manual.
In addition, see the DPDK Sample Applications User Guide for a description of the application,
specific instructions on compilation and execution and some explanation of the code.

4.4. Additional Test Applications

In addition, there are two other applications that are built when the libraries are created.
The source files for these are in the DPDK/app directory and are called test and testpmd.
Once the libraries are created, they can be found in the build/app directory.

	The test application provides a variety of specific tests for the various functions in the DPDK.

	The testpmd application provides a number of different packet throughput tests and
examples of features such as how to use the Flow Director found in the Intel® 82599 10 Gigabit Ethernet Controller.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

5. Enabling Additional Functionality

5.1. High Precision Event Timer HPET) Functionality

5.1.1. BIOS Support

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used.
Otherwise, the Time Stamp Counter (TSC) is used by default.
The BIOS is typically accessed by pressing F2 while the platform is starting up.
The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:
Advanced -> PCH-IO Configuration -> High Precision Timer -> (Change from Disabled to Enabled if necessary).

On a system that has already booted, the following command can be issued to check if HPET is enabled:

grep hpet /proc/timer_list

If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above) and the system rebooted.

5.1.2. Linux Kernel Support

The DPDK makes use of the platform HPET timer by mapping the timer counter into the process address space, and as such,
requires that the HPET_MMAP kernel configuration option be enabled.

Warning

On Fedora, and other common distributions such as Ubuntu, the HPET_MMAP kernel option is not enabled by default.
To recompile the Linux kernel with this option enabled, please consult the distributions documentation for the relevant instructions.

5.1.3. Enabling HPET in the DPDK

By default, HPET support is disabled in the DPDK build configuration files.
To use HPET, the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to y, which will enable the HPET settings at compile time.

For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API calls,
and optionally to make the HPET the default time source for the rte_timer library,
the new rte_eal_hpet_init() API call should be called at application initialization.
This API call will ensure that the HPET is accessible, returning an error to the application if it is not,
for example, if HPET_MMAP is not enabled in the kernel.
The application can then determine what action to take, if any, if the HPET is not available at run-time.

Note

For applications that require timing APIs, but not the HPET timer specifically,
it is recommended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used instead of the HPET-specific APIs.
These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application call to rte_eal_hpet_init(),
if any, and on what is available on the system at runtime.

5.2. Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources directly,
with a number of small permission adjustments it is possible to run these applications as a user other than “root”.
To do so, the ownership, or permissions, on the following Linux file system objects should be adjusted to ensure that
the Linux user account being used to run the DPDK application has access to them:

	All directories which serve as hugepage mount points, for example, /mnt/huge

	The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

	The userspace-io sysfs config and resource files, for example for uio0:

/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resource*

	If the HPET is to be used, /dev/hpet

Note

On some Linux installations, /dev/hugepages is also a hugepage mount point created by default.

5.3. Power Management and Power Saving Functionality

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used.
Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based power management cannot be used.
Consult the relevant BIOS documentation to determine how these settings can be accessed.

For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel SpeedStep® Technology is:

Advanced
 -> Processor Configuration
 -> Enhanced Intel SpeedStep® Tech

In addition, C3 and C6 should be enabled as well for power management. The path of C3 and C6 on the same platform BIOS is:

Advanced
 -> Processor Configuration
 -> Processor C3 Advanced
 -> Processor Configuration
 -> Processor C6

5.4. Using Linux Core Isolation to Reduce Context Switches

While the threads used by an DPDK application are pinned to logical cores on the system,
it is possible for the Linux scheduler to run other tasks on those cores also.
To help prevent additional workloads from running on those cores,
it is possible to use the isolcpus Linux kernel parameter to isolate them from the general Linux scheduler.

For example, if DPDK applications are to run on logical cores 2, 4 and 6,
the following should be added to the kernel parameter list:

isolcpus=2,4,6

5.5. Loading the DPDK KNI Kernel Module

To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the kni module) must be loaded into the running kernel.
The module is found in the kmod sub-directory of the DPDK target directory.
Similar to the loading of the igb_uio module, this module should be loaded using the insmod command as shown below
(assuming that the current directory is the DPDK target directory):

insmod kmod/rte_kni.ko

Note

See the “Kernel NIC Interface Sample Application” chapter in the DPDK Sample Applications User Guide for more details.

5.6. Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set. These include:

	IOMMU_SUPPORT

	IOMMU_API

	INTEL_IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be used when using igb_uio driver.
This results in pass-through of the DMAR (DMA Remapping) lookup in the host.
Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the intel_iommu=on kernel parameter must be used too.
This ensures that the Intel IOMMU is being initialized as expected.

Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci driver can actually work with both iommu=pt and iommu=on.

5.7. High Performance of Small Packets on 40G NIC

As there might be firmware fixes for performance enhancement in latest version
of firmware image, the firmware update might be needed for getting high performance.
Check with the local Intel’s Network Division application engineers for firmware updates.
The base driver to support firmware version of FVL3E will be integrated in the next
DPDK release, so currently the validated firmware version is 4.2.6.

5.7.1. Enabling Extended Tag

PCI configuration of extended_tag has big impact on small packet size
performance of 40G ports. Enabling extended_tag can help 40G port to
achieve the best performance, especially for small packet size.

	Disabling/enabling extended_tag can be done in some BIOS implementations.

	If BIOS does not enable it, and does not support changing it, tools
(e.g. setpci on Linux) can be used to enable or disable extended_tag.

	From release 16.04, extended_tag is enabled by default during port
initialization, users don’t need to care about that anymore.

5.7.2. Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes size can provide helps to high performance of small packets.
Configuration of CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16 bytes size RX descriptors.

5.7.3. High Performance and per Packet Latency Tradeoff

Due to the hardware design, the interrupt signal inside NIC is needed for per
packet descriptor write-back. The minimum interval of interrupts could be set
at compile time by CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL in configuration files.
Though there is a default configuration, the interval could be tuned by the
users with that configuration item depends on what the user cares about more,
performance or per packet latency.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

6. Quick Start Setup Script

The setup.sh script, found in the tools subdirectory, allows the user to perform the following tasks:

	Build the DPDK libraries

	Insert and remove the DPDK IGB_UIO kernel module

	Insert and remove VFIO kernel modules

	Insert and remove the DPDK KNI kernel module

	Create and delete hugepages for NUMA and non-NUMA cases

	View network port status and reserve ports for DPDK application use

	Set up permissions for using VFIO as a non-privileged user

	Run the test and testpmd applications

	Look at hugepages in the meminfo

	List hugepages in /mnt/huge

	Remove built DPDK libraries

Once these steps have been completed for one of the EAL targets,
the user may compile their own application that links in the EAL libraries to create the DPDK image.

6.1. Script Organization

The setup.sh script is logically organized into a series of steps that a user performs in sequence.
Each step provides a number of options that guide the user to completing the desired task.
The following is a brief synopsis of each step.

Step 1: Build DPDK Libraries

Initially, the user must select a DPDK target to choose the correct target type and compiler options to use when building the libraries.

The user must have all libraries, modules, updates and compilers installed in the system prior to this,
as described in the earlier chapters in this Getting Started Guide.

Step 2: Setup Environment

The user configures the Linux* environment to support the running of DPDK applications.
Hugepages can be set up for NUMA or non-NUMA systems. Any existing hugepages will be removed.
The DPDK kernel module that is needed can also be inserted in this step,
and network ports may be bound to this module for DPDK application use.

Step 3: Run an Application

The user may run the test application once the other steps have been performed.
The test application allows the user to run a series of functional tests for the DPDK.
The testpmd application, which supports the receiving and sending of packets, can also be run.

Step 4: Examining the System

This step provides some tools for examining the status of hugepage mappings.

Step 5: System Cleanup

The final step has options for restoring the system to its original state.

6.2. Use Cases

The following are some example of how to use the setup.sh script.
The script should be run using the source command.
Some options in the script prompt the user for further data before proceeding.

Warning

The setup.sh script should be run with root privileges.

source tools/setup.sh

--

RTE_SDK exported as /home/user/rte

--

Step 1: Select the DPDK environment to build

--

[1] i686-native-linuxapp-gcc

[2] i686-native-linuxapp-icc

[3] ppc_64-power8-linuxapp-gcc

[4] x86_64-ivshmem-linuxapp-gcc

[5] x86_64-ivshmem-linuxapp-icc

[6] x86_64-native-bsdapp-clang

[7] x86_64-native-bsdapp-gcc

[8] x86_64-native-linuxapp-clang

[9] x86_64-native-linuxapp-gcc

[10] x86_64-native-linuxapp-icc

--

Step 2: Setup linuxapp environment

--

[11] Insert IGB UIO module

[12] Insert VFIO module

[13] Insert KNI module

[14] Setup hugepage mappings for non-NUMA systems

[15] Setup hugepage mappings for NUMA systems

[16] Display current Ethernet device settings

[17] Bind Ethernet device to IGB UIO module

[18] Bind Ethernet device to VFIO module

[19] Setup VFIO permissions

--

Step 3: Run test application for linuxapp environment

--

[20] Run test application ($RTE_TARGET/app/test)

[21] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)

--

Step 4: Other tools

--

[22] List hugepage info from /proc/meminfo

--

Step 5: Uninstall and system cleanup

--

[23] Uninstall all targets

[24] Unbind NICs from IGB UIO driver

[25] Remove IGB UIO module

[26] Remove VFIO module

[27] Remove KNI module

[28] Remove hugepage mappings

[29] Exit Script

Option:

The following selection demonstrates the creation of the x86_64-native-linuxapp-gcc DPDK library.

Option: 9

================== Installing x86_64-native-linuxapp-gcc

Configuration done
== Build lib
...
Build complete
RTE_TARGET exported as x86_64-native-linuxapp-gcc

The following selection demonstrates the starting of the DPDK UIO driver.

Option: 25

Unloading any existing DPDK UIO module
Loading DPDK UIO module

The following selection demonstrates the creation of hugepages in a NUMA system.
1024 2 MByte pages are assigned to each node.
The result is that the application should use -m 4096 for starting the application to access both memory areas
(this is done automatically if the -m option is not provided).

Note

If prompts are displayed to remove temporary files, type ‘y’.

Option: 15

Removing currently reserved hugepages
mounting /mnt/huge and removing directory
Input the number of 2MB pages for each node
Example: to have 128MB of hugepages available per node,
enter '64' to reserve 64 * 2MB pages on each node
Number of pages for node0: 1024
Number of pages for node1: 1024
Reserving hugepages
Creating /mnt/huge and mounting as hugetlbfs

The following selection demonstrates the launch of the test application to run on a single core.

Option: 20

Enter hex bitmask of cores to execute test app on
Example: to execute app on cores 0 to 7, enter 0xff
bitmask: 0x01
Launching app
EAL: coremask set to 1
EAL: Detected lcore 0 on socket 0
...
EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>

6.3. Applications

Once the user has run the setup.sh script, built one of the EAL targets and set up hugepages (if using one of the Linux EAL targets),
the user can then move on to building and running their application or one of the examples provided.

The examples in the /examples directory provide a good starting point to gain an understanding of the operation of the DPDK.
The following command sequence shows how the helloworld sample application is built and run.
As recommended in Section 4.2.1 , “Logical Core Use by Applications”,
the logical core layout of the platform should be determined when selecting a core mask to use for an application.

cd helloworld/
make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

sudo ./build/app/helloworld -c 0xf -n 3
[sudo] password for rte:

EAL: coremask set to f
EAL: Detected lcore 0 as core 0 on socket 0
EAL: Detected lcore 1 as core 0 on socket 1
EAL: Detected lcore 2 as core 1 on socket 0
EAL: Detected lcore 3 as core 1 on socket 1
EAL: Setting up hugepage memory...
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0add800000 (size = 0x200000)
EAL: Ask a virtual area of 0x3d400000 bytes
EAL: Virtual area found at 0x7f0aa0200000 (size = 0x3d400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9fc00000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f000000 (size = 0x400000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9e600000 (size = 0x800000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9dc00000 (size = 0x800000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d000000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9ca00000 (size = 0x400000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c600000 (size = 0x200000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c200000 (size = 0x200000)
EAL: Ask a virtual area of 0x3fc00000 bytes
EAL: Virtual area found at 0x7f0a5c400000 (size = 0x3fc00000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a5c000000 (size = 0x200000)
EAL: Requesting 1024 pages of size 2MB from socket 0
EAL: Requesting 1024 pages of size 2MB from socket 1
EAL: Master core 0 is ready (tid=de25b700)
EAL: Core 1 is ready (tid=5b7fe700)
EAL: Core 3 is ready (tid=5a7fc700)
EAL: Core 2 is ready (tid=5affd700)
hello from core 1
hello from core 2
hello from core 3
hello from core 0

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for Linux

7. How to get best performance with NICs on Intel platforms

This document is a step-by-step guide for getting high performance from DPDK applications on Intel platforms.

7.1. Hardware and Memory Requirements

For best performance use an Intel Xeon class server system such as Ivy Bridge, Haswell or newer.

Ensure that each memory channel has at least one memory DIMM inserted, and that the memory size for each is at least 4GB.
Note: this has one of the most direct effects on performance.

You can check the memory configuration using dmidecode as follows:

dmidecode -t memory | grep Locator

Locator: DIMM_A1
Bank Locator: NODE 1
Locator: DIMM_A2
Bank Locator: NODE 1
Locator: DIMM_B1
Bank Locator: NODE 1
Locator: DIMM_B2
Bank Locator: NODE 1
...
Locator: DIMM_G1
Bank Locator: NODE 2
Locator: DIMM_G2
Bank Locator: NODE 2
Locator: DIMM_H1
Bank Locator: NODE 2
Locator: DIMM_H2
Bank Locator: NODE 2

The sample output above shows a total of 8 channels, from A to H, where each channel has 2 DIMMs.

You can also use dmidecode to determine the memory frequency:

dmidecode -t memory | grep Speed

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
...
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown

The output shows a speed of 2133 MHz (DDR4) and Unknown (not existing).
This aligns with the previous output which showed that each channel has one memory bar.

7.1.1. Network Interface Card Requirements

Use a DPDK supported [http://dpdk.org/doc/nics] high end NIC such as the Intel XL710 40GbE.

Make sure each NIC has been flashed the latest version of NVM/firmware.

Use PCIe Gen3 slots, such as Gen3 x8 or Gen3 x16 because PCIe Gen2 slots don’t provide enough bandwidth
for 2 x 10GbE and above.
You can use lspci to check the speed of a PCI slot using something like the following:

lspci -s 03:00.1 -vv | grep LnkSta

LnkSta: Speed 8GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- ...
LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ ...

When inserting NICs into PCI slots always check the caption, such as CPU0 or CPU1 to indicate which socket it is connected to.

Care should be take with NUMA.
If you are using 2 or more ports from different NICs, it is best to ensure that these NICs are on the same CPU socket.
An example of how to determine this is shown further below.

7.1.2. BIOS Settings

The following are some recommendations on BIOS settings. Different platforms will have different BIOS naming
so the following is mainly for reference:

	Before starting consider resetting all BIOS settings to their default.

	Disable all power saving options such as: Power performance tuning, CPU P-State, CPU C3 Report and CPU C6 Report.

	Select Performance as the CPU Power and Performance policy.

	Disable Turbo Boost to ensure the performance scaling increases with the number of cores.

	Set memory frequency to the highest available number, NOT auto.

	Disable all virtualization options when you test the physical function of the NIC, and turn on VT-d if you wants to use VFIO.

7.1.3. Linux boot command line

The following are some recommendations on GRUB boot settings:

	Use the default grub file as a starting point.

	Reserve 1G huge pages via grub configurations. For example to reserve 8 huge pages of 1G size:

default_hugepagesz=1G hugepagesz=1G hugepages=8

	Isolate CPU cores which will be used for DPDK. For example:

isolcpus=2,3,4,5,6,7,8

	If it wants to use VFIO, use the following additional grub parameters:

iommu=pt intel_iommu=on

7.2. Configurations before running DPDK

	Build the DPDK target and reserve huge pages.
See the earlier section on Use of Hugepages in the Linux Environment for more details.

The following shell commands may help with building and configuration:

Build DPDK target.
cd dpdk_folder
make install T=x86_64-native-linuxapp-gcc -j

Get the hugepage size.
awk '/Hugepagesize/ {print $2}' /proc/meminfo

Get the total huge page numbers.
awk '/HugePages_Total/ {print $2} ' /proc/meminfo

Unmount the hugepages.
umount `awk '/hugetlbfs/ {print $2}' /proc/mounts`

Create the hugepage mount folder.
mkdir -p /mnt/huge

Mount to the specific folder.
mount -t hugetlbfs nodev /mnt/huge

	Check the CPU layout using using the DPDK cpu_layout utility:

cd dpdk_folder

tools/cpu_layout.py

Or run lscpu to check the the cores on each socket.

	Check your NIC id and related socket id:

List all the NICs with PCI address and device IDs.
lspci -nn | grep Eth

For example suppose your output was as follows:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
82:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

Check the PCI device related numa node id:

cat /sys/bus/pci/devices/0000\:xx\:00.x/numa_node

Usually 0x:00.x is on socket 0 and 8x:00.x is on socket 1.
Note: To get the best performance, ensure that the core and NICs are in the same socket.
In the example above 85:00.0 is on socket 1 and should be used by cores on socket 1 for the best performance.

	Bind the test ports to DPDK compatible drivers, such as igb_uio. For example bind two ports to a DPDK compatible driver and check the status:

Bind ports 82:00.0 and 85:00.0 to dpdk driver
./dpdk_folder/tools/dpdk_nic_bind.py -b igb_uio 82:00.0 85:00.0

Check the port driver status
./dpdk_folder/tools/dpdk_nic_bind.py --status

See dpdk_nic_bind.py --help for more details.

More details about DPDK setup and Linux kernel requirements see Compiling the DPDK Target from Source.

7.3. Example of getting best performance for an Intel NIC

The following is an example of running the DPDK l3fwd sample application to get high performance with an
Intel server platform and Intel XL710 NICs.
For specific 40G NIC configuration please refer to the i40e NIC guide.

The example scenario is to get best performance with two Intel XL710 40GbE ports.
See Fig. 7.1 for the performance test setup.

Fig. 7.1 Performance Test Setup

	Add two Intel XL710 NICs to the platform, and use one port per card to get best performance.
The reason for using two NICs is to overcome a PCIe Gen3’s limitation since it cannot provide 80G bandwidth
for two 40G ports, but two different PCIe Gen3 x8 slot can.
Refer to the sample NICs output above, then we can select 82:00.0 and 85:00.0 as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

	Connect the ports to the traffic generator. For high speed testing, it’s best to use a hardware traffic generator.

	Check the PCI devices numa node (socket id) and get the cores number on the exact socket id.
In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on socket 1 in the referenced platform
are 18-35 and 54-71.
Note: Don’t use 2 logical cores on the same core (e.g core18 has 2 logical cores, core18 and core54), instead, use 2 logical
cores from different cores (e.g core18 and core19).

	Bind these two ports to igb_uio.

	As to XL710 40G port, we need at least two queue pairs to achieve best performance, then two queues per port
will be required, and each queue pair will need a dedicated CPU core for receiving/transmitting packets.

	The DPDK sample application l3fwd will be used for performance testing, with using two ports for bi-directional forwarding.
Compile the l3fwd sample with the default lpm mode.

	The command line of running l3fwd would be something like the followings:

./l3fwd -c 0x3c0000 -n 4 -w 82:00.0 -w 85:00.0 \
 -- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19 for port 0, queue pair 1 forwarding,
core 20 for port 1, queue pair 0 forwarding, and core 21 for port 1, queue pair 1 forwarding.

	Configure the traffic at a traffic generator.

	Start creating a stream on packet generator.

	Set the Ethernet II type to 0x0800.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Getting Started Guide for FreeBSD

	1. Introduction
	1.1. Documentation Roadmap

	2. Installing DPDK from the Ports Collection
	2.1. Installing the DPDK FreeBSD Port

	2.2. Compiling and Running the Example Applications

	3. Compiling the DPDK Target from Source
	3.1. System Requirements

	3.2. Install the DPDK and Browse Sources

	3.3. Installation of the DPDK Target Environments

	3.4. Browsing the Installed DPDK Environment Target

	3.5. Loading the DPDK contigmem Module

	3.6. Loading the DPDK nic_uio Module

	4. Compiling and Running Sample Applications
	4.1. Compiling a Sample Application

	4.2. Running a Sample Application

	4.3. Running DPDK Applications Without Root Privileges

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for FreeBSD

1. Introduction

This document contains instructions for installing and configuring the
Data Plane Development Kit (DPDK) software. It is designed to get customers
up and running quickly and describes how to compile and run a
DPDK application in a FreeBSD application (bsdapp) environment, without going
deeply into detail.

For a comprehensive guide to installing and using FreeBSD, the following
handbook is available from the FreeBSD Documentation Project:
FreeBSD Handbook [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html].

Note

The DPDK is now available as part of the FreeBSD ports collection.
Installing via the ports collection infrastructure is now the recommended
way to install the DPDK on FreeBSD, and is documented in the
next chapter, Installing DPDK from the Ports Collection.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes : Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

	Getting Started Guide (this document): Describes how to install and
configure the DPDK; designed to get users up and running quickly with the
software.

	Programmer’s Guide: Describes:

	The software architecture and how to use it (through examples),
specifically in a Linux* application (linuxapp) environment

	The content of the DPDK, the build system (including the commands
that can be used in the root DPDK Makefile to build the development
kit and an application) and guidelines for porting an application

	Optimizations used in the software and those that should be considered
for new development

A glossary of terms is also provided.

	API Reference: Provides detailed information about DPDK functions,
data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality
and provides instructions on how to compile, run and use the sample application.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for FreeBSD

2. Installing DPDK from the Ports Collection

The easiest way to get up and running with the DPDK on FreeBSD is to
install it from the ports collection. Details of getting and using the ports
collection are documented in the
FreeBSD Handbook [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html].

Note

Testing has been performed using FreeBSD 10.0-RELEASE (x86_64) and requires the
installation of the kernel sources, which should be included during the
installation of FreeBSD.

2.1. Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK
can be installed using the commands:

cd /usr/ports/net/dpdk

make install

After the installation of the DPDK port, instructions will be printed on
how to install the kernel modules required to use the DPDK. A more
complete version of these instructions can be found in the sections
Loading the DPDK contigmem Module and Loading the DPDK nic_uio Module. Normally, lines like
those below would be added to the file /boot/loader.conf.

Reserve 2 x 1G blocks of contiguous memory using contigmem driver:
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"

Identify NIC devices for DPDK apps to use and load nic_uio driver:
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

2.2. Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs
its example applications in /usr/local/share/dpdk/examples - also accessible via
symlink as /usr/local/share/examples/dpdk. These examples can be compiled and
run as described in Compiling and Running Sample Applications. In this case, the required
environmental variables should be set as below:

	RTE_SDK=/usr/local/share/dpdk

	RTE_TARGET=x86_64-native-bsdapp-clang

Note

To install a copy of the DPDK compiled using gcc, please download the
official DPDK package from http://dpdk.org/ and install manually using
the instructions given in the next chapter, Compiling the DPDK Target from Source

An example application can therefore be copied to a user’s home directory and
compiled and run as below:

export RTE_SDK=/usr/local/share/dpdk

export RTE_TARGET=x86_64-native-bsdapp-clang

cp -r /usr/local/share/dpdk/examples/helloworld .

cd helloworld/

gmake
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

sudo ./build/helloworld -c F -n 2

EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus
EAL: Detected lcore 0
EAL: Detected lcore 1
EAL: Detected lcore 2
EAL: Detected lcore 3
EAL: Support maximum 64 logical core(s) by configuration.
EAL: Detected 4 lcore(s)
EAL: Setting up physically contiguous memory...
EAL: Mapped memory segment 1 @ 0x802400000: len 1073741824
EAL: Mapped memory segment 2 @ 0x842400000: len 1073741824
EAL: WARNING: clock_gettime cannot use CLOCK_MONOTONIC_RAW and HPET
 is not available - clock timings may be less accurate.
EAL: TSC frequency is ~3569023 KHz
EAL: PCI scan found 24 devices
EAL: Master core 0 is ready (tid=0x802006400)
EAL: Core 1 is ready (tid=0x802006800)
EAL: Core 3 is ready (tid=0x802007000)
EAL: Core 2 is ready (tid=0x802006c00)
EAL: PCI device 0000:01:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x80074a000
EAL: PCI memory mapped at 0x8007ca000
EAL: PCI device 0000:01:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x8007ce000
EAL: PCI memory mapped at 0x80084e000
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x800852000
EAL: PCI memory mapped at 0x8008d2000
EAL: PCI device 0000:02:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x801b3f000
EAL: PCI memory mapped at 0x8008d6000
hello from core 1
hello from core 2
hello from core 3
hello from core 0

Note

To run a DPDK process as a non-root user, adjust the permissions on
the /dev/contigmem and /dev/uio device nodes as described in section
Running DPDK Applications Without Root Privileges

Note

For an explanation of the command-line parameters that can be passed to an
DPDK application, see section Running a Sample Application.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for FreeBSD

3. Compiling the DPDK Target from Source

3.1. System Requirements

The DPDK and its applications require the GNU make system (gmake)
to build on FreeBSD. Optionally, gcc may also be used in place of clang
to build the DPDK, in which case it too must be installed prior to
compiling the DPDK. The installation of these tools is covered in this
section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be
included during the installation of FreeBSD on the development platform.
The DPDK also requires the use of FreeBSD ports to compile and function.

To use the FreeBSD ports system, it is required to update and extract the FreeBSD
ports tree by issuing the following commands:

portsnap fetch
portsnap extract

If the environment requires proxies for external communication, these can be set
using:

setenv http_proxy <my_proxy_host>:<port>
setenv ftp_proxy <my_proxy_host>:<port>

The FreeBSD ports below need to be installed prior to building the DPDK.
In general these can be installed using the following set of commands:

cd /usr/ports/<port_location>

make config-recursive

make install

make clean

Each port location can be found using:

whereis <port_name>

The ports required and their locations are as follows:

	dialog4ports: /usr/ports/ports-mgmt/dialog4ports

	GNU make(gmake): /usr/ports/devel/gmake

	coreutils: /usr/ports/sysutils/coreutils

For compiling and using the DPDK with gcc, the compiler must be installed
from the ports collection:

	gcc: version 4.8 is recommended /usr/ports/lang/gcc48.
Ensure that CPU_OPTS is selected (default is OFF).

When running the make config-recursive command, a dialog may be presented to the
user. For the installation of the DPDK, the default options were used.

Note

To avoid multiple dialogs being presented to the user during make install,
it is advisable before running the make install command to re-run the
make config-recursive command until no more dialogs are seen.

3.2. Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile
mk/ scripts/ tools/

The DPDK is composed of several directories:

	lib: Source code of DPDK libraries

	app: Source code of DPDK applications (automatic tests)

	examples: Source code of DPDK applications

	config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

3.3. Installation of the DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

Where:

	ARCH is: x86_64

	MACHINE is: native

	EXECENV is: bsdapp

	TOOLCHAIN is: gcc | clang

The configuration files for the DPDK targets can be found in the DPDK/config
directory in the form of:

defconfig_ARCH-MACHINE-EXECENV-TOOLCHAIN

Note

Configuration files are provided with the RTE_MACHINE optimization level set.
Within the configuration files, the RTE_MACHINE configuration value is set
to native, which means that the compiled software is tuned for the platform
on which it is built. For more information on this setting, and its
possible values, see the DPDK Programmers Guide.

To make the target, use gmake install T=<target>.

For example to compile for FreeBSD use:

gmake install T=x86_64-native-bsdapp-clang

Note

If the compiler binary to be used does not correspond to that given in the
TOOLCHAIN part of the target, the compiler command may need to be explicitly
specified. For example, if compiling for gcc, where the gcc binary is called
gcc4.8, the command would need to be gmake install T=<target> CC=gcc4.8.

3.4. Browsing the Installed DPDK Environment Target

Once a target is created, it contains all the libraries and header files for the
DPDK environment that are required to build customer applications.
In addition, the test and testpmd applications are built under the build/app
directory, which may be used for testing. A kmod directory is also present that
contains the kernel modules to install:

ls x86_64-native-bsdapp-gcc

app build hostapp include kmod lib Makefile

3.5. Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required.
In the absence of non-transparent superpages, the included sources for the
contigmem kernel module provides the ability to present contiguous blocks of
memory for the DPDK to use. The contigmem module must be loaded into the
running kernel before any DPDK is run. The module is found in the kmod
sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically
contiguous blocks to be reserved by the module can be set at runtime prior to
module loading using:

kenv hw.contigmem.num_buffers=n
kenv hw.contigmem.buffer_size=m

The kernel environment variables can also be specified during boot by placing the
following in /boot/loader.conf:

hw.contigmem.num_buffers=n hw.contigmem.buffer_size=m

The variables can be inspected using the following command:

sysctl -a hw.contigmem

Where n is the number of blocks and m is the size in bytes of each area of
contiguous memory. A default of two buffers of size 1073741824 bytes (1 Gigabyte)
each is set during module load if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory
is the DPDK target directory):

kldload ./kmod/contigmem.ko

It is advisable to include the loading of the contigmem module during the boot
process to avoid issues with potential memory fragmentation during later system
up time. This can be achieved by copying the module to the /boot/kernel/
directory and placing the following into /boot/loader.conf:

contigmem_load="YES"

Note

The contigmem_load directive should be placed after any definitions of
hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values
are not to be used.

An error such as:

kldload: can't load ./x86_64-native-bsdapp-gcc/kmod/contigmem.ko:
 Exec format error

is generally attributed to not having enough contiguous memory
available and can be verified via dmesg or /var/log/messages:

kernel: contigmalloc failed for buffer <n>

To avoid this error, reduce the number of buffers or the buffer size.

3.6. Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio must also be loaded into the
running kernel prior to running any DPDK application. This module must
be loaded using the kldload command as shown below (assuming that the current
directory is the DPDK target directory).

kldload ./kmod/nic_uio.ko

Note

If the ports to be used are currently bound to a existing kernel driver
then the hw.nic_uio.bdfs sysctl value will need to be set before loading the
module. Setting this value is described in the next section below.

Currently loaded modules can be seen by using the kldstat command and a module
can be removed from the running kernel by using kldunload <module_name>.

To load the module during boot, copy the nic_uio module to /boot/kernel
and place the following into /boot/loader.conf:

nic_uio_load="YES"

Note

nic_uio_load="YES" must appear after the contigmem_load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are
recognized DPDK devices and are not owned by another module. However, since
the FreeBSD kernel includes support, either built-in, or via a separate driver
module, for most network card devices, it is likely that the ports to be used are
already bound to a driver other than nic_uio. The following sub-section describe
how to query and modify the device ownership of the ports to be used by
DPDK applications.

3.6.1. Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -l command. The example below shows
four Intel® 82599 network ports under if_ixgbe module ownership.

pciconf -l
ix0@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pci0:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00

The first column constitutes three components:

	Device name: ixN

	Unit name: pci0

	Selector (Bus:Device:Function): 1:0:0

Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD kernel will include built-in drivers for the most common
devices; a kernel rebuild would normally be required to either remove the drivers
or configure them as loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port
from its current device driver. This is achieved by setting the hw.nic_uio.bdfs
kernel environment variable prior to loading nic_uio, as follows:

hw.nic_uio.bdfs="b:d:f,b:d:f,..."

Where a comma separated list of selectors is set, the list must not contain any
whitespace.

For example to re-bind ix2@pci0:2:0:0 and ix3@pci0:2:0:1 to the nic_uio module
upon loading, use the following command:

kenv hw.nic_uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into
/boot/loader.conf, before the previously-described nic_uio_load line - as
shown:

hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

3.6.2. Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel,
it is necessary to reboot FreeBSD to restore the original device binding. Before
doing so, update or remove the hw.nic_uio.bdfs in /boot/loader.conf.

If rebinding to a driver that is a loadable module, the network port binding can
be reset without rebooting. To do so, unload both the target kernel module and the
nic_uio module, modify or clear the hw.nic_uio.bdfs kernel environment (kenv)
value, and reload the two drivers - first the original kernel driver, and then
the nic_uio driver. Note: the latter does not need to be reloaded unless there are
ports that are still to be bound to it.

Example commands to perform these steps are shown below:

kldunload nic_uio
kldunload <original_driver>

To clear the value completely:
kenv -u hw.nic_uio.bdfs

To update the list of ports to bind:
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

kldload <original_driver>

kldload nic_uio # optional

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Getting Started Guide for FreeBSD

4. Compiling and Running Sample Applications

The chapter describes how to compile and run applications in a DPDK
environment. It also provides a pointer to where sample applications are stored.

4.1. Compiling a Sample Application

Once a DPDK target environment directory has been created (such as
x86_64-native-bsdapp-clang), it contains all libraries and header files required
to build an application.

When compiling an application in the FreeBSD environment on the DPDK,
the following variables must be exported:

	RTE_SDK - Points to the DPDK installation directory.

	RTE_TARGET - Points to the DPDK target environment directory.
For FreeBSD, this is the x86_64-native-bsdapp-clang or
x86_64-native-bsdapp-gcc directory.

The following is an example of creating the helloworld application, which runs
in the DPDK FreeBSD environment. While the example demonstrates compiling
using gcc version 4.8, compiling with clang will be similar, except that the CC=
parameter can probably be omitted. The helloworld example may be found in the
${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the
libraries in the DPDK target environment, calls the various functions to
initialize the DPDK environment, then launches an entry point (dispatch
application) for each core to be utilized. By default, the binary is generated
in the build directory.

setenv RTE_SDK /home/user/DPDK
cd $(RTE_SDK)
cd examples/helloworld/
setenv RTE_SDK $HOME/DPDK
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc48
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

ls build/app
 helloworld helloworld.map

Note

In the above example, helloworld was in the directory structure of the
DPDK. However, it could have been located outside the directory
structure to keep the DPDK structure intact. In the following case,
the helloworld application is copied to a new directory as a new starting
point.

setenv RTE_SDK /home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc48
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

4.2. Running a Sample Application

	The contigmem and nic_uio modules must be set up prior to running an application.

	Any ports to be used by the application must be already bound to the nic_uio module,
as described in section Binding Network Ports to the nic_uio Module, prior to running the application.
The application is linked with the DPDK target environment’s Environment
Abstraction Layer (EAL) library, which provides some options that are generic
to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
 [-r NUM] [-v] [--proc-type <primary|secondary|auto>]

Note

EAL has a common interface between all operating systems and is based on the
Linux notation for PCI devices. For example, a FreeBSD device selector of
pci0:2:0:1 is referred to as 02:00.1 in EAL.

The EAL options for FreeBSD are as follows:

	-c COREMASK:
A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand.

	-n NUM:
Number of memory channels per processor socket.

	-b <domain:bus:devid.func>:
Blacklisting of ports; prevent EAL from using specified PCI device
(multiple -b options are allowed).

	--use-device:
Use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

	-r NUM:
Number of memory ranks.

	-v:
Display version information on startup.

	--proc-type:
The type of process instance.

Other options, specific to Linux and are not supported under FreeBSD are as follows:

	socket-mem:
Memory to allocate from hugepages on specific sockets.

	--huge-dir:
The directory where hugetlbfs is mounted.

	--file-prefix:
The prefix text used for hugepage filenames.

	-m MB:
Memory to allocate from hugepages, regardless of processor socket.
It is recommended that --socket-mem be used instead of this option.

The -c option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application
as follows (assuming the platform has four memory channels, and that cores 0-3
are present and are to be used for running the application):

./helloworld -c f -n 4

Note

The --proc-type and --file-prefix EAL options are used for running multiple
DPDK processes. See the “Multi-process Sample Application” chapter
in the DPDK Sample Applications User Guide and the DPDK
Programmers Guide for more details.

4.3. Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware
resources directly, with a number of small permission adjustments, it is possible
to run these applications as a user other than “root”. To do so, the ownership,
or permissions, on the following file system objects should be adjusted to ensure
that the user account being used to run the DPDK application has access
to them:

	The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

	The userspace contiguous memory device: /dev/contigmem

Note

Please refer to the DPDK Release Notes for supported applications.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Xen Guide

	1. DPDK Xen Based Packet-Switching Solution
	1.1. Introduction

	1.2. Device Creation

	1.3. Running the Application

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Xen Guide

1. DPDK Xen Based Packet-Switching Solution

1.1. Introduction

DPDK provides a para-virtualization packet switching solution, based on the Xen hypervisor’s Grant Table, Note 1,
which provides simple and fast packet switching capability between guest domains and host domain based on MAC address or VLAN tag.

This solution is comprised of two components;
a Poll Mode Driver (PMD) as the front end in the guest domain and a switching back end in the host domain.
XenStore is used to exchange configure information between the PMD front end and switching back end,
including grant reference IDs for shared Virtio RX/TX rings,
MAC address, device state, and so on. XenStore is an information storage space shared between domains,
see further information on XenStore below.

The front end PMD can be found in the DPDK directory lib/ librte_pmd_xenvirt and back end example in examples/vhost_xen.

The PMD front end and switching back end use shared Virtio RX/TX rings as para- virtualized interface.
The Virtio ring is created by the front end, and Grant table references for the ring are passed to host.
The switching back end maps those grant table references and creates shared rings in a mapped address space.

The following diagram describes the functionality of the DPDK Xen Packet- Switching Solution.

[image: ../_images/dpdk_xen_pkt_switch.png]
Fig. 1.1 Functionality of the DPDK Xen Packet Switching Solution.

Note 1 The Xen hypervisor uses a mechanism called a Grant Table to share memory between domains
(http://wiki.xen.org/wiki/Grant Table [http://wiki.xen.org/wiki/Grant%20Table]).

A diagram of the design is shown below, where “gva” is the Guest Virtual Address,
which is the data pointer of the mbuf, and “hva” is the Host Virtual Address:

[image: ../_images/grant_table.png]
Fig. 1.2 DPDK Xen Layout

In this design, a Virtio ring is used as a para-virtualized interface for better performance over a Xen private ring
when packet switching to and from a VM.
The additional performance is gained by avoiding a system call and memory map in each memory copy with a XEN private ring.

1.2. Device Creation

1.2.1. Poll Mode Driver Front End

	Mbuf pool allocation:

To use a Xen switching solution, the DPDK application should use rte_mempool_gntalloc_create()
to reserve mbuf pools during initialization.
rte_mempool_gntalloc_create() creates a mempool with objects from memory allocated and managed via gntalloc/gntdev.

The DPDK now supports construction of mempools from allocated virtual memory through the rte_mempool_xmem_create() API.

This front end constructs mempools based on memory allocated through the xen_gntalloc driver.
rte_mempool_gntalloc_create() allocates Grant pages, maps them to continuous virtual address space,
and calls rte_mempool_xmem_create() to build mempools.
The Grant IDs for all Grant pages are passed to the host through XenStore.

	Virtio Ring Creation:

The Virtio queue size is defined as 256 by default in the VQ_DESC_NUM macro.
Using the queue setup function,
Grant pages are allocated based on ring size and are mapped to continuous virtual address space to form the Virtio ring.
Normally, one ring is comprised of several pages.
Their Grant IDs are passed to the host through XenStore.

There is no requirement that this memory be physically continuous.

	Interrupt and Kick:

There are no interrupts in DPDK Xen Switching as both front and back ends work in polling mode.
There is no requirement for notification.

	Feature Negotiation:

Currently, feature negotiation through XenStore is not supported.

	Packet Reception & Transmission:

With mempools and Virtio rings created, the front end can operate Virtio devices,
as it does in Virtio PMD for KVM Virtio devices with the exception that the host
does not require notifications or deal with interrupts.

XenStore is a database that stores guest and host information in the form of (key, value) pairs.
The following is an example of the information generated during the startup of the front end PMD in a guest VM (domain ID 1):

xenstore -ls /local/domain/1/control/dpdk
0_mempool_gref="3042,3043,3044,3045"
0_mempool_va="0x7fcbc6881000"
0_tx_vring_gref="3049"
0_rx_vring_gref="3053"
0_ether_addr="4e:0b:d0:4e:aa:f1"
0_vring_flag="3054"
...

Multiple mempools and multiple Virtios may exist in the guest domain, the first number is the index, starting from zero.

The idx#_mempool_va stores the guest virtual address for mempool idx#.

The idx#_ether_adder stores the MAC address of the guest Virtio device.

For idx#_rx_ring_gref, idx#_tx_ring_gref, and idx#_mempool_gref, the value is a list of Grant references.
Take idx#_mempool_gref node for example, the host maps those Grant references to a continuous virtual address space.
The real Grant reference information is stored in this virtual address space,
where (gref, pfn) pairs follow each other with -1 as the terminator.

[image: ../_images/grant_refs.png]
Fig. 1.3 Mapping Grant references to a continuous virtual address space

After all gref# IDs are retrieved, the host maps them to a continuous virtual address space.
With the guest mempool virtual address, the host establishes 1:1 address mapping.
With multiple guest mempools, the host establishes multiple address translation regions.

1.2.2. Switching Back End

The switching back end monitors changes in XenStore.
When the back end detects that a new Virtio device has been created in a guest domain, it will:

	Retrieve Grant and configuration information from XenStore.

	Map and create a Virtio ring.

	Map mempools in the host and establish address translation between the guest address and host address.

	Select a free VMDQ pool, set its affinity with the Virtio device, and set the MAC/ VLAN filter.

1.2.3. Packet Reception

When packets arrive from an external network, the MAC?VLAN filter classifies packets into queues in one VMDQ pool.
As each pool is bonded to a Virtio device in some guest domain, the switching back end will:

	Fetch an available entry from the Virtio RX ring.

	Get gva, and translate it to hva.

	Copy the contents of the packet to the memory buffer pointed to by gva.

The DPDK application in the guest domain, based on the PMD front end,
is polling the shared Virtio RX ring for available packets and receives them on arrival.

1.2.4. Packet Transmission

When a Virtio device in one guest domain is to transmit a packet,
it puts the virtual address of the packet’s data area into the shared Virtio TX ring.

The packet switching back end is continuously polling the Virtio TX ring.
When new packets are available for transmission from a guest, it will:

	Fetch an available entry from the Virtio TX ring.

	Get gva, and translate it to hva.

	Copy the packet from hva to the host mbuf’s data area.

	Compare the destination MAC address with all the MAC addresses of the Virtio devices it manages.
If a match exists, it directly copies the packet to the matched VIrtio RX ring.
Otherwise, it sends the packet out through hardware.

Note

The packet switching back end is for demonstration purposes only.
The user could implement their switching logic based on this example.
In this example, only one physical port on the host is supported.
Multiple segments are not supported. The biggest mbuf supported is 4KB.
When the back end is restarted, all front ends must also be restarted.

1.3. Running the Application

The following describes the steps required to run the application.

1.3.1. Validated Environment

Host:

Xen-hypervisor: 4.2.2

Distribution: Fedora release 18

Kernel: 3.10.0

Xen development package (including Xen, Xen-libs, xen-devel): 4.2.3

Guest:

Distribution: Fedora 16 and 18

Kernel: 3.6.11

1.3.2. Xen Host Prerequisites

Note that the following commands might not be the same on different Linux* distributions.

	Install xen-devel package:

yum install xen-devel.x86_64

	Start xend if not already started:

/etc/init.d/xend start

	Mount xenfs if not already mounted:

mount -t xenfs none /proc/xen

	Enlarge the limit for xen_gntdev driver:

modprobe -r xen_gntdev
modprobe xen_gntdev limit=1000000

Note

The default limit for earlier versions of the xen_gntdev driver is 1024.
That is insufficient to support the mapping of multiple Virtio devices into multiple VMs,
so it is necessary to enlarge the limit by reloading this module.
The default limit of recent versions of xen_gntdev is 1048576.
The rough calculation of this limit is:

limit=nb_mbuf# * VM#.

In DPDK examples, nb_mbuf# is normally 8192.

1.3.3. Building and Running the Switching Backend

	Edit config/common_linuxapp, and change the default configuration value for the following two items:

CONFIG_RTE_LIBRTE_XEN_DOM0=y
CONFIG RTE_LIBRTE_PMD_XENVIRT=n

	Build the target:

make install T=x86_64-native-linuxapp-gcc

	Ensure that RTE_SDK and RTE_TARGET are correctly set. Build the switching example:

make -C examples/vhost_xen/

	Load the Xen DPDK memory management module and preallocate memory:

insmod ./x86_64-native-linuxapp-gcc/build/lib/librte_eal/linuxapp/xen_dom0/rte_dom0_mm.ko
echo 2048> /sys/kernel/mm/dom0-mm/memsize-mB/memsize

Note

On Xen Dom0, there is no hugepage support.
Under Xen Dom0, the DPDK uses a special memory management kernel module
to allocate chunks of physically continuous memory.
Refer to the DPDK Getting Started Guide for more information on memory management in the DPDK.
In the above command, 4 GB memory is reserved (2048 of 2 MB pages) for DPDK.

	Load uio_pci_generic and bind one Intel NIC controller to it:

modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 0000:09:00:00.0

In this case, 0000:09:00.0 is the PCI address for the NIC controller.

	Run the switching back end example:

examples/vhost_xen/build/vhost-switch -c f -n 3 --xen-dom0 -- -p1

Note

The -xen-dom0 option instructs the DPDK to use the Xen kernel module to allocate memory.

Other Parameters:

	-vm2vm

The vm2vm parameter enables/disables packet switching in software.
Disabling vm2vm implies that on a VM packet transmission will always go to the Ethernet port
and will not be switched to another VM

	-Stats

The Stats parameter controls the printing of Virtio-net device statistics.
The parameter specifies the interval (in seconds) at which to print statistics,
an interval of 0 seconds will disable printing statistics.

1.3.4. Xen PMD Frontend Prerequisites

	Install xen-devel package for accessing XenStore:

yum install xen-devel.x86_64

	Mount xenfs, if it is not already mounted:

mount -t xenfs none /proc/xen

	Enlarge the default limit for xen_gntalloc driver:

modprobe -r xen_gntalloc
modprobe xen_gntalloc limit=6000

Note

Before the Linux kernel version 3.8-rc5, Jan 15th 2013,
a critical defect occurs when a guest is heavily allocating Grant pages.
The Grant driver allocates fewer pages than expected which causes kernel memory corruption.
This happens, for example, when a guest uses the v1 format of a Grant table entry and allocates
more than 8192 Grant pages (this number might be different on different hypervisor versions).
To work around this issue, set the limit for gntalloc driver to 6000.
(The kernel normally allocates hundreds of Grant pages with one Xen front end per virtualized device).
If the kernel allocates a lot of Grant pages, for example, if the user uses multiple net front devices,
it is best to upgrade the Grant alloc driver.
This defect has been fixed in kernel version 3.8-rc5 and later.

1.3.5. Building and Running the Front End

	Edit config/common_linuxapp, and change the default configuration value:

CONFIG_RTE_LIBRTE_XEN_DOM0=n
CONFIG_RTE_LIBRTE_PMD_XENVIRT=y

	Build the package:

make install T=x86_64-native-linuxapp-gcc

	Enable hugepages. Refer to the DPDK Getting Started Guide for instructions on
how to use hugepages in the DPDK.

	Run TestPMD. Refer to DPDK TestPMD Application User Guide for detailed parameter usage.

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11"
testpmd>set fwd mac
testpmd>start

As an example to run two TestPMD instances over 2 Xen Virtio devices:

--vdev="eth_xenvirt0,mac=00:00:00:00:00:11" --vdev="eth_xenvirt1;mac=00:00:00:00:00:22"

1.3.6. Usage Examples: Injecting a Packet Stream Using a Packet Generator

1.3.6.1. Loopback Mode

Run TestPMD in a guest VM:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22
testpmd> set fwd mac
testpmd> start

Example output of the vhost_switch would be:

DATA:(0) MAC_ADDRESS 00:00:00:00:00:11 and VLAN_TAG 1000 registered.

The above message indicates that device 0 has been registered with MAC address 00:00:00:00:00:11 and VLAN tag 1000.
Any packets received on the NIC with these values is placed on the device’s receive queue.

Configure a packet stream in the packet generator, set the destination MAC address to 00:00:00:00:00:11, and VLAN to 1000,
the guest Virtio receives these packets and sends them out with destination MAC address 00:00:00:00:00:22.

1.3.6.2. Inter-VM Mode

Run TestPMD in guest VM1:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22 -- -i

Run TestPMD in guest VM2:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:22" -- -i --eth-peer=0,00:00:00:00:00:33

Configure a packet stream in the packet generator, and set the destination MAC address to 00:00:00:00:00:11 and VLAN to 1000.
The packets received in Virtio in guest VM1 will be forwarded to Virtio in guest VM2 and
then sent out through hardware with destination MAC address 00:00:00:00:00:33.

The packet flow is:

packet generator->Virtio in guest VM1->switching backend->Virtio in guest VM2->switching backend->wire

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Programmer’s Guide

	1. Introduction
	1.1. Documentation Roadmap

	1.2. Related Publications

	2. Overview
	2.1. Development Environment

	2.2. Environment Abstraction Layer

	2.3. Core Components
	2.3.1. Ring Manager (librte_ring)

	2.3.2. Memory Pool Manager (librte_mempool)

	2.3.3. Network Packet Buffer Management (librte_mbuf)

	2.3.4. Timer Manager (librte_timer)

	2.4. Ethernet* Poll Mode Driver Architecture

	2.5. Packet Forwarding Algorithm Support

	2.6. librte_net

	3. Environment Abstraction Layer
	3.1. EAL in a Linux-userland Execution Environment
	3.1.1. Initialization and Core Launching

	3.1.2. Multi-process Support

	3.1.3. Memory Mapping Discovery and Memory Reservation

	3.1.4. Xen Dom0 support without hugetbls

	3.1.5. PCI Access

	3.1.6. Per-lcore and Shared Variables

	3.1.7. Logs

	3.1.8. CPU Feature Identification

	3.1.9. User Space Interrupt Event

	3.1.10. Blacklisting

	3.1.11. Misc Functions

	3.2. Memory Segments and Memory Zones (memzone)

	3.3. Multiple pthread
	3.3.1. EAL pthread and lcore Affinity

	3.3.2. non-EAL pthread support

	3.3.3. Public Thread API

	3.3.4. Known Issues

	3.3.5. cgroup control

	3.4. Malloc
	3.4.1. Cookies

	3.4.2. Alignment and NUMA Constraints

	3.4.3. Use Cases

	3.4.4. Internal Implementation

	4. Ring Library
	4.1. References for Ring Implementation in FreeBSD*

	4.2. Lockless Ring Buffer in Linux*

	4.3. Additional Features
	4.3.1. Name

	4.3.2. Water Marking

	4.3.3. Debug

	4.4. Use Cases

	4.5. Anatomy of a Ring Buffer
	4.5.1. Single Producer Enqueue

	4.5.2. Single Consumer Dequeue

	4.5.3. Multiple Producers Enqueue

	4.5.4. Modulo 32-bit Indexes

	4.6. References

	5. Mempool Library
	5.1. Cookies

	5.2. Stats

	5.3. Memory Alignment Constraints

	5.4. Local Cache

	5.5. Use Cases

	6. Mbuf Library
	6.1. Design of Packet Buffers

	6.2. Buffers Stored in Memory Pools

	6.3. Constructors

	6.4. Allocating and Freeing mbufs

	6.5. Manipulating mbufs

	6.6. Meta Information

	6.7. Direct and Indirect Buffers

	6.8. Debug

	6.9. Use Cases

	7. Poll Mode Driver
	7.1. Requirements and Assumptions

	7.2. Design Principles

	7.3. Logical Cores, Memory and NIC Queues Relationships

	7.4. Device Identification and Configuration
	7.4.1. Device Identification

	7.4.2. Device Configuration

	7.4.3. On-the-Fly Configuration

	7.4.4. Configuration of Transmit and Receive Queues

	7.4.5. Hardware Offload

	7.5. Poll Mode Driver API
	7.5.1. Generalities

	7.5.2. Generic Packet Representation

	7.5.3. Ethernet Device API

	7.5.4. Extended Statistics API

	8. Cryptography Device Library
	8.1. Design Principles

	8.2. Device Management
	8.2.1. Device Creation

	8.2.2. Device Identification

	8.2.3. Device Configuration

	8.2.4. Configuration of Queue Pairs

	8.2.5. Logical Cores, Memory and Queues Pair Relationships

	8.3. Device Features and Capabilities
	8.3.1. Device Features

	8.3.2. Device Operation Capabilities

	8.3.3. Capabilities Discovery

	8.4. Operation Processing
	8.4.1. Enqueue / Dequeue Burst APIs

	8.4.2. Operation Representation

	8.4.3. Operation Management and Allocation

	8.5. Symmetric Cryptography Support
	8.5.1. Session and Session Management

	8.5.2. Transforms and Transform Chaining

	8.5.3. Symmetric Operations

	8.6. Asymmetric Cryptography
	8.6.1. Crypto Device API

	9. IVSHMEM Library
	9.1. IVHSHMEM Library API Overview

	9.2. IVSHMEM Environment Configuration

	9.3. Best Practices for Writing IVSHMEM Applications

	9.4. Best Practices for Running IVSHMEM Applications

	10. Link Bonding Poll Mode Driver Library
	10.1. Link Bonding Modes Overview

	10.2. Implementation Details
	10.2.1. Link Status Change Interrupts / Polling

	10.2.2. Requirements / Limitations

	10.2.3. Configuration

	10.3. Using Link Bonding Devices
	10.3.1. Using the Poll Mode Driver from an Application

	10.3.2. Using Link Bonding Devices from the EAL Command Line

	11. Timer Library
	11.1. Implementation Details

	11.2. Use Cases

	11.3. References

	12. Hash Library
	12.1. Hash API Overview

	12.2. Multi-process support

	12.3. Implementation Details

	12.4. Entry distribution in hash table

	12.5. Use Case: Flow Classification

	12.6. References

	13. LPM Library
	13.1. LPM API Overview

	13.2. Implementation Details
	13.2.1. Addition

	13.2.2. Lookup

	13.2.3. Limitations in the Number of Rules

	13.2.4. Use Case: IPv4 Forwarding

	13.2.5. References

	14. LPM6 Library
	14.1. LPM6 API Overview
	14.1.1. Implementation Details

	14.1.2. Addition

	14.1.3. Lookup

	14.1.4. Limitations in the Number of Rules

	14.2. Use Case: IPv6 Forwarding

	15. Packet Distributor Library
	15.1. Distributor Core Operation

	15.2. Worker Operation

	16. Reorder Library
	16.1. Operation

	16.2. Implementation Details

	16.3. Use Case: Packet Distributor

	17. IP Fragmentation and Reassembly Library
	17.1. Packet fragmentation

	17.2. Packet reassembly
	17.2.1. IP Fragment Table

	17.2.2. Packet Reassembly

	17.2.3. Debug logging and Statistics Collection

	18. Multi-process Support
	18.1. Memory Sharing

	18.2. Deployment Models
	18.2.1. Symmetric/Peer Processes

	18.2.2. Asymmetric/Non-Peer Processes

	18.2.3. Running Multiple Independent DPDK Applications

	18.2.4. Running Multiple Independent Groups of DPDK Applications

	18.3. Multi-process Limitations

	19. Kernel NIC Interface
	19.1. The DPDK KNI Kernel Module

	19.2. KNI Creation and Deletion

	19.3. DPDK mbuf Flow

	19.4. Use Case: Ingress

	19.5. Use Case: Egress

	19.6. Ethtool

	19.7. Link state and MTU change

	19.8. KNI Working as a Kernel vHost Backend
	19.8.1. Overview

	19.8.2. Packet Flow

	19.8.3. Sample Usage

	19.8.4. Compatibility Configure Option

	20. Thread Safety of DPDK Functions
	20.1. Fast-Path APIs

	20.2. Performance Insensitive API

	20.3. Library Initialization

	20.4. Interrupt Thread

	21. Quality of Service (QoS) Framework
	21.1. Packet Pipeline with QoS Support

	21.2. Hierarchical Scheduler
	21.2.1. Overview

	21.2.2. Scheduling Hierarchy

	21.2.3. Application Programming Interface (API)

	21.2.4. Implementation

	21.2.5. Worst Case Scenarios for Performance

	21.3. Dropper
	21.3.1. Configuration

	21.3.2. Enqueue Operation

	21.3.3. Queue Empty Operation

	21.3.4. Source Files Location

	21.3.5. Integration with the DPDK QoS Scheduler

	21.3.6. Integration with the DPDK QoS Scheduler Sample Application

	21.3.7. Application Programming Interface (API)

	21.4. Traffic Metering
	21.4.1. Functional Overview

	21.4.2. Implementation Overview

	22. Power Management
	22.1. CPU Frequency Scaling

	22.2. Core-load Throttling through C-States

	22.3. API Overview of the Power Library

	22.4. User Cases

	22.5. References

	23. Packet Classification and Access Control
	23.1. Overview
	23.1.1. Rule definition

	23.1.2. RT memory size limit

	23.1.3. Classification methods

	23.2. Application Programming Interface (API) Usage
	23.2.1. Classify with Multiple Categories

	24. Packet Framework
	24.1. Design Objectives

	24.2. Overview

	24.3. Port Library Design
	24.3.1. Port Types

	24.3.2. Port Interface

	24.4. Table Library Design
	24.4.1. Table Types

	24.4.2. Table Interface

	24.4.3. Hash Table Design

	24.5. Pipeline Library Design
	24.5.1. Connectivity of Ports and Tables

	24.5.2. Port Actions

	24.5.3. Table Actions

	24.6. Multicore Scaling
	24.6.1. Shared Data Structures

	24.7. Interfacing with Accelerators

	25. Vhost Library
	25.1. Vhost API Overview

	25.2. Vhost Implementation
	25.2.1. Vhost cuse implementation

	25.2.2. Vhost user implementation

	25.3. Vhost supported vSwitch reference

	26. Port Hotplug Framework
	26.1. Overview

	26.2. Port Hotplug API overview

	26.3. Reference

	26.4. Limitations

	27. Source Organization
	27.1. Makefiles and Config

	27.2. Libraries

	27.3. Drivers

	27.4. Applications

	28. Development Kit Build System
	28.1. Building the Development Kit Binary
	28.1.1. Build Directory Concept

	28.2. Building External Applications

	28.3. Makefile Description
	28.3.1. General Rules For DPDK Makefiles

	28.3.2. Makefile Types

	28.3.3. Useful Variables Provided by the Build System

	28.3.4. Variables that Can be Set/Overridden in a Makefile Only

	28.3.5. Variables that can be Set/Overridden by the User on the Command Line Only

	28.3.6. Variables that Can be Set/Overridden by the User in a Makefile or Command Line

	29. Development Kit Root Makefile Help
	29.1. Configuration Targets

	29.2. Build Targets

	29.3. Install Targets

	29.4. Test Targets

	29.5. Documentation Targets

	29.6. Deps Targets

	29.7. Misc Targets

	29.8. Other Useful Command-line Variables

	29.9. Make in a Build Directory

	29.10. Compiling for Debug

	30. Extending the DPDK
	30.1. Example: Adding a New Library libfoo
	30.1.1. Example: Using libfoo in the Test Application

	31. Building Your Own Application
	31.1. Compiling a Sample Application in the Development Kit Directory

	31.2. Build Your Own Application Outside the Development Kit

	31.3. Customizing Makefiles
	31.3.1. Application Makefile

	31.3.2. Library Makefile

	31.3.3. Customize Makefile Actions

	32. External Application/Library Makefile help
	32.1. Prerequisites

	32.2. Build Targets

	32.3. Help Targets

	32.4. Other Useful Command-line Variables

	32.5. Make from Another Directory

	33. Performance Optimization Guidelines
	33.1. Introduction

	34. Writing Efficient Code
	34.1. Memory
	34.1.1. Memory Copy: Do not Use libc in the Data Plane

	34.1.2. Memory Allocation

	34.1.3. Concurrent Access to the Same Memory Area

	34.1.4. NUMA

	34.1.5. Distribution Across Memory Channels

	34.2. Communication Between lcores

	34.3. PMD Driver
	34.3.1. Lower Packet Latency

	34.4. Locks and Atomic Operations

	34.5. Coding Considerations
	34.5.1. Inline Functions

	34.5.2. Branch Prediction

	34.6. Setting the Target CPU Type

	35. Profile Your Application

	36. Glossary

Figures

Fig. 2.1 Core Components Architecture

Fig. 3.1 EAL Initialization in a Linux Application Environment

Fig. 3.2 Example of a malloc heap and malloc elements within the malloc library

Fig. 4.1 Ring Structure

Fig. 4.2 Enqueue first step

Fig. 4.3 Enqueue second step

Fig. 4.4 Enqueue last step

Fig. 4.5 Dequeue last step

Fig. 4.6 Dequeue second step

Fig. 4.7 Dequeue last step

Fig. 4.8 Multiple consumer enqueue first step

Fig. 4.9 Multiple consumer enqueue second step

Fig. 4.10 Multiple consumer enqueue third step

Fig. 4.11 Multiple consumer enqueue fourth step

Fig. 4.12 Multiple consumer enqueue last step

Fig. 4.13 Modulo 32-bit indexes - Example 1

Fig. 4.14 Modulo 32-bit indexes - Example 2

Fig. 5.1 Two Channels and Quad-ranked DIMM Example

Fig. 5.2 Three Channels and Two Dual-ranked DIMM Example

Fig. 5.3 A mempool in Memory with its Associated Ring

Fig. 6.1 An mbuf with One Segment

Fig. 6.2 An mbuf with Three Segments

Fig. 18.1 Memory Sharing in the DPDK Multi-process Sample Application

Fig. 19.1 Components of a DPDK KNI Application

Fig. 19.2 Packet Flow via mbufs in the DPDK KNI

Fig. 19.3 vHost-net Architecture Overview

Fig. 19.4 KNI Traffic Flow

Fig. 21.1 Complex Packet Processing Pipeline with QoS Support

Fig. 21.2 Hierarchical Scheduler Block Internal Diagram

Fig. 21.3 Scheduling Hierarchy per Port

Fig. 21.4 Internal Data Structures per Port

Fig. 21.5 Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

Fig. 21.6 Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue
Operation

Fig. 21.7 High-level Block Diagram of the DPDK Dropper

Fig. 21.8 Flow Through the Dropper

Fig. 21.9 Example Data Flow Through Dropper

Fig. 21.10 Packet Drop Probability for a Given RED Configuration

Fig. 21.11 Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using
a Factor 1 (Blue Curve) and a Factor 2 (Red Curve)

Fig. 24.1 Example of Packet Processing Pipeline where Input Ports 0 and 1
are Connected with Output Ports 0, 1 and 2 through Tables 0 and 1

Fig. 24.2 Sequence of Steps for Hash Table Operations in a Packet Processing Context

Fig. 24.3 Data Structures for Configurable Key Size Hash Tables

Fig. 24.4 Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash
Tables)

Fig. 24.5 Data Structures for 8-byte Key Hash Tables

Fig. 24.6 Data Structures for 16-byte Key Hash Tables

Fig. 24.7 Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash
Tables)

Tables

Table 21.1 Packet Processing Pipeline Implementing QoS

Table 21.2 Infrastructure Blocks Used by the Packet Processing Pipeline

Table 21.3 Port Scheduling Hierarchy

Table 21.4 Scheduler Internal Data Structures per Port

Table 21.5 Ethernet Frame Overhead Fields

Table 21.6 Token Bucket Generic Operations

Table 21.7 Token Bucket Generic Parameters

Table 21.8 Token Bucket Persistent Data Structure

Table 21.9 Token Bucket Operations

Table 21.10 Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

Table 21.11 Subport/Pipe Traffic Class Upper Limit Enforcement Operations

Table 21.12 Weighted Round Robin (WRR)

Table 21.13 Subport Traffic Class Oversubscription

Table 21.14 Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period

Table 21.15 Watermark Calculation

Table 21.16 RED Configuration Parameters

Table 21.17 Relative Performance of Alternative Approaches

Table 21.18 RED Configuration Corresponding to RED Configuration File

Table 24.1 Port Types

Table 24.2 20 Port Abstract Interface

Table 24.3 Table Types

Table 24.5 Configuration Parameters Common for All Hash Table Types

Table 24.6 Configuration Parameters Specific to Extendable Bucket Hash Table

Table 24.7 Configuration Parameters Specific to Pre-computed Key Signature Hash Table

Table 24.8 Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

Table 24.9 Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

Table 24.10 Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash Tables)

Table 24.11 Lookup Tables for Match, Match_Many and Match_Pos

Table 24.12 Collapsed Lookup Tables for Match, Match_Many and Match_Pos

Table 24.13 Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash Tables

Table 24.14 Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

Table 24.15 Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash Tables)

Table 24.16 Next Hop Actions (Reserved)

Table 24.17 User Action Examples

Table 12.1 Entry distribution measured with an example table with 1024 random entries using jhash algorithm

Table 12.2 Entry distribution measured with an example table with 1 million random entries using jhash algorithm

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

1. Introduction

This document provides software architecture information,
development environment information and optimization guidelines.

For programming examples and for instructions on compiling and running each sample application,
see the DPDK Sample Applications User Guide for details.

For general information on compiling and running applications, see the DPDK Getting Started Guide.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes (this document): Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on.
Also, provides the answers to frequently asked questions in FAQ format.

	Getting Started Guide : Describes how to install and configure the DPDK software;
designed to get users up and running quickly with the software.

	FreeBSD* Getting Started Guide : A document describing the use of the DPDK with FreeBSD*
has been added in DPDK Release 1.6.0.
Refer to this guide for installation and configuration instructions to get started using the DPDK with FreeBSD*.

	Programmer’s Guide (this document): Describes:

	The software architecture and how to use it (through examples),
specifically in a Linux* application (linuxapp) environment

	The content of the DPDK, the build system
(including the commands that can be used in the root DPDK Makefile to build the development kit and an application)
and guidelines for porting an application

	Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

	API Reference : Provides detailed information about DPDK functions,
data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality
and provides instructions on how to compile, run and use the sample application.

1.2. Related Publications

The following documents provide information that is relevant to the development of applications using the DPDK:

	Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

 Part 1: Architecture Overview

2. Overview

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple,
complete framework for fast packet processing in data plane applications.
Users may use the code to understand some of the techniques employed,
to build upon for prototyping or to add their own protocol stacks.
Alternative ecosystem options that use the DPDK are available.

The framework creates a set of libraries for specific environments
through the creation of an Environment Abstraction Layer (EAL),
which may be specific to a mode of the Intel® architecture (32-bit or 64-bit),
Linux* user space compilers or a specific platform.
These environments are created through the use of make files and configuration files.
Once the EAL library is created, the user may link with the library to create their own applications.
Other libraries, outside of EAL, including the Hash,
Longest Prefix Match (LPM) and rings libraries are also provided.
Sample applications are provided to help show the user how to use various features of the DPDK.

The DPDK implements a run to completion model for packet processing,
where all resources must be allocated prior to calling Data Plane applications,
running as execution units on logical processing cores.
The model does not support a scheduler and all devices are accessed by polling.
The primary reason for not using interrupts is the performance overhead imposed by interrupt processing.

In addition to the run-to-completion model,
a pipeline model may also be used by passing packets or messages between cores via the rings.
This allows work to be performed in stages and may allow more efficient use of code on cores.

2.1. Development Environment

The DPDK project installation requires Linux and the associated toolchain,
such as one or more compilers, assembler, make utility,
editor and various libraries to create the DPDK components and libraries.

Once these libraries are created for the specific environment and architecture,
they may then be used to create the user’s data plane application.

When creating applications for the Linux user space, the glibc library is used.
For DPDK applications, two environmental variables (RTE_SDK and RTE_TARGET)
must be configured before compiling the applications.
The following are examples of how the variables can be set:

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for information on setting up the development environment.

2.2. Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface
that hides the environment specifics from the applications and libraries.
The services provided by the EAL are:

	DPDK loading and launching

	Support for multi-process and multi-thread execution types

	Core affinity/assignment procedures

	System memory allocation/de-allocation

	Atomic/lock operations

	Time reference

	PCI bus access

	Trace and debug functions

	CPU feature identification

	Interrupt handling

	Alarm operations

	Memory management (malloc)

The EAL is fully described in Environment Abstraction Layer.

2.3. Core Components

The core components are a set of libraries that provide all the elements needed
for high-performance packet processing applications.

Fig. 2.1 Core Components Architecture

2.3.1. Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO API in a finite size table.
It has some advantages over lockless queues; easier to implement, adapted to bulk operations and faster.
A ring is used by the Memory Pool Manager (librte_mempool)
and may be used as a general communication mechanism between cores
and/or execution blocks connected together on a logical core.

This ring buffer and its usage are fully described in Ring Library.

2.3.2. Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory.
A pool is identified by name and uses a ring to store free objects.
It provides some other optional services,
such as a per-core object cache and an alignment helper to ensure that objects are padded to spread them equally on all RAM channels.

This memory pool allocator is described in Mempool Library.

2.3.3. Network Packet Buffer Management (librte_mbuf)

The mbuf library provides the facility to create and destroy buffers
that may be used by the DPDK application to store message buffers.
The message buffers are created at startup time and stored in a mempool, using the DPDK mempool library.

This library provide an API to allocate/free mbufs, manipulate control message buffers (ctrlmbuf) which are generic message buffers,
and packet buffers (pktmbuf) which are used to carry network packets.

Network Packet Buffer Management is described in Mbuf Library.

2.3.4. Timer Manager (librte_timer)

This library provides a timer service to DPDK execution units,
providing the ability to execute a function asynchronously.
It can be periodic function calls, or just a one-shot call.
It uses the timer interface provided by the Environment Abstraction Layer (EAL)
to get a precise time reference and can be initiated on a per-core basis as required.

The library documentation is available in Timer Library.

2.4. Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtualized virtio
Ethernet controllers which are designed to work without asynchronous, interrupt-based signaling mechanisms.

See Poll Mode Driver.

2.5. Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm)
libraries to support the corresponding packet forwarding algorithms.

See Hash Library and LPM Library for more information.

2.6. librte_net

The librte_net library is a collection of IP protocol definitions and convenience macros.
It is based on code from the FreeBSD* IP stack and contains protocol numbers (for use in IP headers),
IP-related macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header structures.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

3. Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level resources such as hardware and memory space.
It provides a generic interface that hides the environment specifics from the applications and libraries.
It is the responsibility of the initialization routine to decide how to allocate these resources
(that is, memory space, PCI devices, timers, consoles, and so on).

Typical services expected from the EAL are:

	DPDK Loading and Launching:
The DPDK and its application are linked as a single application and must be loaded by some means.

	Core Affinity/Assignment Procedures:
The EAL provides mechanisms for assigning execution units to specific cores as well as creating execution instances.

	System Memory Reservation:
The EAL facilitates the reservation of different memory zones, for example, physical memory areas for device interactions.

	PCI Address Abstraction: The EAL provides an interface to access PCI address space.

	Trace and Debug Functions: Logs, dump_stack, panic and so on.

	Utility Functions: Spinlocks and atomic counters that are not provided in libc.

	CPU Feature Identification: Determine at runtime if a particular feature, for example, Intel® AVX is supported.
Determine if the current CPU supports the feature set that the binary was compiled for.

	Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt sources.

	Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

3.1. EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application using the pthread library.
PCI information about devices and address space is discovered through the /sys kernel interface and through kernel modules such as uio_pci_generic, or igb_uio.
Refer to the UIO: User-space drivers documentation in the Linux kernel. This memory is mmap’d in the application.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page sizes to increase performance).
This memory is exposed to DPDK service layers such as the Mempool Library.

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls,
each execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel API through a mmap() call.

3.1.1. Initialization and Core Launching

Part of the initialization is done by the start function of glibc.
A check is also performed at initialization time to ensure that the micro architecture type chosen in the config file is supported by the CPU.
Then, the main() function is called. The core initialization and launch is done in rte_eal_init() (see the API documentation).
It consist of calls to the pthread library (more specifically, pthread_self(), pthread_create(), and pthread_setaffinity_np()).

Fig. 3.1 EAL Initialization in a Linux Application Environment

Note

Initialization of objects, such as memory zones, rings, memory pools, lpm tables and hash tables,
should be done as part of the overall application initialization on the master lcore.
The creation and initialization functions for these objects are not multi-thread safe.
However, once initialized, the objects themselves can safely be used in multiple threads simultaneously.

3.1.2. Multi-process Support

The Linuxapp EAL allows a multi-process as well as a multi-threaded (pthread) deployment model.
See chapter
Multi-process Support for more details.

3.1.3. Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesystem.
The EAL provides an API to reserve named memory zones in this contiguous memory.
The physical address of the reserved memory for that memory zone is also returned to the user by the memory zone reservation API.

Note

Memory reservations done using the APIs provided by rte_malloc are also backed by pages from the hugetlbfs filesystem.

3.1.4. Xen Dom0 support without hugetbls

The existing memory management implementation is based on the Linux kernel hugepage mechanism.
However, Xen Dom0 does not support hugepages, so a new Linux kernel module rte_dom0_mm is added to workaround this limitation.

The EAL uses IOCTL interface to notify the Linux kernel module rte_dom0_mm to allocate memory of specified size,
and get all memory segments information from the module,
and the EAL uses MMAP interface to map the allocated memory.
For each memory segment, the physical addresses are contiguous within it but actual hardware addresses are contiguous within 2MB.

3.1.5. PCI Access

The EAL uses the /sys/bus/pci utilities provided by the kernel to scan the content on the PCI bus.
To access PCI memory, a kernel module called uio_pci_generic provides a /dev/uioX device file
and resource files in /sys
that can be mmap’d to obtain access to PCI address space from the application.
The DPDK-specific igb_uio module can also be used for this. Both drivers use the uio kernel feature (userland driver).

3.1.6. Per-lcore and Shared Variables

Note

lcore refers to a logical execution unit of the processor, sometimes called a hardware thread.

Shared variables are the default behavior.
Per-lcore variables are implemented using Thread Local Storage (TLS) to provide per-thread local storage.

3.1.7. Logs

A logging API is provided by EAL.
By default, in a Linux application, logs are sent to syslog and also to the console.
However, the log function can be overridden by the user to use a different logging mechanism.

3.1.7.1. Trace and Debug Functions

There are some debug functions to dump the stack in glibc.
The rte_panic() function can voluntarily provoke a SIG_ABORT,
which can trigger the generation of a core file, readable by gdb.

3.1.8. CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_feature() function) to determine which CPU features are available.

3.1.9. User Space Interrupt Event

	User Space Interrupt and Alarm Handling in Host Thread

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts.
Callbacks can be registered or unregistered by the EAL functions for a specific interrupt event
and are called in the host thread asynchronously.
The EAL also allows timed callbacks to be used in the same way as for NIC interrupts.

Note

In DPDK PMD, the only interrupts handled by the dedicated host thread are those for link status change,
i.e. link up and link down notification.

	RX Interrupt Event

The receive and transmit routines provided by each PMD don’t limit themselves to execute in polling thread mode.
To ease the idle polling with tiny throughput, it’s useful to pause the polling and wait until the wake-up event happens.
The RX interrupt is the first choice to be such kind of wake-up event, but probably won’t be the only one.

EAL provides the event APIs for this event-driven thread mode.
Taking linuxapp as an example, the implementation relies on epoll. Each thread can monitor an epoll instance
in which all the wake-up events’ file descriptors are added. The event file descriptors are created and mapped to
the interrupt vectors according to the UIO/VFIO spec.
From bsdapp’s perspective, kqueue is the alternative way, but not implemented yet.

EAL initializes the mapping between event file descriptors and interrupt vectors, while each device initializes the mapping
between interrupt vectors and queues. In this way, EAL actually is unaware of the interrupt cause on the specific vector.
The eth_dev driver takes responsibility to program the latter mapping.

Note

Per queue RX interrupt event is only allowed in VFIO which supports multiple MSI-X vector. In UIO, the RX interrupt
together with other interrupt causes shares the same vector. In this case, when RX interrupt and LSC(link status change)
interrupt are both enabled(intr_conf.lsc == 1 && intr_conf.rxq == 1), only the former is capable.

The RX interrupt are controlled/enabled/disabled by ethdev APIs - ‘rte_eth_dev_rx_intr_*’. They return failure if the PMD
hasn’t support them yet. The intr_conf.rxq flag is used to turn on the capability of RX interrupt per device.

3.1.10. Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted,
so they are ignored by the DPDK.
The ports to be blacklisted are identified using the PCIe* description (Domain:Bus:Device.Function).

3.1.11. Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

3.2. Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL.
As physical memory can have gaps, the memory is described in a table of descriptors,
and each descriptor (called rte_memseg) describes a contiguous portion of memory.

On top of this, the memzone allocator’s role is to reserve contiguous portions of physical memory.
These zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure.
This structure is accessed using rte_eal_get_configuration().
The lookup (by name) of a memory zone returns a descriptor containing the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align parameter
(by default, they are aligned to cache line size).
The alignment value should be a power of two and not less than the cache line size (64 bytes).
Memory zones can also be reserved from either 2 MB or 1 GB hugepages, provided that both are available on the system.

3.3. Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching.
This allows for significant performance gains, but lacks flexibility and is not always efficient.

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency.
However, alternately it is possible to utilize the idle cycles available to take advantage of
the full capability of the CPU.

By taking advantage of cgroup, the CPU utilization quota can be simply assigned.
This gives another way to improve the CPU efficiency, however, there is a prerequisite;
DPDK must handle the context switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

3.3.1. EAL pthread and lcore Affinity

The term “lcore” refers to an EAL thread, which is really a Linux/FreeBSD pthread.
“EAL pthreads” are created and managed by EAL and execute the tasks issued by remote_launch.
In each EAL pthread, there is a TLS (Thread Local Storage) called _lcore_id for unique identification.
As EAL pthreads usually bind 1:1 to the physical CPU, the _lcore_id is typically equal to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL pthread and a specified physical CPU.
The EAL pthread may have affinity to a CPU set, and as such the _lcore_id will not be the same as the CPU ID.
For this reason, there is an EAL long option ‘–lcores’ defined to assign the CPU affinity of lcores.
For a specified lcore ID or ID group, the option allows setting the CPU set for that EAL pthread.

	The format pattern:

	–lcores=’<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],...]’

‘lcore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is “<number>-<number>”; a group is “(<number|range>[,<number|range>,...])”.

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘lcore_set’.

For example, "--lcores='1,2@(5-7),(3-5)@(0,2),(0,6),7-8'" which means start 9 EAL thread;
 lcore 0 runs on cpuset 0x41 (cpu 0,6);
 lcore 1 runs on cpuset 0x2 (cpu 1);
 lcore 2 runs on cpuset 0xe0 (cpu 5,6,7);
 lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);
 lcore 6 runs on cpuset 0x41 (cpu 0,6);
 lcore 7 runs on cpuset 0x80 (cpu 7);
 lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given lcore ID, the associated CPUs can be assigned.
It’s also compatible with the pattern of corelist(‘-l’) option.

3.3.2. non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. Non-EAL pthreads).
In a non-EAL pthread, the _lcore_id is always LCORE_ID_ANY which identifies that it is not an EAL thread with a valid, unique, _lcore_id.
Some libraries will use an alternative unique ID (e.g. TID), some will not be impacted at all, and some will work but with limitations (e.g. timer and mempool libraries).

All these impacts are mentioned in Known Issues section.

3.3.3. Public Thread API

There are two public APIs rte_thread_set_affinity() and rte_pthread_get_affinity() introduced for threads.
When they’re used in any pthread context, the Thread Local Storage(TLS) will be set/get.

Those TLS include _cpuset and _socket_id:

	_cpuset stores the CPUs bitmap to which the pthread is affinitized.

	_socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to different NUMA node, the _socket_id will be set to SOCKET_ID_ANY.

3.3.4. Known Issues

	rte_mempool

The rte_mempool uses a per-lcore cache inside the mempool.
For non-EAL pthreads, rte_lcore_id() will not return a valid number.
So for now, when rte_mempool is used with non-EAL pthreads, the put/get operations will bypass the mempool cache and there is a performance penalty because of this bypass.
Support for non-EAL mempool cache is currently being enabled.

	rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue.
However, it is non-preemptive, this has a knock on effect of making rte_mempool non-preemptable.

Note

The “non-preemptive” constraint means:

	a pthread doing multi-producers enqueues on a given ring must not
be preempted by another pthread doing a multi-producer enqueue on
the same ring.

	a pthread doing multi-consumers dequeues on a given ring must not
be preempted by another pthread doing a multi-consumer dequeue on
the same ring.

Bypassing this constraint it may cause the 2nd pthread to spin until the 1st one is scheduled again.
Moreover, if the 1st pthread is preempted by a context that has an higher priority, it may even cause a dead lock.

This does not mean it cannot be used, simply, there is a need to narrow down the situation when it is used by multi-pthread on the same core.

	It CAN be used for any single-producer or single-consumer situation.

	It MAY be used by multi-producer/consumer pthread whose scheduling policy are all SCHED_OTHER(cfs). User SHOULD be aware of the performance penalty before using it.

	It MUST not be used by multi-producer/consumer pthreads, whose scheduling policies are SCHED_FIFO or SCHED_RR.

RTE_RING_PAUSE_REP_COUNT is defined for rte_ring to reduce contention. It’s mainly for case 2, a yield is issued after number of times pause repeat.

It adds a sched_yield() syscall if the thread spins for too long while waiting on the other thread to finish its operations on the ring.
This gives the preempted thread a chance to proceed and finish with the ring enqueue/dequeue operation.

	rte_timer

Running rte_timer_manager() on a non-EAL pthread is not allowed. However, resetting/stopping the timer from a non-EAL pthread is allowed.

	rte_log

In non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are used.

	misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in a non-EAL pthread.

3.3.5. cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1) doing packet I/O on the same core ($CPU).
We expect only 50% of CPU spend on packet IO.

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo $cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

3.4. Malloc

The EAL provides a malloc API to allocate any-sized memory.

The objective of this API is to provide malloc-like functions to allow
allocation from hugepage memory and to facilitate application porting.
The DPDK API Reference manual describes the available functions.

Typically, these kinds of allocations should not be done in data plane
processing because they are slower than pool-based allocation and make
use of locks within the allocation and free paths.
However, they can be used in configuration code.

Refer to the rte_malloc() function description in the DPDK API Reference
manual for more information.

3.4.1. Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains
overwrite protection fields to help identify buffer overflows.

3.4.2. Alignment and NUMA Constraints

The rte_malloc() takes an align argument that can be used to request a memory
area that is aligned on a multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return
memory that has been allocated on the NUMA socket of the core which made the call.
A set of APIs is also provided, to allow memory to be explicitly allocated on a
NUMA socket directly, or by allocated on the NUMA socket where another core is
located, in the case where the memory is to be used by a logical core other than
on the one doing the memory allocation.

3.4.3. Use Cases

This API is meant to be used by an application that requires malloc-like
functions at initialization time.

For allocating/freeing data at runtime, in the fast-path of an application,
the memory pool library should be used instead.

3.4.4. Internal Implementation

3.4.4.1. Data Structures

There are two data structure types used internally in the malloc library:

	struct malloc_heap - used to track free space on a per-socket basis

	struct malloc_elem - the basic element of allocation and free-space
tracking inside the library.

3.4.4.1.1. Structure: malloc_heap

The malloc_heap structure is used to manage free space on a per-socket basis.
Internally, there is one heap structure per NUMA node, which allows us to
allocate memory to a thread based on the NUMA node on which this thread runs.
While this does not guarantee that the memory will be used on that NUMA node,
it is no worse than a scheme where the memory is always allocated on a fixed
or random node.

The key fields of the heap structure and their function are described below
(see also diagram above):

	lock - the lock field is needed to synchronize access to the heap.
Given that the free space in the heap is tracked using a linked list,
we need a lock to prevent two threads manipulating the list at the same time.

	free_head - this points to the first element in the list of free nodes for
this malloc heap.

Note

The malloc_heap structure does not keep track of in-use blocks of memory,
since these are never touched except when they are to be freed again -
at which point the pointer to the block is an input to the free() function.

Fig. 3.2 Example of a malloc heap and malloc elements within the malloc library

3.4.4.1.2. Structure: malloc_elem

The malloc_elem structure is used as a generic header structure for various
blocks of memory.
It is used in three different ways - all shown in the diagram above:

	As a header on a block of free or allocated memory - normal case

	As a padding header inside a block of memory

	As an end-of-memseg marker

The most important fields in the structure and how they are used are described below.

Note

If the usage of a particular field in one of the above three usages is not
described, the field can be assumed to have an undefined value in that
situation, for example, for padding headers only the “state” and “pad”
fields have valid values.

	heap - this pointer is a reference back to the heap structure from which
this block was allocated.
It is used for normal memory blocks when they are being freed, to add the
newly-freed block to the heap’s free-list.

	prev - this pointer points to the header element/block in the memseg
immediately behind the current one. When freeing a block, this pointer is
used to reference the previous block to check if that block is also free.
If so, then the two free blocks are merged to form a single larger block.

	next_free - this pointer is used to chain the free-list of unallocated
memory blocks together.
It is only used in normal memory blocks; on malloc() to find a suitable
free block to allocate and on free() to add the newly freed element to
the free-list.

	state - This field can have one of three values: FREE, BUSY or
PAD.
The former two are to indicate the allocation state of a normal memory block
and the latter is to indicate that the element structure is a dummy structure
at the end of the start-of-block padding, i.e. where the start of the data
within a block is not at the start of the block itself, due to alignment
constraints.
In that case, the pad header is used to locate the actual malloc element
header for the block.
For the end-of-memseg structure, this is always a BUSY value, which
ensures that no element, on being freed, searches beyond the end of the
memseg for other blocks to merge with into a larger free area.

	pad - this holds the length of the padding present at the start of the block.
In the case of a normal block header, it is added to the address of the end
of the header to give the address of the start of the data area, i.e. the
value passed back to the application on a malloc.
Within a dummy header inside the padding, this same value is stored, and is
subtracted from the address of the dummy header to yield the address of the
actual block header.

	size - the size of the data block, including the header itself.
For end-of-memseg structures, this size is given as zero, though it is never
actually checked.
For normal blocks which are being freed, this size value is used in place of
a “next” pointer to identify the location of the next block of memory that
in the case of being FREE, the two free blocks can be merged into one.

3.4.4.2. Memory Allocation

On EAL initialization, all memsegs are setup as part of the malloc heap.
This setup involves placing a dummy structure at the end with BUSY state,
which may contain a sentinel value if CONFIG_RTE_MALLOC_DEBUG is enabled,
and a proper element header with FREE at the start
for each memseg.
The FREE element is then added to the free_list for the malloc heap.

When an application makes a call to a malloc-like function, the malloc function
will first index the lcore_config structure for the calling thread, and
determine the NUMA node of that thread.
The NUMA node is used to index the array of malloc_heap structures which is
passed as a parameter to the heap_alloc() function, along with the
requested size, type, alignment and boundary parameters.

The heap_alloc() function will scan the free_list of the heap, and attempt
to find a free block suitable for storing data of the requested size, with the
requested alignment and boundary constraints.

When a suitable free element has been identified, the pointer to be returned
to the user is calculated.
The cache-line of memory immediately preceding this pointer is filled with a
struct malloc_elem header.
Because of alignment and boundary constraints, there could be free space at
the start and/or end of the element, resulting in the following behavior:

	Check for trailing space.
If the trailing space is big enough, i.e. > 128 bytes, then the free element
is split.
If it is not, then we just ignore it (wasted space).

	Check for space at the start of the element.
If the space at the start is small, i.e. <=128 bytes, then a pad header is
used, and the remaining space is wasted.
If, however, the remaining space is greater, then the free element is split.

The advantage of allocating the memory from the end of the existing element is
that no adjustment of the free list needs to take place - the existing element
on the free list just has its size pointer adjusted, and the following element
has its “prev” pointer redirected to the newly created element.

3.4.4.3. Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed
to the free function.
The size of the malloc_elem structure is subtracted from this pointer to get
the element header for the block.
If this header is of type PAD then the pad length is further subtracted from
the pointer to get the proper element header for the entire block.

From this element header, we get pointers to the heap from which the block was
allocated and to where it must be freed, as well as the pointer to the previous
element, and via the size field, we can calculate the pointer to the next element.
These next and previous elements are then checked to see if they are also
FREE, and if so, they are merged with the current element.
This means that we can never have two FREE memory blocks adjacent to one
another, as they are always merged into a single block.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

4. Ring Library

The ring allows the management of queues.
Instead of having a linked list of infinite size, the rte_ring has the following properties:

	FIFO

	Maximum size is fixed, the pointers are stored in a table

	Lockless implementation

	Multi-consumer or single-consumer dequeue

	Multi-producer or single-producer enqueue

	Bulk dequeue - Dequeues the specified count of objects if successful; otherwise fails

	Bulk enqueue - Enqueues the specified count of objects if successful; otherwise fails

	Burst dequeue - Dequeue the maximum available objects if the specified count cannot be fulfilled

	Burst enqueue - Enqueue the maximum available objects if the specified count cannot be fulfilled

The advantages of this data structure over a linked list queue are as follows:

	Faster; only requires a single Compare-And-Swap instruction of sizeof(void *) instead of several double-Compare-And-Swap instructions.

	Simpler than a full lockless queue.

	Adapted to bulk enqueue/dequeue operations.
As pointers are stored in a table, a dequeue of several objects will not produce as many cache misses as in a linked queue.
Also, a bulk dequeue of many objects does not cost more than a dequeue of a simple object.

The disadvantages:

	Size is fixed

	Having many rings costs more in terms of memory than a linked list queue. An empty ring contains at least N pointers.

A simplified representation of a Ring is shown in with consumer and producer head and tail pointers to objects stored in the data structure.

Fig. 4.1 Ring Structure

4.1. References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at least in Intel drivers):

	bufring.h in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup]

	bufring.c in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup]

4.2. Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design [http://lwn.net/Articles/340400/].

4.3. Additional Features

4.3.1. Name

A ring is identified by a unique name.
It is not possible to create two rings with the same name (rte_ring_create() returns NULL if this is attempted).

4.3.2. Water Marking

The ring can have a high water mark (threshold).
Once an enqueue operation reaches the high water mark, the producer is notified, if the water mark is configured.

This mechanism can be used, for example, to exert a back pressure on I/O to inform the LAN to PAUSE.

4.3.3. Debug

When debug is enabled (CONFIG_RTE_LIBRTE_RING_DEBUG is set),
the library stores some per-ring statistic counters about the number of enqueues/dequeues.
These statistics are per-core to avoid concurrent accesses or atomic operations.

4.4. Use Cases

Use cases for the Ring library include:

	Communication between applications in the DPDK

	Used by memory pool allocator

4.5. Anatomy of a Ring Buffer

This section explains how a ring buffer operates.
The ring structure is composed of two head and tail couples; one is used by producers and one is used by the consumers.
The figures of the following sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

Each figure represents a simplified state of the ring, which is a circular buffer.
The content of the function local variables is represented on the top of the figure,
and the content of ring structure is represented on the bottom of the figure.

4.5.1. Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified,
and there is only one producer.

The initial state is to have a prod_head and prod_tail pointing at the same location.

4.5.1.1. Enqueue First Step

First, ring->prod_head and ring->cons_tail are copied in local variables.
The prod_next local variable points to the next element of the table, or several elements after in case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

Fig. 4.2 Enqueue first step

4.5.1.2. Enqueue Second Step

The second step is to modify ring->prod_head in ring structure to point to the same location as prod_next.

A pointer to the added object is copied in the ring (obj4).

Fig. 4.3 Enqueue second step

4.5.1.3. Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to the same location as ring->prod_head.
The enqueue operation is finished.

Fig. 4.4 Enqueue last step

4.5.2. Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring.
In this example, only the consumer head and tail (cons_head and cons_tail) are modified and there is only one consumer.

The initial state is to have a cons_head and cons_tail pointing at the same location.

4.5.2.1. Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables.
The cons_next local variable points to the next element of the table, or several elements after in the case of bulk dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an error.

Fig. 4.5 Dequeue last step

4.5.2.2. Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location as cons_next.

The pointer to the dequeued object (obj1) is copied in the pointer given by the user.

Fig. 4.6 Dequeue second step

4.5.2.3. Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring->cons_head.
The dequeue operation is finished.

Fig. 4.7 Dequeue last step

4.5.3. Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod_head and prod_tail pointing at the same location.

4.5.3.1. Multiple Consumer Enqueue First Step

On both cores, ring->prod_head and ring->cons_tail are copied in local variables.
The prod_next local variable points to the next element of the table,
or several elements after in the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

Fig. 4.8 Multiple consumer enqueue first step

4.5.3.2. Multiple Consumer Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location as prod_next.
This operation is done using a Compare And Swap (CAS) instruction, which does the following operations atomically:

	If ring->prod_head is different to local variable prod_head,
the CAS operation fails, and the code restarts at first step.

	Otherwise, ring->prod_head is set to local prod_next,
the CAS operation is successful, and processing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

Fig. 4.9 Multiple consumer enqueue second step

4.5.3.3. Multiple Consumer Enqueue Third Step

The CAS operation is retried on core 2 with success.

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

Fig. 4.10 Multiple consumer enqueue third step

4.5.3.4. Multiple Consumer Enqueue Fourth Step

Each core now wants to update ring->prod_tail.
A core can only update it if ring->prod_tail is equal to the prod_head local variable.
This is only true on core 1. The operation is finished on core 1.

Fig. 4.11 Multiple consumer enqueue fourth step

4.5.3.5. Multiple Consumer Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too.
The operation is also finished on core 2.

Fig. 4.12 Multiple consumer enqueue last step

4.5.4. Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are represented by arrows.
In the actual implementation, these values are not between 0 and size(ring)-1 as would be assumed.
The indexes are between 0 and 2^32 -1, and we mask their value when we access the pointer table (the ring itself).
32-bit modulo also implies that operations on indexes (such as, add/subtract) will automatically do 2^32 modulo
if the result overflows the 32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

Note

To simplify the explanation, operations with modulo 16-bit are used instead of modulo 32-bit.
In addition, the four indexes are defined as unsigned 16-bit integers,
as opposed to unsigned 32-bit integers in the more realistic case.

Fig. 4.13 Modulo 32-bit indexes - Example 1

This ring contains 11000 entries.

Fig. 4.14 Modulo 32-bit indexes - Example 2

This ring contains 12536 entries.

Note

For ease of understanding, we use modulo 65536 operations in the above examples.
In real execution cases, this is redundant for low efficiency, but is done automatically when the result overflows.

The code always maintains a distance between producer and consumer between 0 and size(ring)-1.
Thanks to this property, we can do subtractions between 2 index values in a modulo-32bit base:
that’s why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1,
even if only the first term of subtraction has overflowed:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

4.6. References

	bufring.h in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup] (version 8)

	bufring.c in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup] (version 8)

	Linux Lockless Ring Buffer Design [http://lwn.net/Articles/340400/]

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

5. Mempool Library

A memory pool is an allocator of a fixed-sized object.
In the DPDK, it is identified by name and uses a ring to store free objects.
It provides some other optional services such as a per-core object cache and
an alignment helper to ensure that objects are padded to spread them equally on all DRAM or DDR3 channels.

This library is used by the
Mbuf Library and the
Environment Abstraction Layer (for logging history).

5.1. Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added at the beginning and end of allocated blocks.
The allocated objects then contain overwrite protection fields to help debugging buffer overflows.

5.2. Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled),
statistics about get from/put in the pool are stored in the mempool structure.
Statistics are per-lcore to avoid concurrent access to statistics counters.

5.3. Memory Alignment Constraints

Depending on hardware memory configuration, performance can be greatly improved by adding a specific padding between objects.
The objective is to ensure that the beginning of each object starts on a different channel and rank in memory so that all channels are equally loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification.
Only the first 64 bytes are accessed, so performance can be increased by spreading the start addresses of objects among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMs that can be accessed for the full data bit-width of the DIMM.
The ranks cannot be accessed simultaneously since they share the same data path.
The physical layout of the DRAM chips on the DIMM itself does not necessarily relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the number of memory channels and ranks.

Note

The command line must always have the number of memory channels specified for the processor.

Examples of alignment for different DIMM architectures are shown in
Fig. 5.1 and Fig. 5.2.

Fig. 5.1 Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases,
no padding is required between objects (except for objects whose size are n x 3 x 64 bytes blocks).

Fig. 5.2 Three Channels and Two Dual-ranked DIMM Example

When creating a new pool, the user can specify to use this feature or not.

5.4. Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool’s ring of free buffers may be high
since each access requires a compare-and-set (CAS) operation.
To avoid having too many access requests to the memory pool’s ring,
the memory pool allocator can maintain a per-core cache and do bulk requests to the memory pool’s ring,
via the cache with many fewer locks on the actual memory pool structure.
In this way, each core has full access to its own cache (with locks) of free objects and
only when the cache fills does the core need to shuffle some of the free objects back to the pools ring or
obtain more objects when the cache is empty.

While this may mean a number of buffers may sit idle on some core’s cache,
the speed at which a core can access its own cache for a specific memory pool without locks provides performance gains.

The cache is composed of a small, per-core table of pointers and its length (used as a stack).
This cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE).

Fig. 5.3 shows a cache in operation.

Fig. 5.3 A mempool in Memory with its Associated Ring

5.5. Use Cases

All allocations that require a high level of performance should use a pool-based memory allocator.
Below are some examples:

	Mbuf Library

	Environment Abstraction Layer , for logging service

	Any application that needs to allocate fixed-sized objects in the data plane and that will be continuously utilized by the system.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

6. Mbuf Library

The mbuf library provides the ability to allocate and free buffers (mbufs)
that may be used by the DPDK application to store message buffers.
The message buffers are stored in a mempool, using the Mempool Library.

A rte_mbuf struct can carry network packet buffers
or generic control buffers (indicated by the CTRL_MBUF_FLAG).
This can be extended to other types.
The rte_mbuf header structure is kept as small as possible and currently uses
just two cache lines, with the most frequently used fields being on the first
of the two cache lines.

6.1. Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were considered:

	Embed metadata within a single memory buffer the structure followed by a fixed size area for the packet data.

	Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole memory representation of a packet.
On the other hand, the second method is more flexible and allows
the complete separation of the allocation of metadata structures from the allocation of packet data buffers.

The first method was chosen for the DPDK.
The metadata contains control information such as message type, length,
offset to the start of the data and a pointer for additional mbuf structures allowing buffer chaining.

Message buffers that are used to carry network packets can handle buffer chaining
where multiple buffers are required to hold the complete packet.
This is the case for jumbo frames that are composed of many mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is
RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned.
Message buffers may be used to carry control information, packets, events,
and so on between different entities in the system.
Message buffers may also use their buffer pointers to point to other message buffer data sections or other structures.

Fig. 6.1 and Fig. 6.2 show some of these scenarios.

Fig. 6.1 An mbuf with One Segment

Fig. 6.2 An mbuf with Three Segments

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate network packets.

6.2. Buffers Stored in Memory Pools

The Buffer Manager uses the Mempool Library to allocate buffers.
Therefore, it ensures that the packet header is interleaved optimally across the channels and ranks for L3 processing.
An mbuf contains a field indicating the pool that it originated from.
When calling rte_ctrlmbuf_free(m) or rte_pktmbuf_free(m), the mbuf returns to its original pool.

6.3. Constructors

Packet and control mbuf constructors are provided by the API.
The rte_pktmbuf_init() and rte_ctrlmbuf_init() functions initialize some fields in the mbuf structure that
are not modified by the user once created (mbuf type, origin pool, buffer start address, and so on).
This function is given as a callback function to the rte_mempool_create() function at pool creation time.

6.4. Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf should be taken.
For any newly-allocated mbuf, it contains one segment, with a length of 0.
The offset to data is initialized to have some bytes of headroom in the buffer (RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool.
The content of an mbuf is not modified when it is stored in a pool (as a free mbuf).
Fields initialized by the constructor do not need to be re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned to their original mempool.

6.5. Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:

	Get data length

	Get a pointer to the start of data

	Prepend data before data

	Append data after data

	Remove data at the beginning of the buffer (rte_pktmbuf_adj())

	Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Reference for details.

6.6. Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make processing easier.
For instance, the VLAN, the RSS hash result (see Poll Mode Driver)
and a flag indicating that the checksum was computed by hardware.

An mbuf also contains the input port (where it comes from), and the number of segment mbufs in the chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet
timestamp mechanism, the VLAN tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some
processing to the hardware if it supports it. For instance, the
PKT_TX_IP_CKSUM flag allows to offload the computation of the IPv4
checksum.

The following examples explain how to configure different TX offloads on
a vxlan-encapsulated tcp packet:
out_eth/out_ip/out_udp/vxlan/in_eth/in_ip/in_tcp/payload

	calculate checksum of out_ip:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.

	calculate checksum of out_ip and out_udp:

 mb->l2_len = len(out_eth)
 mb->l3_len = len(out_ip)
 mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
 set out_ip checksum to 0 in the packet
 set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM
and DEV_TX_OFFLOAD_UDP_CKSUM.

	calculate checksum of in_ip:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set in_ip checksum to 0 in the packet

This is similar to case 1), but l2_len is different. It is supported
on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.
Note that it can only work if outer L4 checksum is 0.

	calculate checksum of in_ip and in_tcp:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is similar to case 2), but l2_len is different. It is supported
on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM and
DEV_TX_OFFLOAD_TCP_CKSUM.
Note that it can only work if outer L4 checksum is 0.

	segment inner TCP:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->l4_len = len(in_tcp)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |
 PKT_TX_TCP_SEG;
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header without including the IP
 payload length using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO.
Note that it can only work if outer L4 checksum is 0.

	calculate checksum of out_ip, in_ip, in_tcp:

 mb->outer_l2_len = len(out_eth)
 mb->outer_l3_len = len(out_ip)
 mb->l2_len = len(out_udp + vxlan + in_eth)
 mb->l3_len = len(in_ip)
 mb->ol_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM | \
 PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM;
 set out_ip checksum to 0 in the packet
 set in_ip checksum to 0 in the packet
 set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM,
DEV_TX_OFFLOAD_UDP_CKSUM and DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

The list of flags and their precise meaning is described in the mbuf API
documentation (rte_mbuf.h). Also refer to the testpmd source code
(specifically the csumonly.c file) for details.

6.7. Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained.
An indirect buffer behaves like a direct buffer but for the fact that the buffer pointer and
data offset in it refer to data in another direct buffer.
This is useful in situations where packets need to be duplicated or fragmented,
since indirect buffers provide the means to reuse the same packet data across multiple buffers.

A buffer becomes indirect when it is “attached” to a direct buffer using the rte_pktmbuf_attach() function.
Each buffer has a reference counter field and whenever an indirect buffer is attached to the direct buffer,
the reference counter on the direct buffer is incremented.
Similarly, whenever the indirect buffer is detached, the reference counter on the direct buffer is decremented.
If the resulting reference counter is equal to 0, the direct buffer is freed since it is no longer in use.

There are a few things to remember when dealing with indirect buffers.
First of all, it is not possible to attach an indirect buffer to another indirect buffer.
Secondly, for a buffer to become indirect, its reference counter must be equal to 1,
that is, it must not be already referenced by another indirect buffer.
Finally, it is not possible to reattach an indirect buffer to the direct buffer (unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended rte_pktmbuf_attach() and rte_pktmbuf_detach() functions,
it is suggested to use the higher-level rte_pktmbuf_clone() function,
which takes care of the correct initialization of an indirect buffer and can clone buffers with multiple segments.

Since indirect buffers are not supposed to actually hold any data,
the memory pool for indirect buffers should be configured to indicate the reduced memory consumption.
Examples of the initialization of a memory pool for indirect buffers (as well as use case examples for indirect buffers)
can be found in several of the sample applications, for example, the IPv4 Multicast sample application.

6.8. Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled),
the functions of the mbuf library perform sanity checks before any operation (such as, buffer corruption, bad type, and so on).

6.9. Use Cases

All networking application should use mbufs to transport network packets.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

7. Poll Mode Driver

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user space,
to configure the devices and their respective queues.
In addition, a PMD accesses the RX and TX descriptors directly without any interrupts
(with the exception of Link Status Change interrupts) to quickly receive,
process and deliver packets in the user’s application.
This section describes the requirements of the PMDs,
their global design principles and proposes a high-level architecture and a generic external API for the Ethernet PMDs.

7.1. Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-completion and pipe-line:

	In the run-to-completion model, a specific port’s RX descriptor ring is polled for packets through an API.
Packets are then processed on the same core and placed on a port’s TX descriptor ring through an API for transmission.

	In the pipe-line model, one core polls one or more port’s RX descriptor ring through an API.
Packets are received and passed to another core via a ring.
The other core continues to process the packet which then may be placed on a port’s TX descriptor ring through an API for transmission.

In a synchronous run-to-completion model,
each logical core assigned to the DPDK executes a packet processing loop that includes the following steps:

	Retrieve input packets through the PMD receive API

	Process each received packet one at a time, up to its forwarding

	Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the retrieval of received packets and
other logical cores to the processing of previously received packets.
Received packets are exchanged between logical cores through rings.
The loop for packet retrieval includes the following steps:

	Retrieve input packets through the PMD receive API

	Provide received packets to processing lcores through packet queues

The loop for packet processing includes the following steps:

	Retrieve the received packet from the packet queue

	Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not use any asynchronous notification mechanisms.
Whenever needed and appropriate, asynchronous communication should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment.
To address this issue, PMDs are designed to work with per-core private resources as much as possible.
For example, a PMD maintains a separate transmit queue per-core, per-port.
In the same way, every receive queue of a port is assigned to and polled by a single logical core (lcore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to assign to each logical core
a private buffer pool in local memory to minimize remote memory access.
The configuration of packet buffer pools should take into account the underlying physical memory architecture in terms of DIMMS,
channels and ranks.
The application must ensure that appropriate parameters are given at memory pool creation time.
See Mempool Library.

7.2. Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level.
Conversely, NIC PMD functions should not impede the benefits expected by upper-level global policies,
or worse prevent such policies from being applied.

For instance, both the receive and transmit functions of a PMD have a maximum number of packets/descriptors to poll.
This allows a run-to-completion processing stack to statically fix or
to dynamically adapt its overall behavior through different global loop policies, such as:

	Receive, process immediately and transmit packets one at a time in a piecemeal fashion.

	Receive as many packets as possible, then process all received packets, transmitting them immediately.

	Receive a given maximum number of packets, process the received packets, accumulate them and finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimization techniques must be considered and
balanced against available low-level hardware-based optimization features (CPU cache properties, bus speed, NIC PCI bandwidth, and so on).
The case of packet transmission is an example of this software/hardware tradeoff issue when optimizing burst-oriented network packet processing engines.
In the initial case, the PMD could export only an rte_eth_tx_one function to transmit one packet at a time on a given queue.
On top of that, one can easily build an rte_eth_tx_burst function that loops invoking the rte_eth_tx_one function to transmit several packets at a time.
However, an rte_eth_tx_burst function is effectively implemented by the PMD to minimize the driver-level transmit cost per packet through the following optimizations:

	Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one function.

	Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware features (prefetch data in cache, use of NIC head/tail registers)
to minimize the number of CPU cycles per packet, for example by avoiding unnecessary read memory accesses to ring transmit descriptors,
or by systematically using arrays of pointers that exactly fit cache line boundaries and sizes.

	Apply burst-oriented software optimization techniques to remove operations that would otherwise be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used by the PMD.
This applies in particular to buffer allocators used to populate NIC rings, which provide functions to allocate/free several buffers at a time.
For example, an mbuf_multiple_alloc function returning an array of pointers to rte_mbuf buffers which speeds up the receive poll function of the PMD when
replenishing multiple descriptors of the receive ring.

7.3. Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor’s logical cores and interfaces utilize its local memory.
Therefore, mbuf allocation associated with local PCIe* interfaces should be allocated from memory pools created in the local memory.
The buffers should, if possible, remain on the local processor to obtain the best performance results and RX and TX buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local memory instead of a remote processors memory.
This is also true for the pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this would require global locks and hinder performance.

7.4. Device Identification and Configuration

7.4.1. Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI
identifiers assigned by the PCI probing/enumeration function executed at DPDK initialization.
Based on their PCI identifier, NIC ports are assigned two other identifiers:

	A port index used to designate the NIC port in all functions exported by the PMD API.

	A port name used to designate the port in console messages, for administration or debugging purposes.
For ease of use, the port name includes the port index.

7.4.2. Device Configuration

The configuration of each NIC port includes the following operations:

	Allocate PCI resources

	Reset the hardware (issue a Global Reset) to a well-known default state

	Set up the PHY and the link

	Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and functions to set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through specific configuration parameters.
This is the case for the Receive Side Scaling (RSS) and Data Center Bridging (DCB) features for example.

7.4.3. On-the-Fly Configuration

All device features that can be started or stopped “on the fly” (that is, without stopping the device) do not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the configuration of these features in specific functions outside of the drivers.

For this purpose,
the PMD API exports a function that provides all the information associated with a device that can be used to set up a given device feature outside of the driver.
This includes the PCI vendor identifier, the PCI device identifier, the mapping address of the PCI device registers, and the name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the API used to configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Gigabit Ethernet Controller and
the Intel® 82599 10 Gigabit Ethernet Controller controllers in the testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in the same way.
Ethernet* flow control (pause frame) can be configured on the individual port.
Refer to the testpmd source code for details.
Also, L4 (UDP/TCP/ SCTP) checksum offload by the NIC can be enabled for an individual packet as long as the packet mbuf is set up correctly. See Hardware Offload for details.

7.4.4. Configuration of Transmit and Receive Queues

Each transmit queue is independently configured with the following information:

	The number of descriptors of the transmit ring

	The socket identifier used to identify the appropriate DMA memory zone from which to allocate the transmit ring in NUMA architectures

	The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue

	The minimum transmit packets to free threshold (tx_free_thresh).
When the number of descriptors used to transmit packets exceeds this threshold, the network adaptor should be checked to see if it has written back descriptors.
A value of 0 can be passed during the TX queue configuration to indicate the default value should be used.
The default value for tx_free_thresh is 32.
This ensures that the PMD does not search for completed descriptors until at least 32 have been processed by the NIC for this queue.

	The minimum RS bit threshold. The minimum number of transmit descriptors to use before setting the Report Status (RS) bit in the transmit descriptor.
Note that this parameter may only be valid for Intel 10 GbE network adapters.
The RS bit is set on the last descriptor used to transmit a packet if the number of descriptors used since the last RS bit setting,
up to the first descriptor used to transmit the packet, exceeds the transmit RS bit threshold (tx_rs_thresh).
In short, this parameter controls which transmit descriptors are written back to host memory by the network adapter.
A value of 0 can be passed during the TX queue configuration to indicate that the default value should be used.
The default value for tx_rs_thresh is 32.
This ensures that at least 32 descriptors are used before the network adapter writes back the most recently used descriptor.
This saves upstream PCIe* bandwidth resulting from TX descriptor write-backs.
It is important to note that the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh is greater than 1.
Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:

	tx_rs_thresh must be greater than 0.

	tx_rs_thresh must be less than the size of the ring minus 2.

	tx_rs_thresh must be less than or equal to tx_free_thresh.

	tx_free_thresh must be greater than 0.

	tx_free_thresh must be less than the size of the ring minus 3.

	For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence the maximum threshold constraints.

Note

When configuring for DCB operation, at port initialization, both the number of transmit queues and the number of receive queues must be set to 128.

7.4.5. Hardware Offload

Depending on driver capabilities advertised by
rte_eth_dev_info_get(), the PMD may support hardware offloading
feature like checksumming, TCP segmentation or VLAN insertion.

The support of these offload features implies the addition of dedicated
status bit(s) and value field(s) into the rte_mbuf data structure, along
with their appropriate handling by the receive/transmit functions
exported by each PMD. The list of flags and their precise meaning is
described in the mbuf API documentation and in the in Mbuf Library, section “Meta Information”.

7.5. Poll Mode Driver API

7.5.1. Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed
not to be invoked in parallel on different logical cores to work on the same target object.
For instance, a PMD receive function cannot be invoked in parallel on two logical cores to poll the same RX queue of the same port.
Of course, this function can be invoked in parallel by different logical cores on different RX queues.
It is the responsibility of the upper-level application to enforce this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly protected by dedicated inline lock-aware functions
built on top of their corresponding lock-free functions of the PMD API.

7.5.2. Generic Packet Representation

A packet is represented by an rte_mbuf structure, which is a generic metadata structure containing all necessary housekeeping information.
This includes fields and status bits corresponding to offload hardware features, such as checksum computation of IP headers or VLAN tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload features provided by network controllers.
For an input packet, most fields of the rte_mbuf structure are filled in by the PMD receive function with the information contained in the receive descriptor.
Conversely, for output packets, most fields of rte_mbuf structures are used by the PMD transmit function to initialize transmit descriptors.

The mbuf structure is fully described in the Mbuf Library chapter.

7.5.3. Ethernet Device API

The Ethernet device API exported by the Ethernet PMDs is described in the DPDK API Reference.

7.5.4. Extended Statistics API

The extended statistics API allows each individual PMD to expose a unique set
of statistics. The client of the API provides an array of
struct rte_eth_xstats type. Each struct rte_eth_xstats contains a
string and value pair. The amount of xstats exposed, and position of the
statistic in the array must remain constant during runtime.

A naming scheme exists for the strings exposed to clients of the API. This is
to allow scraping of the API for statistics of interest. The naming scheme uses
strings split by a single underscore _. The scheme is as follows:

	direction

	detail 1

	detail 2

	detail n

	unit

Examples of common statistics xstats strings, formatted to comply to the scheme
proposed above:

	rx_bytes

	rx_crc_errors

	tx_multicast_packets

The scheme, although quite simple, allows flexibility in presenting and reading
information from the statistic strings. The following example illustrates the
naming scheme:rx_packets. In this example, the string is split into two
components. The first component rx indicates that the statistic is
associated with the receive side of the NIC. The second component packets
indicates that the unit of measure is packets.

A more complicated example: tx_size_128_to_255_packets. In this example,
tx indicates transmission, size is the first detail, 128 etc are
more details, and packets indicates that this is a packet counter.

Some additions in the metadata scheme are as follows:

	If the first part does not match rx or tx, the statistic does not
have an affinity with either receive of transmit.

	If the first letter of the second part is q and this q is followed
by a number, this statistic is part of a specific queue.

An example where queue numbers are used is as follows: tx_q7_bytes which
indicates this statistic applies to queue number 7, and represents the number
of transmitted bytes on that queue.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

8. Cryptography Device Library

The cryptodev library provides a Crypto device framework for management and
provisioning of hardware and software Crypto poll mode drivers, defining generic
APIs which support a number of different Crypto operations. The framework
currently only supports cipher, authentication, chained cipher/authentication
and AEAD symmetric Crypto operations.

8.1. Design Principles

The cryptodev library follows the same basic principles as those used in DPDKs
Ethernet Device framework. The Crypto framework provides a generic Crypto device
framework which supports both physical (hardware) and virtual (software) Crypto
devices as well as a generic Crypto API which allows Crypto devices to be
managed and configured and supports Crypto operations to be provisioned on
Crypto poll mode driver.

8.2. Device Management

8.2.1. Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the
EAL function which is executed at DPDK initialization, based on
their PCI device identifier, each unique PCI BDF (bus/bridge, device,
function). Specific physical Crypto devices, like other physical devices in DPDK
can be white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command
line options or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'cryptodev_aesni_mb_pmd0,max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0'

Our using the rte_eal_vdev_init API within the application code.

rte_eal_vdev_init("cryptodev_aesni_mb_pmd",
 "max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0")

All virtual Crypto devices support the following initialization parameters:

	max_nb_queue_pairs - maximum number of queue pairs supported by the device.

	max_nb_sessions - maximum number of sessions supported by the device

	socket_id - socket on which to allocate the device resources on.

8.2.2. Device Identification

Each device, whether virtual or physical is uniquely designated by two
identifiers:

	A unique device index used to designate the Crypto device in all functions
exported by the cryptodev API.

	A device name used to designate the Crypto device in console messages, for
administration or debugging purposes. For ease of use, the port name includes
the port index.

8.2.3. Device Configuration

The configuration of each Crypto device includes the following operations:

	Allocation of resources, including hardware resources if a physical device.

	Resetting the device into a well-known default state.

	Initialization of statistics counters.

The rte_cryptodev_configure API is used to configure a Crypto device.

int rte_cryptodev_configure(uint8_t dev_id,
 struct rte_cryptodev_config *config)

The rte_cryptodev_config structure is used to pass the configuration parameters.
In contains parameter for socket selection, number of queue pairs and the
session mempool configuration.

struct rte_cryptodev_config {
 int socket_id;
 /**< Socket to allocate resources on */
 uint16_t nb_queue_pairs;
 /**< Number of queue pairs to configure on device */

 struct {
 uint32_t nb_objs;
 uint32_t cache_size;
 } session_mp;
 /**< Session mempool configuration */
};

8.2.4. Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the
rte_cryptodev_queue_pair_setup API.
Each queue pairs resources may be allocated on a specified socket.

int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
 const struct rte_cryptodev_qp_conf *qp_conf,
 int socket_id)

struct rte_cryptodev_qp_conf {
 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
};

8.2.5. Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when
a processor’s logical cores and interfaces utilize its local memory. Therefore
Crypto operations, and in the case of symmetric Crypto operations, the session
and the mbuf being operated on, should be allocated from memory pools created
in the local memory. The buffers should, if possible, remain on the local
processor to obtain the best performance results and buffer descriptors should
be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of
virtual Crypto devices, if the Crypto operation and session and data buffer is
in local memory instead of a remote processor’s memory. This is also true for
the pipe-line model provided all logical cores used are located on the same
processor.

Multiple logical cores should never share the same queue pair for enqueuing
operations or dequeuing operations on the same Crypto device since this would
require global locks and hinder performance. It is however possible to use a
different logical core to dequeue an operation on a queue pair from the logical
core which it was enqueued on. This means that a crypto burst enqueue/dequeue
APIs are a logical place to transition from one logical core to another in a
packet processing pipeline.

8.3. Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device
features and algorithm capabilities. Global devices features identify device
wide level features which are applicable to the whole device such as
the device having hardware acceleration or supporting symmetric Crypto
operations,

The capabilities mechanism defines the individual algorithms/functions which
the device supports, such as a specific symmetric Crypto cipher or
authentication operation.

8.3.1. Device Features

Currently the following Crypto device features are defined:

	Symmetric Crypto operations

	Asymmetric Crypto operations

	Chaining of symmetric Crypto operations

	SSE accelerated SIMD vector operations

	AVX accelerated SIMD vector operations

	AVX2 accelerated SIMD vector operations

	AESNI accelerated instructions

	Hardware off-load processing

8.3.2. Device Operation Capabilities

Crypto capabilities which identify particular algorithm which the Crypto PMD
supports are defined by the operation type, the operation transform, the
transform identifier and then the particulars of the transform. For the full
scope of the Crypto capability see the definition of the structure in the
DPDK API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities
for the operations it supports. Below is an example of the capabilities for a
PMD which supports the authentication algorithm SHA1_HMAC and the cipher
algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
 { /* SHA1 HMAC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
 .auth = {
 .algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
 .block_size = 64,
 .key_size = {
 .min = 64,
 .max = 64,
 .increment = 0
 },
 .digest_size = {
 .min = 12,
 .max = 12,
 .increment = 0
 },
 .aad_size = { 0 }
 }
 }
 },
 { /* AES CBC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
 .cipher = {
 .algo = RTE_CRYPTO_CIPHER_AES_CBC,
 .block_size = 16,
 .key_size = {
 .min = 16,
 .max = 32,
 .increment = 8
 },
 .iv_size = {
 .min = 16,
 .max = 16,
 .increment = 0
 }
 }
 }
 }
}

8.3.3. Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver
is achieved through the rte_cryptodev_info_get function.

void rte_cryptodev_info_get(uint8_t dev_id,
 struct rte_cryptodev_info *dev_info);

This allows the user to query a specific Crypto PMD and get all the device
features and capabilities. The rte_cryptodev_info structure contains all the
relevant information for the device.

struct rte_cryptodev_info {
 const char *driver_name;
 enum rte_cryptodev_type dev_type;
 struct rte_pci_device *pci_dev;

 uint64_t feature_flags;

 const struct rte_cryptodev_capabilities *capabilities;

 unsigned max_nb_queue_pairs;

 struct {
 unsigned max_nb_sessions;
 } sym;
};

8.4. Operation Processing

Scheduling of Crypto operations on DPDK’s application data path is
performed using a burst oriented asynchronous API set. A queue pair on a Crypto
device accepts a burst of Crypto operations using enqueue burst API. On physical
Crypto devices the enqueue burst API will place the operations to be processed
on the devices hardware input queue, for virtual devices the processing of the
Crypto operations is usually completed during the enqueue call to the Crypto
device. The dequeue burst API will retrieve any processed operations available
from the queue pair on the Crypto device, from physical devices this is usually
directly from the devices processed queue, and for virtual device’s from a
rte_ring where processed operations are place after being processed on the
enqueue call.

8.4.1. Enqueue / Dequeue Burst APIs

The burst enqueue API uses a Crypto device identifier and a queue pair
identifier to specify the Crypto device queue pair to schedule the processing on.
The nb_ops parameter is the number of operations to process which are
supplied in the ops array of rte_crypto_op structures.
The enqueue function returns the number of operations it actually enqueued for
processing, a return value equal to nb_ops means that all packets have been
enqueued.

uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
 struct rte_crypto_op **ops, uint16_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but
the nb_ops and ops parameters are now used to specify the max processed
operations the user wishes to retrieve and the location in which to store them.
The API call returns the actual number of processed operations returned, this
can never be larger than nb_ops.

uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
 struct rte_crypto_op **ops, uint16_t nb_ops)

8.4.2. Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a
generic metadata container for all necessary information required for the
Crypto operation to be processed on a particular Crypto device poll mode driver.

The operation structure includes the operation type and the operation status,
a reference to the operation specific data, which can vary in size and content
depending on the operation being provisioned. It also contains the source
mempool for the operation, if it allocate from a mempool. Finally an
opaque pointer for user specific data is provided.

If Crypto operations are allocated from a Crypto operation mempool, see next
section, there is also the ability to allocate private memory with the
operation for applications purposes.

Application software is responsible for specifying all the operation specific
fields in the rte_crypto_op structure which are then used by the Crypto PMD
to process the requested operation.

8.4.3. Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which
utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
that the crytpo operation is interleaved optimally across the channels and
ranks for optimal processing.
A rte_crypto_op contains a field indicating the pool that it originated from.
When calling rte_crypto_op_free(op), the operation returns to its original pool.

extern struct rte_mempool *
rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,
 unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
 int socket_id);

During pool creation rte_crypto_op_init() is called as a constructor to
initialize each Crypto operation which subsequently calls
__rte_crypto_op_reset() to configure any operation type specific fields based
on the type parameter.

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc() are used to allocate
Crypto operations of a specific type from a given Crypto operation mempool.
__rte_crypto_op_reset() is called on each operation before being returned to
allocate to a user so the operation is always in a good known state before use
by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
 enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
 enum rte_crypto_op_type type,
 struct rte_crypto_op **ops, uint16_t nb_ops)

rte_crypto_op_free() is called by the application to return an operation to
its allocating pool.

void rte_crypto_op_free(struct rte_crypto_op *op)

8.5. Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric
Crypto operations; cipher, authentication, including chaining of these
operations, as well as also supporting AEAD operations.

8.5.1. Session and Session Management

Session are used in symmetric cryptographic processing to store the immutable
data defined in a cryptographic transform which is used in the operation
processing of a packet flow. Sessions are used to manage information such as
expand cipher keys and HMAC IPADs and OPADs, which need to be calculated for a
particular Crypto operation, but are immutable on a packet to packet basis for
a flow. Crypto sessions cache this immutable data in a optimal way for the
underlying PMD and this allows further acceleration of the offload of
Crypto workloads.

The Crypto device framework provides a set of session pool management APIs for
the creation and freeing of the sessions, utilizing the Mempool Library.

The framework also provides hooks so the PMDs can pass the amount of memory
required for that PMDs private session parameters, as well as initialization
functions for the configuration of the session parameters and freeing function
so the PMD can managed the memory on destruction of a session.

Note: Sessions created on a particular device can only be used on Crypto
devices of the same type, and if you try to use a session on a device different
to that on which it was created then the Crypto operation will fail.

rte_cryptodev_sym_session_create() is used to create a symmetric session on
Crypto device. A symmetric transform chain is used to specify the particular
operation and its parameters. See the section below for details on transforms.

struct rte_cryptodev_sym_session * rte_cryptodev_sym_session_create(
 uint8_t dev_id, struct rte_crypto_sym_xform *xform);

Note: For AEAD operations the algorithm selected for authentication and
ciphering must aligned, eg AES_GCM.

8.5.2. Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used
to specify the details of the Crypto operation. For chaining of symmetric
operations such as cipher encrypt and authentication generate, the next pointer
allows transform to be chained together. Crypto devices which support chaining
must publish the chaining of symmetric Crypto operations feature flag.

Currently there are two transforms types cipher and authentication, to specify
an AEAD operation it is required to chain a cipher and an authentication
transform together. Also it is important to note that the order in which the
transforms are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
 struct rte_crypto_sym_xform *next;
 /**< next xform in chain */
 enum rte_crypto_sym_xform_type type;
 /**< xform type */
 union {
 struct rte_crypto_auth_xform auth;
 /**< Authentication / hash xform */
 struct rte_crypto_cipher_xform cipher;
 /**< Cipher xform */
 };
};

The API does not place a limit on the number of transforms that can be chained
together but this will be limited by the underlying Crypto device poll mode
driver which is processing the operation.

8.5.3. Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating
to performing symmetric cryptographic processing on a referenced mbuf data
buffer. It is used for either cipher, authentication, AEAD and chained
operations.

As a minimum the symmetric operation must have a source data buffer (m_src),
the session type (session-based/less), a valid session (or transform chain if in
session-less mode) and the minimum authentication/ cipher parameters required
depending on the type of operation specified in the session or the transform
chain.

struct rte_crypto_sym_op {
 struct rte_mbuf *m_src;
 struct rte_mbuf *m_dst;

 enum rte_crypto_sym_op_sess_type type;

 union {
 struct rte_cryptodev_sym_session *session;
 /**< Handle for the initialised session context */
 struct rte_crypto_sym_xform *xform;
 /**< Session-less API Crypto operation parameters */
 };

 struct {
 struct {
 uint32_t offset;
 uint32_t length;
 } data; /**< Data offsets and length for ciphering */

 struct {
 uint8_t *data;
 phys_addr_t phys_addr;
 uint16_t length;
 } iv; /**< Initialisation vector parameters */
 } cipher;

 struct {
 struct {
 uint32_t offset;
 uint32_t length;
 } data; /**< Data offsets and length for authentication */

 struct {
 uint8_t *data;
 phys_addr_t phys_addr;
 uint16_t length;
 } digest; /**< Digest parameters */

 struct {
 uint8_t *data;
 phys_addr_t phys_addr;
 uint16_t length;
 } aad; /**< Additional authentication parameters */
 } auth;
}

8.6. Asymmetric Cryptography

Asymmetric functionality is currently not supported by the cryptodev API.

8.6.1. Crypto Device API

The cryptodev Library API is described in the DPDK API Reference document.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

9. IVSHMEM Library

The DPDK IVSHMEM library facilitates fast zero-copy data sharing among virtual machines
(host-to-guest or guest-to-guest) by means of QEMU’s IVSHMEM mechanism.

The library works by providing a command line for QEMU to map several hugepages into a single IVSHMEM device.
For the guest to know what is inside any given IVSHMEM device
(and to distinguish between DPDK and non-DPDK IVSHMEM devices),
a metadata file is also mapped into the IVSHMEM segment.
No work needs to be done by the guest application to map IVSHMEM devices into memory;
they are automatically recognized by the DPDK Environment Abstraction Layer (EAL).

A typical DPDK IVSHMEM use case looks like the following.

[image: ../_images/ivshmem.png]
Fig. 9.1 Typical Ivshmem use case

The same could work with several virtual machines, providing host-to-VM or VM-to-VM communication.
The maximum number of metadata files is 32 (by default) and each metadata file can contain different (or even the same) hugepages.
The only constraint is that each VM has to have access to the memory it is sharing with other entities (be it host or another VM).
For example, if the user wants to share the same memzone across two VMs, each VM must have that memzone in its metadata file.

9.1. IVHSHMEM Library API Overview

The following is a simple guide to using the IVSHMEM Library API:

	Call rte_ivshmem_metadata_create() to create a new metadata file.
The metadata name is used to distinguish between multiple metadata files.

	Populate each metadata file with DPDK data structures.
This can be done using the following API calls:
	rte_ivhshmem_metadata_add_memzone() to add rte_memzone to metadata file

	rte_ivshmem_metadata_add_ring() to add rte_ring to metadata file

	rte_ivshmem_metadata_add_mempool() to add rte_mempool to metadata file

	Finally, call rte_ivshmem_metadata_cmdline_generate() to generate the command line for QEMU.
Multiple metadata files (and thus multiple command lines) can be supplied to a single VM.

Note

Only data structures fully residing in DPDK hugepage memory work correctly.
Supported data structures created by malloc(), mmap()
or otherwise using non-DPDK memory cause undefined behavior and even a segmentation fault.

9.2. IVSHMEM Environment Configuration

The steps needed to successfully run IVSHMEM applications are the following:

	Compile a special version of QEMU from sources.

The source code can be found on the QEMU website (currently, version 1.4.x is supported, but version 1.5.x is known to work also),
however, the source code will need to be patched to support using regular files as the IVSHMEM memory backend.
The patch is not included in the DPDK package,
but is available on the Intel®DPDK-vswitch project webpage [https://01.org/packet-processing/intel%C2%AE-ovdk]
(either separately or in a DPDK vSwitch package).

	Enable IVSHMEM library in the DPDK build configuration.

In the default configuration, IVSHMEM library is not compiled. To compile the IVSHMEM library,
one has to either use one of the provided IVSHMEM targets
(for example, x86_64-ivshmem-linuxapp-gcc),
or set CONFIG_RTE_LIBRTE_IVSHMEM to “y” in the build configuration.

	Set up hugepage memory on the virtual machine.

The guest applications run as regular DPDK (primary) processes and thus need their own hugepage memory set up inside the VM.
The process is identical to the one described in the DPDK Getting Started Guide.

9.3. Best Practices for Writing IVSHMEM Applications

When considering the use of IVSHMEM for sharing memory, security implications need to be carefully evaluated.
IVSHMEM is not suitable for untrusted guests, as IVSHMEM is essentially a window into the host process memory.
This also has implications for the multiple VM scenarios.
While the IVSHMEM library tries to share as little memory as possible,
it is quite probable that data designated for one VM might also be present in an IVSMHMEM device designated for another VM.
Consequently, any shared memory corruption will affect both host and all VMs sharing that particular memory.

IVSHMEM applications essentially behave like multi-process applications,
so it is important to implement access serialization to data and thread safety.
DPDK ring structures are already thread-safe, however,
any custom data structures that the user might need would have to be thread-safe also.

Similar to regular DPDK multi-process applications,
it is not recommended to use function pointers as functions might have different memory addresses in different processes.

It is best to avoid freeing the rte_mbuf structure on a different machine from where it was allocated,
that is, if the mbuf was allocated on the host, the host should free it.
Consequently, any packet transmission and reception should also happen on the same machine (whether virtual or physical).
Failing to do so may lead to data corruption in the mempool cache.

Despite the IVSHMEM mechanism being zero-copy and having good performance,
it is still desirable to do processing in batches and follow other procedures described in
Performance Optimization.

9.4. Best Practices for Running IVSHMEM Applications

For performance reasons,
it is best to pin host processes and QEMU processes to different cores so that they do not interfere with each other.
If NUMA support is enabled, it is also desirable to keep host process’ hugepage memory and QEMU process on the same NUMA node.

For the best performance across all NUMA nodes, each QEMU core should be pinned to host CPU core on the appropriate NUMA node.
QEMU’s virtual NUMA nodes should also be set up to correspond to physical NUMA nodes.
More on how to set up DPDK and QEMU NUMA support can be found in DPDK Getting Started Guide and
QEMU documentation [http://qemu.weilnetz.de/qemu-doc.html] respectively.
A script called cpu_layout.py is provided with the DPDK package (in the tools directory)
that can be used to identify which CPU cores correspond to which NUMA node.

The QEMU IVSHMEM command line creation should be considered the last step before starting the virtual machine.
Currently, there is no hot plug support for QEMU IVSHMEM devices,
so one cannot add additional memory to an IVSHMEM device once it has been created.
Therefore, the correct sequence to run an IVSHMEM application is to run host application first,
obtain the command lines for each IVSHMEM device and then run all QEMU instances with guest applications afterwards.

It is important to note that once QEMU is started, it holds on to the hugepages it uses for IVSHMEM devices.
As a result, if the user wishes to shut down or restart the IVSHMEM host application,
it is not enough to simply shut the application down.
The virtual machine must also be shut down (if not, it will hold onto outdated host data).

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

10. Link Bonding Poll Mode Driver Library

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware,
DPDK also includes a pure-software library that
allows physical PMD’s to be bonded together to create a single logical PMD.

Fig. 10.1 Bonded PMDs

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of
rte_eth_dev ports of the same speed and duplex to provide
similar the capabilities to that found in Linux bonding driver to allow the
aggregation of multiple (slave) NICs into a single logical interface between a
server and a switch. The new bonded PMD will then process these interfaces
based on the mode of operation specified to provide support for features such
as redundant links, fault tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the
creation of bonded devices as well as the configuration and management of the
bonded device and its slave devices.

Note

The Link Bonding PMD Library is enabled by default in the build
configuration files, the library can be disabled by setting
CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the DPDK.

10.1. Link Bonding Modes Overview

Currently the Link Bonding PMD library supports following modes of operation:

	Round-Robin (Mode 0):

Fig. 10.2 Round-Robin (Mode 0)

This mode provides load balancing and fault tolerance by transmission of
packets in sequential order from the first available slave device through
the last. Packets are bulk dequeued from devices then serviced in a
round-robin manner. This mode does not guarantee in order reception of
packets and down stream should be able to handle out of order packets.

	Active Backup (Mode 1):

Fig. 10.3 Active Backup (Mode 1)

In this mode only one slave in the bond is active at any time, a different
slave becomes active if, and only if, the primary active slave fails,
thereby providing fault tolerance to slave failure. The single logical
bonded interface’s MAC address is externally visible on only one NIC (port)
to avoid confusing the network switch.

	Balance XOR (Mode 2):

Fig. 10.4 Balance XOR (Mode 2)

This mode provides transmit load balancing (based on the selected
transmission policy) and fault tolerance. The default policy (layer2) uses
a simple calculation based on the packet flow source and destination MAC
addresses as well as the number of active slaves available to the bonded
device to classify the packet to a specific slave to transmit on. Alternate
transmission policies supported are layer 2+3, this takes the IP source and
destination addresses into the calculation of the transmit slave port and
the final supported policy is layer 3+4, this uses IP source and
destination addresses as well as the TCP/UDP source and destination port.

Note

The coloring differences of the packets are used to identify different flow
classification calculated by the selected transmit policy

	Broadcast (Mode 3):

Fig. 10.5 Broadcast (Mode 3)

This mode provides fault tolerance by transmission of packets on all slave
ports.

	Link Aggregation 802.3AD (Mode 4):

Fig. 10.6 Link Aggregation 802.3AD (Mode 4)

This mode provides dynamic link aggregation according to the 802.3ad
specification. It negotiates and monitors aggregation groups that share the
same speed and duplex settings using the selected balance transmit policy
for balancing outgoing traffic.

DPDK implementation of this mode provide some additional requirements of
the application.

	It needs to call rte_eth_tx_burst and rte_eth_rx_burst with
intervals period of less than 100ms.

	Calls to rte_eth_tx_burst must have a buffer size of at least 2xN,
where N is the number of slaves. This is a space required for LACP
frames. Additionally LACP packets are included in the statistics, but
they are not returned to the application.

	Transmit Load Balancing (Mode 5):

Fig. 10.7 Transmit Load Balancing (Mode 5)

This mode provides an adaptive transmit load balancing. It dynamically
changes the transmitting slave, according to the computed load. Statistics
are collected in 100ms intervals and scheduled every 10ms.

10.2. Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API
exported by the Ethernet PMDs described in the DPDK API Reference.

The Link Bonding Library supports the creation of bonded devices at application
startup time during EAL initialization using the --vdev option as well as
programmatically via the C API rte_eth_bond_create function.

Bonded devices support the dynamical addition and removal of slave devices using
the rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs.

After a slave device is added to a bonded device slave is stopped using
rte_eth_dev_stop and then reconfigured using rte_eth_dev_configure
the RX and TX queues are also reconfigured using rte_eth_tx_queue_setup /
rte_eth_rx_queue_setup with the parameters use to configure the bonding
device. If RSS is enabled for bonding device, this mode is also enabled on new
slave and configured as well.

Setting up multi-queue mode for bonding device to RSS, makes it fully
RSS-capable, so all slaves are synchronized with its configuration. This mode is
intended to provide RSS configuration on slaves transparent for client
application implementation.

Bonding device stores its own version of RSS settings i.e. RETA, RSS hash
function and RSS key, used to set up its slaves. That let to define the meaning
of RSS configuration of bonding device as desired configuration of whole bonding
(as one unit), without pointing any of slave inside. It is required to ensure
consistency and made it more error-proof.

RSS hash function set for bonding device, is a maximal set of RSS hash functions
supported by all bonded slaves. RETA size is a GCD of all its RETA’s sizes, so
it can be easily used as a pattern providing expected behavior, even if slave
RETAs’ sizes are different. If RSS Key is not set for bonded device, it’s not
changed on the slaves and default key for device is used.

All settings are managed through the bonding port API and always are propagated
in one direction (from bonding to slaves).

10.2.1. Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback,
using the rte_eth_dev_callback_register API, this will be called when the
status of the bonding device changes. For example in the case of a bonding
device which has 3 slaves, the link status will change to up when one slave
becomes active or change to down when all slaves become inactive. There is no
callback notification when a single slave changes state and the previous
conditions are not met. If a user wishes to monitor individual slaves then they
must register callbacks with that slave directly.

The link bonding library also supports devices which do not implement link
status change interrupts, this is achieved by polling the devices link status at
a defined period which is set using the rte_eth_bond_link_monitoring_set
API, the default polling interval is 10ms. When a device is added as a slave to
a bonding device it is determined using the RTE_PCI_DRV_INTR_LSC flag
whether the device supports interrupts or whether the link status should be
monitored by polling it.

10.2.2. Requirements / Limitations

The current implementation only supports devices that support the same speed
and duplex to be added as a slaves to the same bonded device. The bonded device
inherits these attributes from the first active slave added to the bonded
device and then all further slaves added to the bonded device must support
these parameters.

A bonding device must have a minimum of one slave before the bonding device
itself can be started.

To use a bonding device dynamic RSS configuration feature effectively, it is
also required, that all slaves should be RSS-capable and support, at least one
common hash function available for each of them. Changing RSS key is only
possible, when all slave devices support the same key size.

To prevent inconsistency on how slaves process packets, once a device is added
to a bonding device, RSS configuration should be managed through the bonding
device API, and not directly on the slave.

Like all other PMD, all functions exported by a PMD are lock-free functions
that are assumed not to be invoked in parallel on different logical cores to
work on the same target object.

It should also be noted that the PMD receive function should not be invoked
directly on a slave devices after they have been to a bonded device since
packets read directly from the slave device will no longer be available to the
bonded device to read.

10.2.3. Configuration

Link bonding devices are created using the rte_eth_bond_create API
which requires a unique device name, the bonding mode,
and the socket Id to allocate the bonding device’s resources on.
The other configurable parameters for a bonded device are its slave devices,
its primary slave, a user defined MAC address and transmission policy to use if
the device is in balance XOR mode.

10.2.3.1. Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices
of the same speed and duplex. Ethernet devices can be added as a slave to a
maximum of one bonded device. Slave devices are reconfigured with the
configuration of the bonded device on being added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its
original value of removal of a slave from it.

10.2.3.2. Primary Slave

The primary slave is used to define the default port to use when a bonded
device is in active backup mode. A different port will only be used if, and
only if, the current primary port goes down. If the user does not specify a
primary port it will default to being the first port added to the bonded device.

10.2.3.3. MAC Address

The bonded device can be configured with a user specified MAC address, this
address will be inherited by the some/all slave devices depending on the
operating mode. If the device is in active backup mode then only the primary
device will have the user specified MAC, all other slaves will retain their
original MAC address. In mode 0, 2, 3, 4 all slaves devices are configure with
the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will
default to using the primary slaves MAC address.

10.2.3.4. Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in
Balance XOR mode. Layer 2, Layer 2+3, Layer 3+4.

	Layer 2: Ethernet MAC address based balancing is the default
transmission policy for Balance XOR bonding mode. It uses a simple XOR
calculation on the source MAC address and destination MAC address of the
packet and then calculate the modulus of this value to calculate the slave
device to transmit the packet on.

	Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a
combination of source/destination MAC addresses and the source/destination
IP addresses of the data packet to decide which slave port the packet will
be transmitted on.

	Layer 3 + 4: IP Address & UDP Port based balancing uses a combination
of source/destination IP Address and the source/destination UDP ports of
the packet of the data packet to decide which slave port the packet will be
transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6
and UDP protocols for load balancing.

10.3. Using Link Bonding Devices

The librte_pmd_bond library supports two modes of device creation, the libraries
export full C API or using the EAL command line to statically configure link
bonding devices at application startup. Using the EAL option it is possible to
use link bonding functionality transparently without specific knowledge of the
libraries API, this can be used, for example, to add bonding functionality,
such as active backup, to an existing application which has no knowledge of
the link bonding C API.

10.3.1. Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create
and manage link bonding device from within any application. Link bonding
devices are created using the rte_eth_bond_create API which requires a
unique device name, the link bonding mode to initial the device in and finally
the socket Id which to allocate the devices resources onto. After successful
creation of a bonding device it must be configured using the generic Ethernet
device configure API rte_eth_dev_configure and then the RX and TX queues
which will be used must be setup using rte_eth_tx_queue_setup /
rte_eth_rx_queue_setup.

Slave devices can be dynamically added and removed from a link bonding device
using the rte_eth_bond_slave_add / rte_eth_bond_slave_remove
APIs but at least one slave device must be added to the link bonding device
before it can be started using rte_eth_dev_start.

The link status of a bonded device is dictated by that of its slaves, if all
slave device link status are down or if all slaves are removed from the link
bonding device then the link status of the bonding device will go down.

It is also possible to configure / query the configuration of the control
parameters of a bonded device using the provided APIs
rte_eth_bond_mode_set/ get, rte_eth_bond_primary_set/get,
rte_eth_bond_mac_set/reset and rte_eth_bond_xmit_policy_set/get.

10.3.2. Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the
--vdev EAL command line option. The device name must start with the
eth_bond prefix followed by numbers or letters. The name must be unique for
each device. Each device can have multiple options arranged in a comma
separated list. Multiple devices definitions can be arranged by calling the
--vdev option multiple times.

Device names and bonding options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'eth_bond0,bond_opt0=..,bond opt1=..'--vdev 'eth_bond1,bond _opt0=..,bond_opt1=..'

10.3.2.1. Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as
long as the following two rules are respected:

	A unique device name, in the format of eth_bondX is provided,
where X can be any combination of numbers and/or letters,
and the name is no greater than 32 characters long.

	A least one slave device is provided with for each bonded device definition.

	The operation mode of the bonded device being created is provided.

The different options are:

	mode: Integer value defining the bonding mode of the device.
Currently supports modes 0,1,2,3,4,5 (round-robin, active backup, balance,
broadcast, link aggregation, transmit load balancing).

mode=2

	slave: Defines the PMD device which will be added as slave to the bonded
device. This option can be selected multiple times, for each device to be
added as a slave. Physical devices should be specified using their PCI
address, in the format domain:bus:devid.function

slave=0000:0a:00.0,slave=0000:0a:00.1

	primary: Optional parameter which defines the primary slave port,
is used in active backup mode to select the primary slave for data TX/RX if
it is available. The primary port also is used to select the MAC address to
use when it is not defined by the user. This defaults to the first slave
added to the device if it is specified. The primary device must be a slave
of the bonded device.

primary=0000:0a:00.0

	socket_id: Optional parameter used to select which socket on a NUMA device
the bonded devices resources will be allocated on.

socket_id=0

	mac: Optional parameter to select a MAC address for link bonding device,
this overrides the value of the primary slave device.

mac=00:1e:67:1d:fd:1d

	xmit_policy: Optional parameter which defines the transmission policy when
the bonded device is in balance mode. If not user specified this defaults
to l2 (layer 2) forwarding, the other transmission policies available are
l23 (layer 2+3) and l34 (layer 3+4)

xmit_policy=l23

	lsc_poll_period_ms: Optional parameter which defines the polling interval
in milli-seconds at which devices which don’t support lsc interrupts are
checked for a change in the devices link status

lsc_poll_period_ms=100

	up_delay: Optional parameter which adds a delay in milli-seconds to the
propagation of a devices link status changing to up, by default this
parameter is zero.

up_delay=10

	down_delay: Optional parameter which adds a delay in milli-seconds to the
propagation of a devices link status changing to down, by default this
parameter is zero.

down_delay=50

10.3.2.2. Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00' -- --port-topology=chained

Create a bonded device in round robin mode with two slaves specified by their PCI address and an overriding MAC address:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained

Create a bonded device in active backup mode with two slaves specified, and a primary slave specified by their PCI addresses:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=1, slave=0000:00a:00.01,slave=0000:004:00.00,primary=0000:00a:00.01' -- --port-topology=chained

Create a bonded device in balance mode with two slaves specified by their PCI addresses, and a transmission policy of layer 3 + 4 forwarding:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=2, slave=0000:00a:00.01,slave=0000:004:00.00,xmit_policy=l34' -- --port-topology=chained

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

11. Timer Library

The Timer library provides a timer service to DPDK execution units to enable execution of callback functions asynchronously.
Features of the library are:

	Timers can be periodic (multi-shot) or single (one-shot).

	Timers can be loaded from one core and executed on another. It has to be specified in the call to rte_timer_reset().

	Timers provide high precision (depends on the call frequency to rte_timer_manage() that checks timer expiration for the local core).

	If not required in the application, timers can be disabled at compilation time by not calling the rte_timer_manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event Timer (HPET)
or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The API is based on BSD callout() with a few differences.
Refer to the callout manual [http://www.daemon-systems.org/man/callout.9.html].

11.1. Implementation Details

Timers are tracked on a per-lcore basis,
with all pending timers for a core being maintained in order of timer expiry in a skiplist data structure.
The skiplist used has ten levels and each entry in the table appears in each level with probability ¼^level.
This means that all entries are present in level 0, 1 in every 4 entries is present at level 1,
one in every 16 at level 2 and so on up to level 9.
This means that adding and removing entries from the timer list for a core can be done in log(n) time,
up to 4^10 entries, that is, approximately 1,000,000 timers per lcore.

A timer structure contains a special field called status,
which is a union of a timer state (stopped, pending, running, config) and an owner (lcore id).
Depending on the timer state, we know if a timer is present in a list or not:

	STOPPED: no owner, not in a list

	CONFIG: owned by a core, must not be modified by another core, maybe in a list or not, depending on previous state

	PENDING: owned by a core, present in a list

	RUNNING: owned by a core, must not be modified by another core, present in a list

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed.
When modifying the state of a timer,
a Compare And Swap instruction should be used to guarantee that the status (state+owner) is modified atomically.

Inside the rte_timer_manage() function,
the skiplist is used as a regular list by iterating along the level 0 list, which contains all timer entries,
until an entry which has not yet expired has been encountered.
To improve performance in the case where there are entries in the timer list but none of those timers have yet expired,
the expiry time of the first list entry is maintained within the per-core timer list structure itself.
On 64-bit platforms, this value can be checked without the need to take a lock on the overall structure.
(Since expiry times are maintained as 64-bit values,
a check on the value cannot be done on 32-bit platforms without using either a compare-and-swap (CAS) instruction or using a lock,
so this additional check is skipped in favor of checking as normal once the lock has been taken.)
On both 64-bit and 32-bit platforms,
a call to rte_timer_manage() returns without taking a lock in the case where the timer list for the calling core is empty.

11.2. Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines (ARP, bridging, and so on).

11.3. References

	callout manual [http://www.daemon-systems.org/man/callout.9.html]
- The callout facility that provides timers with a mechanism to execute a function at a given time.

	HPET [http://en.wikipedia.org/wiki/HPET]
- Information about the High Precision Event Timer (HPET).

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

12. Hash Library

The DPDK provides a Hash Library for creating hash table for fast lookup.
The hash table is a data structure optimized for searching through a set of entries that are each identified by a unique key.
For increased performance the DPDK Hash requires that all the keys have the same number of bytes which is set at the hash creation time.

12.1. Hash API Overview

The main configuration parameters for the hash are:

	Total number of hash entries

	Size of the key in bytes

The hash also allows the configuration of some low-level implementation related parameters such as:

	Hash function to translate the key into a bucket index

The main methods exported by the hash are:

	Add entry with key: The key is provided as input. If a new entry is successfully added to the hash for the specified key,
or there is already an entry in the hash for the specified key, then the position of the entry is returned.
If the operation was not successful, for example due to lack of free entries in the hash, then a negative value is returned;

	Delete entry with key: The key is provided as input. If an entry with the specified key is found in the hash,
then the entry is removed from the hash and the position where the entry was found in the hash is returned.
If no entry with the specified key exists in the hash, then a negative value is returned

	Lookup for entry with key: The key is provided as input. If an entry with the specified key is found in the hash (lookup hit),
then the position of the entry is returned, otherwise (lookup miss) a negative value is returned.

Apart from these method explained above, the API allows the user three more options:

	Add / lookup / delete with key and precomputed hash: Both the key and its precomputed hash are provided as input. This allows
the user to perform these operations faster, as hash is already computed.

	Add / lookup with key and data: A pair of key-value is provided as input. This allows the user to store
not only the key, but also data which may be either a 8-byte integer or a pointer to external data (if data size is more than 8 bytes).

	Combination of the two options above: User can provide key, precomputed hash and data.

Also, the API contains a method to allow the user to look up entries in bursts, achieving higher performance
than looking up individual entries, as the function prefetches next entries at the time it is operating
with the first ones, which reduces significantly the impact of the necessary memory accesses.
Notice that this method uses a pipeline of 8 entries (4 stages of 2 entries), so it is highly recommended
to use at least 8 entries per burst.

The actual data associated with each key can be either managed by the user using a separate table that
mirrors the hash in terms of number of entries and position of each entry,
as shown in the Flow Classification use case describes in the following sections,
or stored in the hash table itself.

The example hash tables in the L2/L3 Forwarding sample applications defines which port to forward a packet to based on a packet flow identified by the five-tuple lookup.
However, this table could also be used for more sophisticated features and provide many other functions and actions that could be performed on the packets and flows.

12.2. Multi-process support

The hash library can be used in a multi-process environment, minding that only lookups are thread-safe.
The only function that can only be used in single-process mode is rte_hash_set_cmp_func(), which sets up
a custom compare function, which is assigned to a function pointer (therefore, it is not supported in
multi-process mode).

12.3. Implementation Details

The hash table has two main tables:

	First table is an array of entries which is further divided into buckets,
with the same number of consecutive array entries in each bucket. Each entry contains the computed primary
and secondary hashes of a given key (explained below), and an index to the second table.

	The second table is an array of all the keys stored in the hash table and its data associated to each key.

The hash library uses the cuckoo hash method to resolve collisions.
For any input key, there are two possible buckets (primary and secondary/alternative location)
where that key can be stored in the hash, therefore only the entries within those bucket need to be examined
when the key is looked up.
The lookup speed is achieved by reducing the number of entries to be scanned from the total
number of hash entries down to the number of entries in the two hash buckets,
as opposed to the basic method of linearly scanning all the entries in the array.
The hash uses a hash function (configurable) to translate the input key into a 4-byte key signature.
The bucket index is the key signature modulo the number of hash buckets.

Once the buckets are identified, the scope of the hash add,
delete and lookup operations is reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).

To speed up the search logic within the bucket, each hash entry stores the 4-byte key signature together with the full key for each hash entry.
For large key sizes, comparing the input key against a key from the bucket can take significantly more time than
comparing the 4-byte signature of the input key against the signature of a key from the bucket.
Therefore, the signature comparison is done first and the full key comparison done only when the signatures matches.
The full key comparison is still necessary, as two input keys from the same bucket can still potentially have the same 4-byte hash signature,
although this event is relatively rare for hash functions providing good uniform distributions for the set of input keys.

Example of lookup:

First of all, the primary bucket is identified and entry is likely to be stored there.
If signature was stored there, we compare its key against the one provided and return the position
where it was stored and/or the data associated to that key if there is a match.
If signature is not in the primary bucket, the secondary bucket is looked up, where same procedure
is carried out. If there is no match there either, key is considered not to be in the table.

Example of addition:

Like lookup, the primary and secondary buckets are identified. If there is an empty slot in
the primary bucket, primary and secondary signatures are stored in that slot, key and data (if any) are added to
the second table and an index to the position in the second table is stored in the slot of the first table.
If there is no space in the primary bucket, one of the entries on that bucket is pushed to its alternative location,
and the key to be added is inserted in its position.
To know where the alternative bucket of the evicted entry is, the secondary signature is looked up and alternative bucket index
is calculated from doing the modulo, as seen above. If there is room in the alternative bucket, the evicted entry
is stored in it. If not, same process is repeated (one of the entries gets pushed) until a non full bucket is found.
Notice that despite all the entry movement in the first table, the second table is not touched, which would impact
greatly in performance.

In the very unlikely event that table enters in a loop where same entries are being evicted indefinitely,
key is considered not able to be stored.
With random keys, this method allows the user to get around 90% of the table utilization, without
having to drop any stored entry (LRU) or allocate more memory (extended buckets).

12.4. Entry distribution in hash table

As mentioned above, Cuckoo hash implementation pushes elements out of their bucket,
if there is a new entry to be added which primary location coincides with their current bucket,
being pushed to their alternative location.
Therefore, as user adds more entries to the hash table, distribution of the hash values
in the buckets will change, being most of them in their primary location and a few in
their secondary location, which the later will increase, as table gets busier.
This information is quite useful, as performance may be lower as more entries
are evicted to their secondary location.

See the tables below showing example entry distribution as table utilization increases.

Table 12.1 Entry distribution measured with an example table with 1024 random entries using jhash algorithm

 13. LPM Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

13. LPM Library

The DPDK LPM library component implements the Longest Prefix Match (LPM) table search method for 32-bit keys
that is typically used to find the best route match in IP forwarding applications.

13.1. LPM API Overview

The main configuration parameter for LPM component instances is the maximum number of rules to support.
An LPM prefix is represented by a pair of parameters (32- bit key, depth), with depth in the range of 1 to 32.
An LPM rule is represented by an LPM prefix and some user data associated with the prefix.
The prefix serves as the unique identifier of the LPM rule.
In this implementation, the user data is 1-byte long and is called next hop,
in correlation with its main use of storing the ID of the next hop in a routing table entry.

The main methods exported by the LPM component are:

	Add LPM rule: The LPM rule is provided as input.
If there is no rule with the same prefix present in the table, then the new rule is added to the LPM table.
If a rule with the same prefix is already present in the table, the next hop of the rule is updated.
An error is returned when there is no available rule space left.

	Delete LPM rule: The prefix of the LPM rule is provided as input.
If a rule with the specified prefix is present in the LPM table, then it is removed.

	Lookup LPM key: The 32-bit key is provided as input.
The algorithm selects the rule that represents the best match for the given key and returns the next hop of that rule.
In the case that there are multiple rules present in the LPM table that have the same 32-bit key,
the algorithm picks the rule with the highest depth as the best match rule,
which means that the rule has the highest number of most significant bits matching between the input key and the rule key.

13.2. Implementation Details

The current implementation uses a variation of the DIR-24-8 algorithm that trades memory usage for improved LPM lookup speed.
The algorithm allows the lookup operation to be performed with typically a single memory read access.
In the statistically rare case when the best match rule is having a depth bigger than 24,
the lookup operation requires two memory read accesses.
Therefore, the performance of the LPM lookup operation is greatly influenced by
whether the specific memory location is present in the processor cache or not.

The main data structure is built using the following elements:

	A table with 2^24 entries.

	A number of tables (RTE_LPM_TBL8_NUM_GROUPS) with 2^8 entries.

The first table, called tbl24, is indexed using the first 24 bits of the IP address to be looked up,
while the second table(s), called tbl8, is indexed using the last 8 bits of the IP address.
This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24
we might need to continue the lookup process in the second level.

Since every entry of the tbl24 can potentially point to a tbl8, ideally, we would have 2^24 tbl8s,
which would be the same as having a single table with 2^32 entries.
This is not feasible due to resource restrictions.
Instead, this approach takes advantage of the fact that rules longer than 24 bits are very rare.
By splitting the process in two different tables/levels and limiting the number of tbl8s,
we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access, most of the times).

[image: ../_images/tbl24_tbl8.png]
Fig. 13.1 Table split into different levels

An entry in tbl24 contains the following fields:

	next hop / index to the tbl8

	valid flag

	external entry flag

	depth of the rule (length)

The first field can either contain a number indicating the tbl8 in which the lookup process should continue
or the next hop itself if the longest prefix match has already been found.
The two flags are used to determine whether the entry is valid or not and
whether the search process have finished or not respectively.
The depth or length of the rule is the number of bits of the rule that is stored in a specific entry.

An entry in a tbl8 contains the following fields:

	next hop

	valid

	valid group

	depth

Next hop and depth contain the same information as in the tbl24.
The two flags show whether the entry and the table are valid respectively.

The other main data structure is a table containing the main information about the rules (IP and next hop).
This is a higher level table, used for different things:

	Check whether a rule already exists or not, prior to addition or deletion,
without having to actually perform a lookup.

	When deleting, to check whether there is a rule containing the one that is to be deleted.
This is important, since the main data structure will have to be updated accordingly.

13.2.1. Addition

When adding a rule, there are different possibilities.
If the rule’s depth is exactly 24 bits, then:

	Use the rule (IP address) as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 0
(meaning the lookup process ends at this point, since this is the longest prefix that matches).

If the rule’s depth is exactly 32 bits, then:

	Use the first 24 bits of the rule as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8,
set the index to the tbl8 to this value,
the valid flag to 1 (meaning this entry is in use), and the external entry flag to 1
(meaning the lookup process must continue since the rule hasn’t been explored completely).

If the rule’s depth is any other value, prefix expansion must be performed.
This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits.
This means that there are 2^(24 - 20) = 16 different combinations of the first 24 bits of an IP address that
would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in either one or two memory accesses,
depending on whether we need to move to the next table or not.
Prefix expansion is one of the keys of this algorithm,
since it improves the speed dramatically by adding redundancy.

13.2.2. Lookup

The lookup process is much simpler and quicker. In this case:

	Use the first 24 bits of the IP address as an index to the tbl24.
If the entry is not in use, then it means we don’t have a rule matching this IP.
If it is valid and the external entry flag is set to 0, then the next hop is returned.

	If it is valid and the external entry flag is set to 1,
then we use the tbl8 index to find out the tbl8 to be checked,
and the last 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address.
If it is valid then the next hop is returned.

13.2.3. Limitations in the Number of Rules

There are different things that limit the number of rules that can be added.
The first one is the maximum number of rules, which is a parameter passed through the API.
Once this number is reached,
it is not possible to add any more rules to the routing table unless one or more are removed.

The second reason is an intrinsic limitation of the algorithm.
As explained before, to avoid high memory consumption, the number of tbl8s is limited in compilation time
(this value is by default 256).
If we exhaust tbl8s, we won’t be able to add any more rules.
How many of them are necessary for a specific routing table is hard to determine in advance.

A tbl8 is consumed whenever we have a new rule with depth bigger than 24,
and the first 24 bits of this rule are not the same as the first 24 bits of a rule previously added.
If they are, then the new rule will share the same tbl8 than the previous one,
since the only difference between the two rules is within the last byte.

With the default value of 256, we can have up to 256 rules longer than 24 bits that differ on their first three bytes.
Since routes longer than 24 bits are unlikely, this shouldn’t be a problem in most setups.
Even if it is, however, the number of tbl8s can be modified.

13.2.4. Use Case: IPv4 Forwarding

The LPM algorithm is used to implement Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IPv4 forwarding.

13.2.5. References

	RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy,
http://www.ietf.org/rfc/rfc1519

	Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis, Stanford University,
2000 (http://klamath.stanford.edu/~pankaj/thesis/ thesis_1sided.pdf [http://klamath.stanford.edu/~pankaj/thesis/%20thesis_1sided.pdf])

 Created using Sphinx 1.3.5.

 14. LPM6 Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

14. LPM6 Library

The LPM6 (LPM for IPv6) library component implements the Longest Prefix Match (LPM) table search method for 128-bit keys
that is typically used to find the best match route in IPv6 forwarding applications.

14.1. LPM6 API Overview

The main configuration parameters for the LPM6 library are:

	Maximum number of rules: This defines the size of the table that holds the rules,
and therefore the maximum number of rules that can be added.

	Number of tbl8s: A tbl8 is a node of the trie that the LPM6 algorithm is based on.

This parameter is related to the number of rules you can have,
but there is no way to accurately predict the number needed to hold a specific number of rules,
since it strongly depends on the depth and IP address of every rule.
One tbl8 consumes 1 kb of memory. As a recommendation, 65536 tbl8s should be sufficient to store
several thousand IPv6 rules, but the number can vary depending on the case.

An LPM prefix is represented by a pair of parameters (128-bit key, depth), with depth in the range of 1 to 128.
An LPM rule is represented by an LPM prefix and some user data associated with the prefix.
The prefix serves as the unique identifier for the LPM rule.
In this implementation, the user data is 1-byte long and is called “next hop”,
which corresponds to its main use of storing the ID of the next hop in a routing table entry.

The main methods exported for the LPM component are:

	Add LPM rule: The LPM rule is provided as input.
If there is no rule with the same prefix present in the table, then the new rule is added to the LPM table.
If a rule with the same prefix is already present in the table, the next hop of the rule is updated.
An error is returned when there is no available space left.

	Delete LPM rule: The prefix of the LPM rule is provided as input.
If a rule with the specified prefix is present in the LPM table, then it is removed.

	Lookup LPM key: The 128-bit key is provided as input.
The algorithm selects the rule that represents the best match for the given key and returns the next hop of that rule.
In the case that there are multiple rules present in the LPM table that have the same 128-bit value,
the algorithm picks the rule with the highest depth as the best match rule,
which means the rule has the highest number of most significant bits matching between the input key and the rule key.

14.1.1. Implementation Details

This is a modification of the algorithm used for IPv4 (see Implementation Details).
In this case, instead of using two levels, one with a tbl24 and a second with a tbl8, 14 levels are used.

The implementation can be seen as a multi-bit trie where the stride
or number of bits inspected on each level varies from level to level.
Specifically, 24 bits are inspected on the root node, and the remaining 104 bits are inspected in groups of 8 bits.
This effectively means that the trie has 14 levels at the most, depending on the rules that are added to the table.

The algorithm allows the lookup operation to be performed with a number of memory accesses
that directly depends on the length of the rule and
whether there are other rules with bigger depths and the same key in the data structure.
It can vary from 1 to 14 memory accesses, with 5 being the average value for the lengths
that are most commonly used in IPv6.

The main data structure is built using the following elements:

	A table with 224 entries

	A number of tables, configurable by the user through the API, with 28 entries

The first table, called tbl24, is indexed using the first 24 bits of the IP address be looked up,
while the rest of the tables, called tbl8s,
are indexed using the rest of the bytes of the IP address, in chunks of 8 bits.
This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24
or the subsequent tbl8s we might need to continue the lookup process in deeper levels of the tree.

Similar to the limitation presented in the algorithm for IPv4,
to store every possible IPv6 rule, we would need a table with 2^128 entries.
This is not feasible due to resource restrictions.

By splitting the process in different tables/levels and limiting the number of tbl8s,
we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access per level).

[image: ../_images/tbl24_tbl8_tbl8.png]
Fig. 14.1 Table split into different levels

An entry in a table contains the following fields:

	next hop / index to the tbl8

	depth of the rule (length)

	valid flag

	valid group flag

	external entry flag

The first field can either contain a number indicating the tbl8 in which the lookup process should continue
or the next hop itself if the longest prefix match has already been found.
The depth or length of the rule is the number of bits of the rule that is stored in a specific entry.
The flags are used to determine whether the entry/table is valid or not
and whether the search process have finished or not respectively.

Both types of tables share the same structure.

The other main data structure is a table containing the main information about the rules (IP, next hop and depth).
This is a higher level table, used for different things:

	Check whether a rule already exists or not, prior to addition or deletion,
without having to actually perform a lookup.

When deleting, to check whether there is a rule containing the one that is to be deleted.
This is important, since the main data structure will have to be updated accordingly.

14.1.2. Addition

When adding a rule, there are different possibilities.
If the rule’s depth is exactly 24 bits, then:

	Use the rule (IP address) as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 0 (meaning the lookup process ends at this point,
since this is the longest prefix that matches).

If the rule’s depth is bigger than 24 bits but a multiple of 8, then:

	Use the first 24 bits of the rule as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8,
set the index to the tbl8 to this value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 1
(meaning the lookup process must continue since the rule hasn’t been explored completely).

	Use the following 8 bits of the rule as an index to the next tbl8.

	Repeat the process until the tbl8 at the right level (depending on the depth) has been reached
and fill it with the next hop, setting the next entry flag to 0.

If the rule’s depth is any other value, prefix expansion must be performed.
This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits.
This means that there are 2^(24-20) = 16 different combinations of the first 24 bits of an IP address that would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in, at the most, 14 memory accesses,
depending on how many times we need to move to the next table.
Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by adding redundancy.

Prefix expansion can be performed at any level.
So, for example, is the depth is 34 bits, it will be performed in the third level (second tbl8-based level).

14.1.3. Lookup

The lookup process is much simpler and quicker. In this case:

	Use the first 24 bits of the IP address as an index to the tbl24.
If the entry is not in use, then it means we don’t have a rule matching this IP.
If it is valid and the external entry flag is set to 0, then the next hop is returned.

	If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8 to be checked,
and the next 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address.
If it is valid then check the external entry flag for a new tbl8 to be inspected.

	Repeat the process until either we find an invalid entry (lookup miss) or a valid entry with the external entry flag set to 0.
Return the next hop in the latter case.

14.1.4. Limitations in the Number of Rules

There are different things that limit the number of rules that can be added.
The first one is the maximum number of rules, which is a parameter passed through the API.
Once this number is reached, it is not possible to add any more rules to the routing table unless one or more are removed.

The second limitation is in the number of tbl8s available.
If we exhaust tbl8s, we won’t be able to add any more rules.
How to know how many of them are necessary for a specific routing table is hard to determine in advance.

In this algorithm, the maximum number of tbl8s a single rule can consume is 13,
which is the number of levels minus one, since the first three bytes are resolved in the tbl24. However:

	Typically, on IPv6, routes are not longer than 48 bits, which means rules usually take up to 3 tbl8s.

As explained in the LPM for IPv4 algorithm, it is possible and very likely that several rules will share one or more tbl8s,
depending on what their first bytes are.
If they share the same first 24 bits, for instance, the tbl8 at the second level will be shared.
This might happen again in deeper levels, so, effectively,
two 48 bit-long rules may use the same three tbl8s if the only difference is in their last byte.

The number of tbl8s is a parameter exposed to the user through the API in this version of the algorithm,
due to its impact in memory consumption and the number or rules that can be added to the LPM table.
One tbl8 consumes 1 kilobyte of memory.

14.2. Use Case: IPv6 Forwarding

The LPM algorithm is used to implement the Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IP forwarding.

 Created using Sphinx 1.3.5.

 15. Packet Distributor Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

15. Packet Distributor Library

The DPDK Packet Distributor library is a library designed to be used for dynamic load balancing of traffic
while supporting single packet at a time operation.
When using this library, the logical cores in use are to be considered in two roles: firstly a distributor lcore,
which is responsible for load balancing or distributing packets,
and a set of worker lcores which are responsible for receiving the packets from the distributor and operating on them.
The model of operation is shown in the diagram below.

[image: ../_images/packet_distributor1.png]
Fig. 15.1 Packet Distributor mode of operation

15.1. Distributor Core Operation

The distributor core does the majority of the processing for ensuring that packets are fairly shared among workers.
The operation of the distributor is as follows:

	Packets are passed to the distributor component by having the distributor lcore thread call the “rte_distributor_process()” API

	The worker lcores all share a single cache line with the distributor core in order to pass messages and packets to and from the worker.
The process API call will poll all the worker cache lines to see what workers are requesting packets.

	As workers request packets, the distributor takes packets from the set of packets passed in and distributes them to the workers.
As it does so, it examines the “tag” – stored in the RSS hash field in the mbuf – for each packet
and records what tags are being processed by each worker.

	If the next packet in the input set has a tag which is already being processed by a worker,
then that packet will be queued up for processing by that worker
and given to it in preference to other packets when that work next makes a request for work.
This ensures that no two packets with the same tag are processed in parallel,
and that all packets with the same tag are processed in input order.

	Once all input packets passed to the process API have either been distributed to workers
or been queued up for a worker which is processing a given tag,
then the process API returns to the caller.

Other functions which are available to the distributor lcore are:

	rte_distributor_returned_pkts()

	rte_distributor_flush()

	rte_distributor_clear_returns()

Of these the most important API call is “rte_distributor_returned_pkts()”
which should only be called on the lcore which also calls the process API.
It returns to the caller all packets which have finished processing by all worker cores.
Within this set of returned packets, all packets sharing the same tag will be returned in their original order.

NOTE:
If worker lcores buffer up packets internally for transmission in bulk afterwards,
the packets sharing a tag will likely get out of order.
Once a worker lcore requests a new packet, the distributor assumes that it has completely finished with the previous packet and
therefore that additional packets with the same tag can safely be distributed to other workers –
who may then flush their buffered packets sooner and cause packets to get out of order.

NOTE:
No packet ordering guarantees are made about packets which do not share a common packet tag.

Using the process and returned_pkts API, the following application workflow can be used,
while allowing packet order within a packet flow – identified by a tag – to be maintained.

[image: ../_images/packet_distributor2.png]
Fig. 15.2 Application workflow

The flush and clear_returns API calls, mentioned previously,
are likely of less use that the process and returned_pkts APIS, and are principally provided to aid in unit testing of the library.
Descriptions of these functions and their use can be found in the DPDK API Reference document.

15.2. Worker Operation

Worker cores are the cores which do the actual manipulation of the packets distributed by the packet distributor.
Each worker calls “rte_distributor_get_pkt()” API to request a new packet when it has finished processing the previous one.
[The previous packet should be returned to the distributor component by passing it as the final parameter to this API call.]

Since it may be desirable to vary the number of worker cores, depending on the traffic load
i.e. to save power at times of lighter load,
it is possible to have a worker stop processing packets by calling “rte_distributor_return_pkt()” to indicate that
it has finished the current packet and does not want a new one.

 Created using Sphinx 1.3.5.

 16. Reorder Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

16. Reorder Library

The Reorder Library provides a mechanism for reordering mbufs based on their
sequence number.

16.1. Operation

The reorder library is essentially a buffer that reorders mbufs.
The user inserts out of order mbufs into the reorder buffer and pulls in-order
mbufs from it.

At a given time, the reorder buffer contains mbufs whose sequence number are
inside the sequence window. The sequence window is determined by the minimum
sequence number and the number of entries that the buffer was configured to hold.
For example, given a reorder buffer with 200 entries and a minimum sequence
number of 350, the sequence window has low and high limits of 350 and 550
respectively.

When inserting mbufs, the reorder library differentiates between valid, early
and late mbufs depending on the sequence number of the inserted mbuf:

	valid: the sequence number is inside the window.

	late: the sequence number is outside the window and less than the low limit.

	early: the sequence number is outside the window and greater than the high
limit.

The reorder buffer directly returns late mbufs and tries to accommodate early
mbufs.

16.2. Implementation Details

The reorder library is implemented as a pair of buffers, which referred to as
the Order buffer and the Ready buffer.

On an insert call, valid mbufs are inserted directly into the Order buffer and
late mbufs are returned to the user with an error.

In the case of early mbufs, the reorder buffer will try to move the window
(incrementing the minimum sequence number) so that the mbuf becomes a valid one.
To that end, mbufs in the Order buffer are moved into the Ready buffer.
Any mbufs that have not arrived yet are ignored and therefore will become
late mbufs.
This means that as long as there is room in the Ready buffer, the window will
be moved to accommodate early mbufs that would otherwise be outside the
reordering window.

For example, assuming that we have a buffer of 200 entries with a 350 minimum
sequence number, and we need to insert an early mbuf with 565 sequence number.
That means that we would need to move the windows at least 15 positions to
accommodate the mbuf.
The reorder buffer would try to move mbufs from at least the next 15 slots in
the Order buffer to the Ready buffer, as long as there is room in the Ready buffer.
Any gaps in the Order buffer at that point are skipped, and those packet will
be reported as late packets when they arrive. The process of moving packets
to the Ready buffer continues beyond the minimum required until a gap,
i.e. missing mbuf, in the Order buffer is encountered.

When draining mbufs, the reorder buffer would return mbufs in the Ready
buffer first and then from the Order buffer until a gap is found (mbufs that
have not arrived yet).

16.3. Use Case: Packet Distributor

An application using the DPDK packet distributor could make use of the reorder
library to transmit packets in the same order they were received.

A basic packet distributor use case would consist of a distributor with
multiple workers cores.
The processing of packets by the workers is not guaranteed to be in order,
hence a reorder buffer can be used to order as many packets as possible.

In such a scenario, the distributor assigns a sequence number to mbufs before
delivering them to the workers.
As the workers finish processing the packets, the distributor inserts those
mbufs into the reorder buffer and finally transmit drained mbufs.

NOTE: Currently the reorder buffer is not thread safe so the same thread is
responsible for inserting and draining mbufs.

 Created using Sphinx 1.3.5.

 17. IP Fragmentation and Reassembly Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

17. IP Fragmentation and Reassembly Library

The IP Fragmentation and Reassembly Library implements IPv4 and IPv6 packet fragmentation and reassembly.

17.1. Packet fragmentation

Packet fragmentation routines divide input packet into number of fragments.
Both rte_ipv4_fragment_packet() and rte_ipv6_fragment_packet() functions assume that input mbuf data
points to the start of the IP header of the packet (i.e. L2 header is already stripped out).
To avoid copying of the actual packet’s data zero-copy technique is used (rte_pktmbuf_attach).
For each fragment two new mbufs are created:

	Direct mbuf – mbuf that will contain L3 header of the new fragment.

	Indirect mbuf – mbuf that is attached to the mbuf with the original packet.
It’s data field points to the start of the original packets data plus fragment offset.

Then L3 header is copied from the original mbuf into the ‘direct’ mbuf and updated to reflect new fragmented status.
Note that for IPv4, header checksum is not recalculated and is set to zero.

Finally ‘direct’ and ‘indirect’ mbufs for each fragment are linked together via mbuf’s next filed to compose a packet for the new fragment.

The caller has an ability to explicitly specify which mempools should be used to allocate ‘direct’ and ‘indirect’ mbufs from.

For more information about direct and indirect mbufs, refer to Direct and Indirect Buffers.

17.2. Packet reassembly

17.2.1. IP Fragment Table

Fragment table maintains information about already received fragments of the packet.

Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.

Note that all update/lookup operations on Fragment Table are not thread safe.
So if different execution contexts (threads/processes) will access the same table simultaneously,
then some external syncing mechanism have to be provided.

Each table entry can hold information about packets consisting of up to RTE_LIBRTE_IP_FRAG_MAX (by default: 4) fragments.

Code example, that demonstrates creation of a new Fragment table:

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag_table_create(max_flow_num, bucket_entries, max_flow_num, frag_cycles, socket_id);

Internally Fragment table is a simple hash table.
The basic idea is to use two hash functions and <bucket_entries> * associativity.
This provides 2 * <bucket_entries> possible locations in the hash table for each key.
When the collision occurs and all 2 * <bucket_entries> are occupied,
instead of reinserting existing keys into alternative locations, ip_frag_tbl_add() just returns a failure.

Also, entries that resides in the table longer then <max_cycles> are considered as invalid,
and could be removed/replaced by the new ones.

Note that reassembly demands a lot of mbuf’s to be allocated.
At any given time up to (2 * bucket_entries * RTE_LIBRTE_IP_FRAG_MAX * <maximum number of mbufs per packet>)
can be stored inside Fragment Table waiting for remaining fragments.

17.2.2. Packet Reassembly

Fragmented packets processing and reassembly is done by the rte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet.
Functions. They either return a pointer to valid mbuf that contains reassembled packet,
or NULL (if the packet can’t be reassembled for some reason).

These functions are responsible for:

	Search the Fragment Table for entry with packet’s <IPv4 Source Address, IPv4 Destination Address, Packet ID>.

	If the entry is found, then check if that entry already timed-out.
If yes, then free all previously received fragments, and remove information about them from the entry.

	If no entry with such key is found, then try to create a new one by one of two ways:
	Use as empty entry.

	Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.

	Update the entry with new fragment information and check if a packet can be reassembled
(the packet’s entry contains all fragments).
	If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled mbuf to the caller.

	If no, then return a NULL to the caller.

If at any stage of packet processing an error is encountered
(e.g: can’t insert new entry into the Fragment Table, or invalid/timed-out fragment),
then the function will free all associated with the packet fragments,
mark the table entry as invalid and return NULL to the caller.

17.2.3. Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT config macro controls statistics collection for the Fragment Table.
This macro is not enabled by default.

The RTE_LIBRTE_IP_FRAG_DEBUG controls debug logging of IP fragments processing and reassembling.
This macro is disabled by default.
Note that while logging contains a lot of detailed information,
it slows down packet processing and might cause the loss of a lot of packets.

 Created using Sphinx 1.3.5.

 18. Multi-process Support

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

18. Multi-process Support

In the DPDK, multi-process support is designed to allow a group of DPDK processes
to work together in a simple transparent manner to perform packet processing,
or other workloads, on Intel® architecture hardware.
To support this functionality,
a number of additions have been made to the core DPDK Environment Abstraction Layer (EAL).

The EAL has been modified to allow different types of DPDK processes to be spawned,
each with different permissions on the hugepage memory used by the applications.
For now, there are two types of process specified:

	primary processes, which can initialize and which have full permissions on shared memory

	secondary processes, which cannot initialize shared memory,
but can attach to pre- initialized shared memory and create objects in it.

Standalone DPDK processes are primary processes,
while secondary processes can only run alongside a primary process or
after a primary process has already configured the hugepage shared memory for them.

To support these two process types, and other multi-process setups described later,
two additional command-line parameters are available to the EAL:

	--proc-type: for specifying a given process instance as the primary or secondary DPDK instance

	--file-prefix: to allow processes that do not want to co-operate to have different memory regions

A number of example applications are provided that demonstrate how multiple DPDK processes can be used together.
These are more fully documented in the “Multi- process Sample Application” chapter
in the DPDK Sample Application’s User Guide.

18.1. Memory Sharing

The key element in getting a multi-process application working using the DPDK is to ensure that
memory resources are properly shared among the processes making up the multi-process application.
Once there are blocks of shared memory available that can be accessed by multiple processes,
then issues such as inter-process communication (IPC) becomes much simpler.

On application start-up in a primary or standalone process,
the DPDK records to memory-mapped files the details of the memory configuration it is using - hugepages in use,
the virtual addresses they are mapped at, the number of memory channels present, etc.
When a secondary process is started, these files are read and the EAL recreates the same memory configuration
in the secondary process so that all memory zones are shared between processes and all pointers to that memory are valid,
and point to the same objects, in both processes.

Note

Refer to Multi-process Limitations for details of
how Linux kernel Address-Space Layout Randomization (ASLR) can affect memory sharing.

Fig. 18.1 Memory Sharing in the DPDK Multi-process Sample Application

The EAL also supports an auto-detection mode (set by EAL --proc-type=auto flag),
whereby an DPDK process is started as a secondary instance if a primary instance is already running.

18.2. Deployment Models

18.2.1. Symmetric/Peer Processes

DPDK multi-process support can be used to create a set of peer processes where each process performs the same workload.
This model is equivalent to having multiple threads each running the same main-loop function,
as is done in most of the supplied DPDK sample applications.
In this model, the first of the processes spawned should be spawned using the --proc-type=primary EAL flag,
while all subsequent instances should be spawned using the --proc-type=secondary flag.

The simple_mp and symmetric_mp sample applications demonstrate this usage model.
They are described in the “Multi-process Sample Application” chapter in the DPDK Sample Application’s User Guide.

18.2.2. Asymmetric/Non-Peer Processes

An alternative deployment model that can be used for multi-process applications
is to have a single primary process instance that acts as a load-balancer or
server distributing received packets among worker or client threads, which are run as secondary processes.
In this case, extensive use of rte_ring objects is made, which are located in shared hugepage memory.

The client_server_mp sample application shows this usage model.
It is described in the “Multi-process Sample Application” chapter in the DPDK Sample Application’s User Guide.

18.2.3. Running Multiple Independent DPDK Applications

In addition to the above scenarios involving multiple DPDK processes working together,
it is possible to run multiple DPDK processes side-by-side,
where those processes are all working independently.
Support for this usage scenario is provided using the --file-prefix parameter to the EAL.

By default, the EAL creates hugepage files on each hugetlbfs filesystem using the rtemap_X filename,
where X is in the range 0 to the maximum number of hugepages -1.
Similarly, it creates shared configuration files, memory mapped in each process, using the /var/run/.rte_config filename,
when run as root (or $HOME/.rte_config when run as a non-root user;
if filesystem and device permissions are set up to allow this).
The rte part of the filenames of each of the above is configurable using the file-prefix parameter.

In addition to specifying the file-prefix parameter,
any DPDK applications that are to be run side-by-side must explicitly limit their memory use.
This is done by passing the -m flag to each process to specify how much hugepage memory, in megabytes,
each process can use (or passing --socket-mem to specify how much hugepage memory on each socket each process can use).

Note

Independent DPDK instances running side-by-side on a single machine cannot share any network ports.
Any network ports being used by one process should be blacklisted in every other process.

18.2.4. Running Multiple Independent Groups of DPDK Applications

In the same way that it is possible to run independent DPDK applications side- by-side on a single system,
this can be trivially extended to multi-process groups of DPDK applications running side-by-side.
In this case, the secondary processes must use the same --file-prefix parameter
as the primary process whose shared memory they are connecting to.

Note

All restrictions and issues with multiple independent DPDK processes running side-by-side
apply in this usage scenario also.

18.3. Multi-process Limitations

There are a number of limitations to what can be done when running DPDK multi-process applications.
Some of these are documented below:

	The multi-process feature requires that the exact same hugepage memory mappings be present in all applications.
The Linux security feature - Address-Space Layout Randomization (ASLR) can interfere with this mapping,
so it may be necessary to disable this feature in order to reliably run multi-process applications.

Warning

Disabling Address-Space Layout Randomization (ASLR) may have security implications,
so it is recommended that it be disabled only when absolutely necessary,
and only when the implications of this change have been understood.

	All DPDK processes running as a single application and using shared memory must have distinct coremask arguments.
It is not possible to have a primary and secondary instance, or two secondary instances,
using any of the same logical cores.
Attempting to do so can cause corruption of memory pool caches, among other issues.

	The delivery of interrupts, such as Ethernet* device link status interrupts, do not work in secondary processes.
All interrupts are triggered inside the primary process only.
Any application needing interrupt notification in multiple processes should provide its own mechanism
to transfer the interrupt information from the primary process to any secondary process that needs the information.

	The use of function pointers between multiple processes running based of different compiled binaries is not supported,
since the location of a given function in one process may be different to its location in a second.
This prevents the librte_hash library from behaving properly as in a multi-threaded instance,
since it uses a pointer to the hash function internally.

To work around this issue, it is recommended that multi-process applications perform the hash calculations by directly calling
the hashing function from the code and then using the rte_hash_add_with_hash()/rte_hash_lookup_with_hash() functions
instead of the functions which do the hashing internally, such as rte_hash_add()/rte_hash_lookup().

	Depending upon the hardware in use, and the number of DPDK processes used,
it may not be possible to have HPET timers available in each DPDK instance.
The minimum number of HPET comparators available to Linux* userspace can be just a single comparator,
which means that only the first, primary DPDK process instance can open and mmap /dev/hpet.
If the number of required DPDK processes exceeds that of the number of available HPET comparators,
the TSC (which is the default timer in this release) must be used as a time source across all processes instead of the HPET.

 Created using Sphinx 1.3.5.

 19. Kernel NIC Interface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

19. Kernel NIC Interface

The DPDK Kernel NIC Interface (KNI) allows userspace applications access to the Linux* control plane.

The benefits of using the DPDK KNI are:

	Faster than existing Linux TUN/TAP interfaces
(by eliminating system calls and copy_to_user()/copy_from_user() operations.

	Allows management of DPDK ports using standard Linux net tools such as ethtool, ifconfig and tcpdump.

	Allows an interface with the kernel network stack.

The components of an application using the DPDK Kernel NIC Interface are shown in Fig. 19.1.

[image: ../_images/kernel_nic_intf.png]
Fig. 19.1 Components of a DPDK KNI Application

19.1. The DPDK KNI Kernel Module

The KNI kernel loadable module provides support for two types of devices:

	A Miscellaneous device (/dev/kni) that:
	Creates net devices (via ioctl calls).

	Maintains a kernel thread context shared by all KNI instances
(simulating the RX side of the net driver).

	For single kernel thread mode, maintains a kernel thread context shared by all KNI instances
(simulating the RX side of the net driver).

	For multiple kernel thread mode, maintains a kernel thread context for each KNI instance
(simulating the RX side of the new driver).

	Net device:
	Net functionality provided by implementing several operations such as netdev_ops,
header_ops, ethtool_ops that are defined by struct net_device,
including support for DPDK mbufs and FIFOs.

	The interface name is provided from userspace.

	The MAC address can be the real NIC MAC address or random.

19.2. KNI Creation and Deletion

The KNI interfaces are created by a DPDK application dynamically.
The interface name and FIFO details are provided by the application through an ioctl call
using the rte_kni_device_info struct which contains:

	The interface name.

	Physical addresses of the corresponding memzones for the relevant FIFOs.

	Mbuf mempool details, both physical and virtual (to calculate the offset for mbuf pointers).

	PCI information.

	Core affinity.

Refer to rte_kni_common.h in the DPDK source code for more details.

The physical addresses will be re-mapped into the kernel address space and stored in separate KNI contexts.

The KNI interfaces can be deleted by a DPDK application dynamically after being created.
Furthermore, all those KNI interfaces not deleted will be deleted on the release operation
of the miscellaneous device (when the DPDK application is closed).

19.3. DPDK mbuf Flow

To minimize the amount of DPDK code running in kernel space, the mbuf mempool is managed in userspace only.
The kernel module will be aware of mbufs,
but all mbuf allocation and free operations will be handled by the DPDK application only.

Fig. 19.2 shows a typical scenario with packets sent in both directions.

[image: ../_images/pkt_flow_kni.png]
Fig. 19.2 Packet Flow via mbufs in the DPDK KNI

19.4. Use Case: Ingress

On the DPDK RX side, the mbuf is allocated by the PMD in the RX thread context.
This thread will enqueue the mbuf in the rx_q FIFO.
The KNI thread will poll all KNI active devices for the rx_q.
If an mbuf is dequeued, it will be converted to a sk_buff and sent to the net stack via netif_rx().
The dequeued mbuf must be freed, so the same pointer is sent back in the free_q FIFO.

The RX thread, in the same main loop, polls this FIFO and frees the mbuf after dequeuing it.

19.5. Use Case: Egress

For packet egress the DPDK application must first enqueue several mbufs to create an mbuf cache on the kernel side.

The packet is received from the Linux net stack, by calling the kni_net_tx() callback.
The mbuf is dequeued (without waiting due the cache) and filled with data from sk_buff.
The sk_buff is then freed and the mbuf sent in the tx_q FIFO.

The DPDK TX thread dequeues the mbuf and sends it to the PMD (via rte_eth_tx_burst()).
It then puts the mbuf back in the cache.

19.6. Ethtool

Ethtool is a Linux-specific tool with corresponding support in the kernel
where each net device must register its own callbacks for the supported operations.
The current implementation uses the igb/ixgbe modified Linux drivers for ethtool support.
Ethtool is not supported in i40e and VMs (VF or EM devices).

19.7. Link state and MTU change

Link state and MTU change are network interface specific operations usually done via ifconfig.
The request is initiated from the kernel side (in the context of the ifconfig process)
and handled by the user space DPDK application.
The application polls the request, calls the application handler and returns the response back into the kernel space.

The application handlers can be registered upon interface creation or explicitly registered/unregistered in runtime.
This provides flexibility in multiprocess scenarios
(where the KNI is created in the primary process but the callbacks are handled in the secondary one).
The constraint is that a single process can register and handle the requests.

19.8. KNI Working as a Kernel vHost Backend

vHost is a kernel module usually working as the backend of virtio (a para- virtualization driver framework)
to accelerate the traffic from the guest to the host.
The DPDK Kernel NIC interface provides the ability to hookup vHost traffic into userspace DPDK application.
Together with the DPDK PMD virtio, it significantly improves the throughput between guest and host.
In the scenario where DPDK is running as fast path in the host, kni-vhost is an efficient path for the traffic.

19.8.1. Overview

vHost-net has three kinds of real backend implementations. They are: 1) tap, 2) macvtap and 3) RAW socket.
The main idea behind kni-vhost is making the KNI work as a RAW socket, attaching it as the backend instance of vHost-net.
It is using the existing interface with vHost-net, so it does not require any kernel hacking,
and is fully-compatible with the kernel vhost module.
As vHost is still taking responsibility for communicating with the front-end virtio,
it naturally supports both legacy virtio -net and the DPDK PMD virtio.
There is a little penalty that comes from the non-polling mode of vhost.
However, it scales throughput well when using KNI in multi-thread mode.

[image: ../_images/vhost_net_arch.png]
Fig. 19.3 vHost-net Architecture Overview

19.8.2. Packet Flow

There is only a minor difference from the original KNI traffic flows.
On transmit side, vhost kthread calls the RAW socket’s ops sendmsg and it puts the packets into the KNI transmit FIFO.
On the receive side, the kni kthread gets packets from the KNI receive FIFO, puts them into the queue of the raw socket,
and wakes up the task in vhost kthread to begin receiving.
All the packet copying, irrespective of whether it is on the transmit or receive side,
happens in the context of vhost kthread.
Every vhost-net device is exposed to a front end virtio device in the guest.

[image: ../_images/kni_traffic_flow.png]
Fig. 19.4 KNI Traffic Flow

19.8.3. Sample Usage

Before starting to use KNI as the backend of vhost, the CONFIG_RTE_KNI_VHOST configuration option must be turned on.
Otherwise, by default, KNI will not enable its backend support capability.

Of course, as a prerequisite, the vhost/vhost-net kernel CONFIG should be chosen before compiling the kernel.

	Compile the DPDK and insert uio_pci_generic/igb_uio kernel modules as normal.

	Insert the KNI kernel module:

insmod ./rte_kni.ko

If using KNI in multi-thread mode, use the following command line:

insmod ./rte_kni.ko kthread_mode=multiple

	Running the KNI sample application:

examples/kni/build/app/kni -c -0xf0 -n 4 -- -p 0x3 -P --config="(0,4,6),(1,5,7)"

This command runs the kni sample application with two physical ports.
Each port pins two forwarding cores (ingress/egress) in user space.

	Assign a raw socket to vhost-net during qemu-kvm startup.
The DPDK does not provide a script to do this since it is easy for the user to customize.
The following shows the key steps to launch qemu-kvm with kni-vhost:

#!/bin/bash
echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
qemu-kvm \
-name vm1 -cpu host -m 2048 -smp 1 -hda /opt/vm-fc16.img \
-netdev tap,fd=$fd,id=hostnet1,vhost=on \
-device virti-net-pci,netdev=hostnet1,id=net1,bus=pci.0,addr=0x4

It is simple to enable raw socket using sysfs sock_en and get raw socket fd using sock_fd under the KNI device node.

Then, using the qemu-kvm command with the -netdev option to assign such raw socket fd as vhost’s backend.

Note

The key word tap must exist as qemu-kvm now only supports vhost with a tap backend, so here we cheat qemu-kvm by an existing fd.

19.8.4. Compatibility Configure Option

There is a CONFIG_RTE_KNI_VHOST_VNET_HDR_EN configuration option in DPDK configuration file.
By default, it set to n, which means do not turn on the virtio net header,
which is used to support additional features (such as, csum offload, vlan offload, generic-segmentation and so on),
since the kni-vhost does not yet support those features.

Even if the option is turned on, kni-vhost will ignore the information that the header contains.
When working with legacy virtio on the guest, it is better to turn off unsupported offload features using ethtool -K.
Otherwise, there may be problems such as an incorrect L4 checksum error.

 Created using Sphinx 1.3.5.

 20. Thread Safety of DPDK Functions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

20. Thread Safety of DPDK Functions

The DPDK is comprised of several libraries.
Some of the functions in these libraries can be safely called from multiple threads simultaneously, while others cannot.
This section allows the developer to take these issues into account when building their own application.

The run-time environment of the DPDK is typically a single thread per logical core.
In some cases, it is not only multi-threaded, but multi-process.
Typically, it is best to avoid sharing data structures between threads and/or processes where possible.
Where this is not possible, then the execution blocks must access the data in a thread- safe manner.
Mechanisms such as atomics or locking can be used that will allow execution blocks to operate serially.
However, this can have an effect on the performance of the application.

20.1. Fast-Path APIs

Applications operating in the data plane are performance sensitive but
certain functions within those libraries may not be safe to call from multiple threads simultaneously.
The hash, LPM and mempool libraries and RX/TX in the PMD are examples of this.

The hash and LPM libraries are, by design, thread unsafe in order to maintain performance.
However, if required the developer can add layers on top of these libraries to provide thread safety.
Locking is not needed in all situations, and in both the hash and LPM libraries,
lookups of values can be performed in parallel in multiple threads.
Adding, removing or modifying values, however,
cannot be done in multiple threads without using locking when a single hash or LPM table is accessed.
Another alternative to locking would be to create multiple instances of these tables allowing each thread its own copy.

The RX and TX of the PMD are the most critical aspects of a DPDK application
and it is recommended that no locking be used as it will impact performance.
Note, however, that these functions can safely be used from multiple threads
when each thread is performing I/O on a different NIC queue.
If multiple threads are to use the same hardware queue on the same NIC port,
then locking, or some other form of mutual exclusion, is necessary.

The ring library is based on a lockless ring-buffer algorithm that maintains its original design for thread safety.
Moreover, it provides high performance for either multi- or single-consumer/producer enqueue/dequeue operations.
The mempool library is based on the DPDK lockless ring library and therefore is also multi-thread safe.

20.2. Performance Insensitive API

Outside of the performance sensitive areas described in Section 25.1,
the DPDK provides a thread-safe API for most other libraries.
For example, malloc and memzone functions are safe for use in multi-threaded and multi-process environments.

The setup and configuration of the PMD is not performance sensitive, but is not thread safe either.
It is possible that the multiple read/writes during PMD setup and configuration could be corrupted in a multi-thread environment.
Since this is not performance sensitive, the developer can choose to add their own layer to provide thread-safe setup and configuration.
It is expected that, in most applications, the initial configuration of the network ports would be done by a single thread at startup.

20.3. Library Initialization

It is recommended that DPDK libraries are initialized in the main thread at application startup
rather than subsequently in the forwarding threads.
However, the DPDK performs checks to ensure that libraries are only initialized once.
If initialization is attempted more than once, an error is returned.

In the multi-process case, the configuration information of shared memory will only be initialized by the master process.
Thereafter, both master and secondary processes can allocate/release any objects of memory that finally rely on rte_malloc or memzones.

20.4. Interrupt Thread

The DPDK works almost entirely in Linux user space in polling mode.
For certain infrequent operations, such as receiving a PMD link status change notification,
callbacks may be called in an additional thread outside the main DPDK processing threads.
These function callbacks should avoid manipulating DPDK objects that are also managed by the normal DPDK threads,
and if they need to do so,
it is up to the application to provide the appropriate locking or mutual exclusion restrictions around those objects.

 Created using Sphinx 1.3.5.

 21. Quality of Service (QoS) Framework

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

21. Quality of Service (QoS) Framework

This chapter describes the DPDK Quality of Service (QoS) framework.

21.1. Packet Pipeline with QoS Support

An example of a complex packet processing pipeline with QoS support is shown in the following figure.

[image: ../_images/pkt_proc_pipeline_qos.png]
Fig. 21.1 Complex Packet Processing Pipeline with QoS Support

This pipeline can be built using reusable DPDK software libraries.
The main blocks implementing QoS in this pipeline are: the policer, the dropper and the scheduler.
A functional description of each block is provided in the following table.

Table 21.1 Packet Processing Pipeline Implementing QoS

 22. Power Management

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

22. Power Management

The DPDK Power Management feature allows users space applications to save power
by dynamically adjusting CPU frequency or entering into different C-States.

	Adjusting the CPU frequency dynamically according to the utilization of RX queue.

	Entering into different deeper C-States according to the adaptive algorithms to speculate
brief periods of time suspending the application if no packets are received.

The interfaces for adjusting the operating CPU frequency are in the power management library.
C-State control is implemented in applications according to the different use cases.

22.1. CPU Frequency Scaling

The Linux kernel provides a cpufreq module for CPU frequency scaling for each lcore.
For example, for cpuX, /sys/devices/system/cpu/cpuX/cpufreq/ has the following sys files for frequency scaling:

	affected_cpus

	bios_limit

	cpuinfo_cur_freq

	cpuinfo_max_freq

	cpuinfo_min_freq

	cpuinfo_transition_latency

	related_cpus

	scaling_available_frequencies

	scaling_available_governors

	scaling_cur_freq

	scaling_driver

	scaling_governor

	scaling_max_freq

	scaling_min_freq

	scaling_setspeed

In the DPDK, scaling_governor is configured in user space.
Then, a user space application can prompt the kernel by writing scaling_setspeed to adjust the CPU frequency
according to the strategies defined by the user space application.

22.2. Core-load Throttling through C-States

Core state can be altered by speculative sleeps whenever the specified lcore has nothing to do.
In the DPDK, if no packet is received after polling,
speculative sleeps can be triggered according the strategies defined by the user space application.

22.3. API Overview of the Power Library

The main methods exported by power library are for CPU frequency scaling and include the following:

	Freq up: Prompt the kernel to scale up the frequency of the specific lcore.

	Freq down: Prompt the kernel to scale down the frequency of the specific lcore.

	Freq max: Prompt the kernel to scale up the frequency of the specific lcore to the maximum.

	Freq min: Prompt the kernel to scale down the frequency of the specific lcore to the minimum.

	Get available freqs: Read the available frequencies of the specific lcore from the sys file.

	Freq get: Get the current frequency of the specific lcore.

	Freq set: Prompt the kernel to set the frequency for the specific lcore.

22.4. User Cases

The power management mechanism is used to save power when performing L3 forwarding.

22.5. References

	l3fwd-power: The sample application in DPDK that performs L3 forwarding with power management.

	The “L3 Forwarding with Power Management Sample Application” chapter in the DPDK Sample Application’s User Guide.

 Created using Sphinx 1.3.5.

 23. Packet Classification and Access Control

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

23. Packet Classification and Access Control

The DPDK provides an Access Control library that gives the ability
to classify an input packet based on a set of classification rules.

The ACL library is used to perform an N-tuple search over a set of rules with multiple categories
and find the best match (highest priority) for each category.
The library API provides the following basic operations:

	Create a new Access Control (AC) context.

	Add rules into the context.

	For all rules in the context, build the runtime structures necessary to perform packet classification.

	Perform input packet classifications.

	Destroy an AC context and its runtime structures and free the associated memory.

23.1. Overview

23.1.1. Rule definition

The current implementation allows the user for each AC context to specify its own rule (set of fields)
over which packet classification will be performed.
Though there are few restrictions on the rule fields layout:

	First field in the rule definition has to be one byte long.

	All subsequent fields has to be grouped into sets of 4 consecutive bytes.

This is done mainly for performance reasons - search function processes the first input byte as part of the flow setup and then the inner loop of the search function is unrolled to process four input bytes at a time.

To define each field inside an AC rule, the following structure is used:

struct rte_acl_field_def {
 uint8_t type; /*< type - ACL_FIELD_TYPE. */
 uint8_t size; /*< size of field 1,2,4, or 8. */
 uint8_t field_index; /*< index of field inside the rule. */
 uint8_t input_index; /*< 0-N input index. */
 uint32_t offset; /*< offset to start of field. */
};

	type
The field type is one of three choices:
	_MASK - for fields such as IP addresses that have a value and a mask defining the number of relevant bits.

	_RANGE - for fields such as ports that have a lower and upper value for the field.

	_BITMASK - for fields such as protocol identifiers that have a value and a bit mask.

	size
The size parameter defines the length of the field in bytes. Allowable values are 1, 2, 4, or 8 bytes.
Note that due to the grouping of input bytes, 1 or 2 byte fields must be defined as consecutive fields
that make up 4 consecutive input bytes.
Also, it is best to define fields of 8 or more bytes as 4 byte fields so that
the build processes can eliminate fields that are all wild.

	field_index
A zero-based value that represents the position of the field inside the rule; 0 to N-1 for N fields.

	input_index
As mentioned above, all input fields, except the very first one, must be in groups of 4 consecutive bytes.
The input index specifies to which input group that field belongs to.

	offset
The offset field defines the offset for the field.
This is the offset from the beginning of the buffer parameter for the search.

For example, to define classification for the following IPv4 5-tuple structure:

struct ipv4_5tuple {
 uint8_t proto;
 uint32_t ip_src;
 uint32_t ip_dst;
 uint16_t port_src;
 uint16_t port_dst;
};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[5] = {
 /* first input field - always one byte long. */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct ipv4_5tuple, proto),
 },

 /* next input field (IPv4 source address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct ipv4_5tuple, ip_src),
 },

 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct ipv4_5tuple, ip_dst),
 },

 /*
 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
 * They share the same input index.
 */
 {
 .type = RTE_ACL_FIELD_TYPE_RANGE,
 .size = sizeof (uint16_t),
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct ipv4_5tuple, port_src),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_RANGE,
 .size = sizeof (uint16_t),
 .field_index = 4,
 .input_index = 3,
 .offset = offsetof (struct ipv4_5tuple, port_dst),
 },
};

A typical example of such an IPv4 5-tuple rule is a follows:

source addr/mask destination addr/mask source ports dest ports protocol/mask
192.168.1.0/24 192.168.2.31/32 0:65535 1234:1234 17/0xff

Any IPv4 packets with protocol ID 17 (UDP), source address 192.168.1.[0-255], destination address 192.168.2.31,
source port [0-65535] and destination port 1234 matches the above rule.

To define classification for the IPv6 2-tuple: <protocol, IPv6 source address> over the following IPv6 header structure:

struct struct ipv6_hdr {
 uint32_t vtc_flow; /* IP version, traffic class & flow label. */
 uint16_t payload_len; /* IP packet length - includes sizeof(ip_header). */
 uint8_t proto; /* Protocol, next header. */
 uint8_t hop_limits; /* Hop limits. */
 uint8_t src_addr[16]; /* IP address of source host. */
 uint8_t dst_addr[16]; /* IP address of destination host(s). */
} __attribute__((__packed__));

The following array of field definitions can be used:

struct struct rte_acl_field_def ipv6_2tuple_defs[5] = {
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct ipv6_hdr, proto),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct ipv6_hdr, src_addr[0]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct ipv6_hdr, src_addr[4]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct ipv6_hdr, src_addr[8]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 4,
 .input_index = 4,
 .offset = offsetof (struct ipv6_hdr, src_addr[12]),
 },
};

A typical example of such an IPv6 2-tuple rule is a follows:

source addr/mask protocol/mask
2001:db8:1234:0000:0000:0000:0000:0000/48 6/0xff

Any IPv6 packets with protocol ID 6 (TCP), and source address inside the range
[2001:db8:1234:0000:0000:0000:0000:0000 - 2001:db8:1234:ffff:ffff:ffff:ffff:ffff] matches the above rule.

In the following example the last element of the search key is 8-bit long.
So it is a case where the 4 consecutive bytes of an input field are not fully occupied.
The structure for the classification is:

struct acl_key {
 uint8_t ip_proto;
 uint32_t ip_src;
 uint32_t ip_dst;
 uint8_t tos; /*< This is partially using a 32-bit input element */
};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[4] = {
 /* first input field - always one byte long. */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct acl_key, ip_proto),
 },

 /* next input field (IPv4 source address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct acl_key, ip_src),
 },

 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct acl_key, ip_dst),
 },

 /*
 * Next element of search key (Type of Service) is indeed 1 byte long.
 * Anyway we need to allocate all the 4 consecutive bytes for it.
 */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint32_t), /* All the 4 consecutive bytes are allocated */
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct acl_key, tos),
 },
};

A typical example of such an IPv4 4-tuple rule is as follows:

source addr/mask destination addr/mask tos/mask protocol/mask
192.168.1.0/24 192.168.2.31/32 1/0xff 6/0xff

Any IPv4 packets with protocol ID 6 (TCP), source address 192.168.1.[0-255], destination address 192.168.2.31,
ToS 1 matches the above rule.

When creating a set of rules, for each rule, additional information must be supplied also:

	priority: A weight to measure the priority of the rules (higher is better).
If the input tuple matches more than one rule, then the rule with the higher priority is returned.
Note that if the input tuple matches more than one rule and these rules have equal priority,
it is undefined which rule is returned as a match.
It is recommended to assign a unique priority for each rule.

	category_mask: Each rule uses a bit mask value to select the relevant category(s) for the rule.
When a lookup is performed, the result for each category is returned.
This effectively provides a “parallel lookup” by enabling a single search to return multiple results if,
for example, there were four different sets of ACL rules, one for access control, one for routing, and so on.
Each set could be assigned its own category and by combining them into a single database,
one lookup returns a result for each of the four sets.

	userdata: A user-defined field that could be any value except zero.
For each category, a successful match returns the userdata field of the highest priority matched rule.

Note

When adding new rules into an ACL context, all fields must be in host byte order (LSB).
When the search is performed for an input tuple, all fields in that tuple must be in network byte order (MSB).

23.1.2. RT memory size limit

Build phase (rte_acl_build()) creates for a given set of rules internal structure for further run-time traversal.
With current implementation it is a set of multi-bit tries (with stride == 8).
Depending on the rules set, that could consume significant amount of memory.
In attempt to conserve some space ACL build process tries to split the given
rule-set into several non-intersecting subsets and construct a separate trie
for each of them.
Depending on the rule-set, it might reduce RT memory requirements but might
increase classification time.
There is a possibility at build-time to specify maximum memory limit for internal RT structures for given AC context.
It could be done via max_size field of the rte_acl_config structure.
Setting it to the value greater than zero, instructs rte_acl_build() to:

	attempt to minimize number of tries in the RT table, but

	make sure that size of RT table wouldn’t exceed given value.

Setting it to zero makes rte_acl_build() to use the default behavior:
try to minimize size of the RT structures, but doesn’t expose any hard limit on it.

That gives the user the ability to decisions about performance/space trade-off.
For example:

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/*
 * assuming that acx points to already created and
 * populated with rules AC context and cfg filled properly.
 */

 /* try to build AC context, with RT structures less then 8MB. */
 cfg.max_size = 0x800000;
 ret = rte_acl_build(acx, &cfg);

 /*
 * RT structures can't fit into 8MB for given context.
 * Try to build without exposing any hard limit.
 */
 if (ret == -ERANGE) {
 cfg.max_size = 0;
 ret = rte_acl_build(acx, &cfg);
 }

23.1.3. Classification methods

After rte_acl_build() over given AC context has finished successfully, it can be used to perform classification - search for a rule with highest priority over the input data.
There are several implementations of classify algorithm:

	RTE_ACL_CLASSIFY_SCALAR: generic implementation, doesn’t require any specific HW support.

	RTE_ACL_CLASSIFY_SSE: vector implementation, can process up to 8 flows in parallel. Requires SSE 4.1 support.

	RTE_ACL_CLASSIFY_AVX2: vector implementation, can process up to 16 flows in parallel. Requires AVX2 support.

It is purely a runtime decision which method to choose, there is no build-time difference.
All implementations operates over the same internal RT structures and use similar principles. The main difference is that vector implementations can manually exploit IA SIMD instructions and process several input data flows in parallel.
At startup ACL library determines the highest available classify method for the given platform and sets it as default one. Though the user has an ability to override the default classifier function for a given ACL context or perform particular search using non-default classify method. In that case it is user responsibility to make sure that given platform supports selected classify implementation.

23.2. Application Programming Interface (API) Usage

Note

For more details about the Access Control API, please refer to the DPDK API Reference.

The following example demonstrates IPv4, 5-tuple classification for rules defined above
with multiple categories in more detail.

23.2.1. Classify with Multiple Categories

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/* define a structure for the rule with up to 5 fields. */

RTE_ACL_RULE_DEF(acl_ipv4_rule, RTE_DIM(ipv4_defs));

/* AC context creation parameters. */

struct rte_acl_param prm = {
 .name = "ACL_example",
 .socket_id = SOCKET_ID_ANY,
 .rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ipv4_defs)),

 /* number of fields per rule. */

 .max_rule_num = 8, /* maximum number of rules in the AC context. */
};

struct acl_ipv4_rule acl_rules[] = {

 /* matches all packets traveling to 192.168.0.0/16, applies for categories: 0,1 */
 {
 .data = {.userdata = 1, .category_mask = 3, .priority = 1},

 /* destination IPv4 */
 .field[2] = {.value.u32 = IPv4(192,168,0,0),. mask_range.u32 = 16,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

 /* matches all packets traveling to 192.168.1.0/24, applies for categories: 0 */
 {
 .data = {.userdata = 2, .category_mask = 1, .priority = 2},

 /* destination IPv4 */
 .field[2] = {.value.u32 = IPv4(192,168,1,0),. mask_range.u32 = 24,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

 /* matches all packets traveling from 10.1.1.1, applies for categories: 1 */
 {
 .data = {.userdata = 3, .category_mask = 2, .priority = 3},

 /* source IPv4 */
 .field[1] = {.value.u32 = IPv4(10,1,1,1),. mask_range.u32 = 32,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

};

/* create an empty AC context */

if ((acx = rte_acl_create(&prm)) == NULL) {

 /* handle context create failure. */

}

/* add rules to the context */

ret = rte_acl_add_rules(acx, acl_rules, RTE_DIM(acl_rules));
if (ret != 0) {
 /* handle error at adding ACL rules. */
}

/* prepare AC build config. */

cfg.num_categories = 2;
cfg.num_fields = RTE_DIM(ipv4_defs);

memcpy(cfg.defs, ipv4_defs, sizeof (ipv4_defs));

/* build the runtime structures for added rules, with 2 categories. */

ret = rte_acl_build(acx, &cfg);
if (ret != 0) {
 /* handle error at build runtime structures for ACL context. */
}

For a tuple with source IP address: 10.1.1.1 and destination IP address: 192.168.1.15,
once the following lines are executed:

uint32_t results[4]; /* make classify for 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

then the results[] array contains:

results[4] = {2, 3, 0, 0};

	For category 0, both rules 1 and 2 match, but rule 2 has higher priority,
therefore results[0] contains the userdata for rule 2.

	For category 1, both rules 1 and 3 match, but rule 3 has higher priority,
therefore results[1] contains the userdata for rule 3.

	For categories 2 and 3, there are no matches, so results[2] and results[3] contain zero,
which indicates that no matches were found for those categories.

For a tuple with source IP address: 192.168.1.1 and destination IP address: 192.168.2.11,
once the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {1, 1, 0, 0};

	For categories 0 and 1, only rule 1 matches.

	For categories 2 and 3, there are no matches.

For a tuple with source IP address: 10.1.1.1 and destination IP address: 201.212.111.12,
once the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {0, 3, 0, 0};

	For category 1, only rule 3 matches.

	For categories 0, 2 and 3, there are no matches.

 Created using Sphinx 1.3.5.

 24. Packet Framework

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

24. Packet Framework

24.1. Design Objectives

The main design objectives for the DPDK Packet Framework are:

	Provide standard methodology to build complex packet processing pipelines.
Provide reusable and extensible templates for the commonly used pipeline functional blocks;

	Provide capability to switch between pure software and hardware-accelerated implementations for the same pipeline functional block;

	Provide the best trade-off between flexibility and performance.
Hardcoded pipelines usually provide the best performance, but are not flexible,
while developing flexible frameworks is never a problem, but performance is usually low;

	Provide a framework that is logically similar to Open Flow.

24.2. Overview

Packet processing applications are frequently structured as pipelines of multiple stages,
with the logic of each stage glued around a lookup table.
For each incoming packet, the table defines the set of actions to be applied to the packet,
as well as the next stage to send the packet to.

The DPDK Packet Framework minimizes the development effort required to build packet processing pipelines
by defining a standard methodology for pipeline development,
as well as providing libraries of reusable templates for the commonly used pipeline blocks.

The pipeline is constructed by connecting the set of input ports with the set of output ports
through the set of tables in a tree-like topology.
As result of lookup operation for the current packet in the current table,
one of the table entries (on lookup hit) or the default table entry (on lookup miss)
provides the set of actions to be applied on the current packet,
as well as the next hop for the packet, which can be either another table, an output port or packet drop.

An example of packet processing pipeline is presented in Fig. 24.1:

[image: ../_images/figure32.png]
Fig. 24.1 Example of Packet Processing Pipeline where Input Ports 0 and 1
are Connected with Output Ports 0, 1 and 2 through Tables 0 and 1

24.3. Port Library Design

24.3.1. Port Types

Table 24.1 is a non-exhaustive list of ports that can be implemented with the Packet Framework.

Table 24.1 Port Types

 25. Vhost Library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

25. Vhost Library

The vhost library implements a user space vhost driver. It supports both vhost-cuse
(cuse: user space character device) and vhost-user(user space socket server).
It also creates, manages and destroys vhost devices for corresponding virtio
devices in the guest. Vhost supported vSwitch could register callbacks to this
library, which will be called when a vhost device is activated or deactivated
by guest virtual machine.

25.1. Vhost API Overview

	Vhost driver registration

rte_vhost_driver_register registers the vhost driver into the system.
For vhost-cuse, character device file will be created under the /dev directory.
Character device name is specified as the parameter.
For vhost-user, a Unix domain socket server will be created with the parameter as
the local socket path.

	Vhost session start

rte_vhost_driver_session_start starts the vhost session loop.
Vhost session is an infinite blocking loop.
Put the session in a dedicate DPDK thread.

	Callback register

Vhost supported vSwitch could call rte_vhost_driver_callback_register to
register two callbacks, new_destory and destroy_device.
When virtio device is activated or deactivated by guest virtual machine,
the callback will be called, then vSwitch could put the device onto data
core or remove the device from data core by setting or unsetting
VIRTIO_DEV_RUNNING on the device flags.

	Read/write packets from/to guest virtual machine

rte_vhost_enqueue_burst transmit host packets to guest.
rte_vhost_dequeue_burst receives packets from guest.

	Feature enable/disable

Now one negotiate-able feature in vhost is merge-able.
vSwitch could enable/disable this feature for performance consideration.

25.2. Vhost Implementation

25.2.1. Vhost cuse implementation

When vSwitch registers the vhost driver, it will register a cuse device driver
into the system and creates a character device file. This cuse driver will
receive vhost open/release/IOCTL message from QEMU simulator.

When the open call is received, vhost driver will create a vhost device for the
virtio device in the guest.

When VHOST_SET_MEM_TABLE IOCTL is received, vhost searches the memory region
to find the starting user space virtual address that maps the memory of guest
virtual machine. Through this virtual address and the QEMU pid, vhost could
find the file QEMU uses to map the guest memory. Vhost maps this file into its
address space, in this way vhost could fully access the guest physical memory,
which means vhost could access the shared virtio ring and the guest physical
address specified in the entry of the ring.

The guest virtual machine tells the vhost whether the virtio device is ready
for processing or is de-activated through VHOST_NET_SET_BACKEND message.
The registered callback from vSwitch will be called.

When the release call is released, vhost will destroy the device.

25.2.2. Vhost user implementation

When vSwitch registers a vhost driver, it will create a Unix domain socket server
into the system. This server will listen for a connection and process the vhost message from
QEMU simulator.

When there is a new socket connection, it means a new virtio device has been created in
the guest virtual machine, and the vhost driver will create a vhost device for this virtio device.

For messages with a file descriptor, the file descriptor could be directly used in the vhost
process as it is already installed by Unix domain socket.

	VHOST_SET_MEM_TABLE

	VHOST_SET_VRING_KICK

	VHOST_SET_VRING_CALL

	VHOST_SET_LOG_FD

	VHOST_SET_VRING_ERR

For VHOST_SET_MEM_TABLE message, QEMU will send us information for each memory region and its
file descriptor in the ancillary data of the message. The fd is used to map that region.

There is no VHOST_NET_SET_BACKEND message as in vhost cuse to signal us whether virtio device
is ready or should be stopped.
VHOST_SET_VRING_KICK is used as the signal to put the vhost device onto data plane.
VHOST_GET_VRING_BASE is used as the signal to remove vhost device from data plane.

When the socket connection is closed, vhost will destroy the device.

25.3. Vhost supported vSwitch reference

For more vhost details and how to support vhost in vSwitch, please refer to vhost example in the
DPDK Sample Applications Guide.

 Created using Sphinx 1.3.5.

 26. Port Hotplug Framework

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

26. Port Hotplug Framework

The Port Hotplug Framework provides DPDK applications with the ability to
attach and detach ports at runtime. Because the framework depends on PMD
implementation, the ports that PMDs cannot handle are out of scope of this
framework. Furthermore, after detaching a port from a DPDK application, the
framework doesn’t provide a way for removing the devices from the system.
For the ports backed by a physical NIC, the kernel will need to support PCI
Hotplug feature.

26.1. Overview

The basic requirements of the Port Hotplug Framework are:

	DPDK applications that use the Port Hotplug Framework must manage their
own ports.

The Port Hotplug Framework is implemented to allow DPDK applications to
manage ports. For example, when DPDK applications call the port attach
function, the attached port number is returned. DPDK applications can
also detach the port by port number.

	Kernel support is needed for attaching or detaching physical device
ports.

To attach new physical device ports, the device will be recognized by
userspace driver I/O framework in kernel at first. Then DPDK
applications can call the Port Hotplug functions to attach the ports.
For detaching, steps are vice versa.

	Before detaching, they must be stopped and closed.

DPDK applications must call “rte_eth_dev_stop()” and
“rte_eth_dev_close()” APIs before detaching ports. These functions will
start finalization sequence of the PMDs.

	The framework doesn’t affect legacy DPDK applications behavior.

If the Port Hotplug functions aren’t called, all legacy DPDK apps can
still work without modifications.

26.2. Port Hotplug API overview

	Attaching a port

“rte_eth_dev_attach()” API attaches a port to DPDK application, and
returns the attached port number. Before calling the API, the device
should be recognized by an userspace driver I/O framework. The API
receives a pci address like “0000:01:00.0” or a virtual device name
like “eth_pcap0,iface=eth0”. In the case of virtual device name, the
format is the same as the general “–vdev” option of DPDK.

	Detaching a port

“rte_eth_dev_detach()” API detaches a port from DPDK application, and
returns a pci address of the detached device or a virtual device name
of the device.

26.3. Reference

“testpmd” supports the Port Hotplug Framework.

26.4. Limitations

	The Port Hotplug APIs are not thread safe.

	The framework can only be enabled with Linux. BSD is not supported.

	To detach a port, the port should be backed by a device that igb_uio
manages. VFIO is not supported.

	Not all PMDs support detaching feature.
To know whether a PMD can support detaching, search for the
“RTE_PCI_DRV_DETACHABLE” flag in PMD implementation. If the flag is
defined in the PMD, detaching is supported.

 Created using Sphinx 1.3.5.

 27. Source Organization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

 Part 2: Development Environment

27. Source Organization

This section describes the organization of sources in the DPDK framework.

27.1. Makefiles and Config

Note

In the following descriptions,
RTE_SDK is the environment variable that points to the base directory into which the tarball was extracted.
See
Useful Variables Provided by the Build System
for descriptions of other variables.

Makefiles that are provided by the DPDK libraries and applications are located in $(RTE_SDK)/mk.

Config templates are located in $(RTE_SDK)/config. The templates describe the options that are enabled for each target.
The config file also contains items that can be enabled and disabled for many of the DPDK libraries,
including debug options.
The user should look at the config file and become familiar with these options.
The config file is also used to create a header file, which will be located in the new build directory.

27.2. Libraries

Libraries are located in subdirectories of $(RTE_SDK)/lib.
By convention a library refers to any code that provides an API to an application.
Typically, it generates an archive file (.a), but a kernel module would also go in the same directory.

The lib directory contains:

lib
+-- librte_cmdline # Command line interface helper
+-- librte_distributor # Packet distributor
+-- librte_eal # Environment abstraction layer
+-- librte_ether # Generic interface to poll mode driver
+-- librte_hash # Hash library
+-- librte_ip_frag # IP fragmentation library
+-- librte_ivshmem # QEMU IVSHMEM library
+-- librte_kni # Kernel NIC interface
+-- librte_kvargs # Argument parsing library
+-- librte_lpm # Longest prefix match library
+-- librte_mbuf # Packet and control mbuf manipulation
+-- librte_mempool # Memory pool manager (fixed sized objects)
+-- librte_meter # QoS metering library
+-- librte_net # Various IP-related headers
+-- librte_power # Power management library
+-- librte_ring # Software rings (act as lockless FIFOs)
+-- librte_sched # QoS scheduler and dropper library
+-- librte_timer # Timer library

27.3. Drivers

Drivers are special libraries which provide poll-mode driver implementations for
devices: either hardware devices or pseudo/virtual devices. They are contained
in the drivers subdirectory, classified by type, and each compiles to a
library with the format librte_pmd_X.a where X is the driver name.

The drivers directory has a net subdirectory which contains:

drivers/net
+-- af_packet # Poll mode driver based on Linux af_packet
+-- bonding # Bonding poll mode driver
+-- cxgbe # Chelsio Terminator 10GbE/40GbE poll mode driver
+-- e1000 # 1GbE poll mode drivers (igb and em)
+-- enic # Cisco VIC Ethernet NIC Poll-mode Driver
+-- fm10k # Host interface PMD driver for FM10000 Series
+-- i40e # 40GbE poll mode driver
+-- ixgbe # 10GbE poll mode driver
+-- mlx4 # Mellanox ConnectX-3 poll mode driver
+-- null # NULL poll mode driver for testing
+-- pcap # PCAP poll mode driver
+-- ring # Ring poll mode driver
+-- szedata2 # SZEDATA2 poll mode driver
+-- virtio # Virtio poll mode driver
+-- vmxnet3 # VMXNET3 poll mode driver
+-- xenvirt # Xen virtio poll mode driver

Note

Several of the driver/net directories contain a base
sub-directory. The base directory generally contains code the shouldn’t
be modified directly by the user. Any enhancements should be done via the
X_osdep.c and/or X_osdep.h files in that directory. Refer to the
local README in the base directories for driver specific instructions.

27.4. Applications

Applications are source files that contain a main() function.
They are located in the $(RTE_SDK)/app and $(RTE_SDK)/examples directories.

The app directory contains sample applications that are used to test DPDK (such as autotests)
or the Poll Mode Drivers (test-pmd):

app
+-- chkincs # Test program to check include dependencies
+-- cmdline_test # Test the commandline library
+-- test # Autotests to validate DPDK features
+-- test-acl # Test the ACL library
+-- test-pipeline # Test the IP Pipeline framework
+-- test-pmd # Test and benchmark poll mode drivers

The examples directory contains sample applications that show how libraries can be used:

examples
+-- cmdline # Example of using the cmdline library
+-- dpdk_qat # Sample integration with Intel QuickAssist
+-- exception_path # Sending packets to and from Linux TAP device
+-- helloworld # Basic Hello World example
+-- ip_reassembly # Example showing IP reassembly
+-- ip_fragmentation # Example showing IPv4 fragmentation
+-- ipv4_multicast # Example showing IPv4 multicast
+-- kni # Kernel NIC Interface (KNI) example
+-- l2fwd # L2 forwarding with and without SR-IOV
+-- l3fwd # L3 forwarding example
+-- l3fwd-power # L3 forwarding example with power management
+-- l3fwd-vf # L3 forwarding example with SR-IOV
+-- link_status_interrupt # Link status change interrupt example
+-- load_balancer # Load balancing across multiple cores/sockets
+-- multi_process # Example apps using multiple DPDK processes
+-- qos_meter # QoS metering example
+-- qos_sched # QoS scheduler and dropper example
+-- timer # Example of using librte_timer library
+-- vmdq_dcb # Example of VMDQ and DCB receiving
+-- vmdq # Example of VMDQ receiving
+-- vhost # Example of userspace vhost and switch

Note

The actual examples directory may contain additional sample applications to those shown above.
Check the latest DPDK source files for details.

 Created using Sphinx 1.3.5.

 28. Development Kit Build System

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

28. Development Kit Build System

The DPDK requires a build system for compilation activities and so on.
This section describes the constraints and the mechanisms used in the DPDK framework.

There are two use-cases for the framework:

	Compilation of the DPDK libraries and sample applications;
the framework generates specific binary libraries,
include files and sample applications

	Compilation of an external application or library, using an installed binary DPDK

28.1. Building the Development Kit Binary

The following provides details on how to build the DPDK binary.

28.1.1. Build Directory Concept

After installation, a build directory structure is created.
Each build directory contains include files, libraries, and applications:

~/DPDK$ ls
app MAINTAINERS
config Makefile
COPYRIGHT mk
doc scripts
examples lib
tools x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-icc i686-native-linuxapp-gcc
i686-native-linuxapp-icc

...
~/DEV/DPDK$ ls i686-native-linuxapp-gcc

app build hostapp include kmod lib Makefile

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/app/
cmdline_test dump_cfg test testpmd
cmdline_test.map dump_cfg.map test.map
 testpmd.map

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/lib/

libethdev.a librte_hash.a librte_mbuf.a librte_pmd_ixgbe.a

librte_cmdline.a librte_lpm.a librte_mempool.a librte_ring.a

librte_eal.a librte_pmd_e1000.a librte_timer.a

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/include/
arch rte_cpuflags.h rte_memcpy.h
cmdline_cirbuf.h rte_cycles.h rte_memory.h
cmdline.h rte_debug.h rte_mempool.h
cmdline_parse_etheraddr.h rte_eal.h rte_memzone.h
cmdline_parse.h rte_errno.h rte_pci_dev_ids.h
cmdline_parse_ipaddr.h rte_ethdev.h rte_pci.h
cmdline_parse_num.h rte_ether.h rte_per_lcore.h
cmdline_parse_portlist.h rte_fbk_hash.h rte_prefetch.h
cmdline_parse_string.h rte_hash_crc.h rte_random.h
cmdline_rdline.h rte_hash.h rte_ring.h
cmdline_socket.h rte_interrupts.h rte_rwlock.h
cmdline_vt100.h rte_ip.h rte_sctp.h
exec-env rte_jhash.h rte_spinlock.h
rte_alarm.h rte_launch.h rte_string_fns.h
rte_atomic.h rte_lcore.h rte_tailq.h
rte_branch_prediction.h rte_log.h rte_tcp.h
rte_byteorder.h rte_lpm.h rte_timer.h
rte_common.h rte_malloc.h rte_udp.h
rte_config.h rte_mbuf.h

A build directory is specific to a configuration that includes architecture + execution environment + toolchain.
It is possible to have several build directories sharing the same sources with different configurations.

For instance, to create a new build directory called my_sdk_build_dir using the default configuration template config/defconfig_x86_64-linuxapp,
we use:

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc O=my_sdk_build_dir

This creates a new my_sdk_build_dir directory. After that, we can compile by doing:

cd my_sdk_build_dir
make

which is equivalent to:

make O=my_sdk_build_dir

The content of the my_sdk_build_dir is then:

-- .config # used configuration

-- Makefile # wrapper that calls head Makefile
 # with $PWD as build directory

 -- build #All temporary files used during build
 +--app # process, including . o, .d, and .cmd files.
 | +-- test # For libraries, we have the .a file.
 | +-- test.o # For applications, we have the elf file.
 | `-- ...
 +-- lib
 +-- librte_eal
 | `-- ...
 +-- librte_mempool
 | +-- mempool-file1.o
 | +-- .mempool-file1.o.cmd
 | +-- .mempool-file1.o.d
 | +-- mempool-file2.o
 | +-- .mempool-file2.o.cmd
 | +-- .mempool-file2.o.d
 | `-- mempool.a
 `-- ...

-- include # All include files installed by libraries
 +-- librte_mempool.h # and applications are located in this
 +-- rte_eal.h # directory. The installed files can depend
 +-- rte_spinlock.h # on configuration if needed (environment,
 +-- rte_atomic.h # architecture, ..)
 `-- *.h ...

-- lib # all compiled libraries are copied in this
 +-- librte_eal.a # directory
 +-- librte_mempool.a
 `-- *.a ...

-- app # All compiled applications are installed
+ --test # here. It includes the binary in elf format

Refer to
Development Kit Root Makefile Help
for details about make commands that can be used from the root of DPDK.

28.2. Building External Applications

Since DPDK is in essence a development kit, the first objective of end users will be to create an application using this SDK.
To compile an application, the user must set the RTE_SDK and RTE_TARGET environment variables.

export RTE_SDK=/opt/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc
cd /path/to/my_app

For a new application, the user must create their own Makefile that includes some .mk files, such as
${RTE_SDK}/mk/rte.vars.mk, and ${RTE_SDK}/mk/ rte.app.mk.
This is described in
Building Your Own Application.

Depending on the chosen target (architecture, machine, executive environment, toolchain) defined in the Makefile or as an environment variable,
the applications and libraries will compile using the appropriate .h files and will link with the appropriate .a files.
These files are located in ${RTE_SDK}/arch-machine-execenv-toolchain, which is referenced internally by ${RTE_BIN_SDK}.

To compile their application, the user just has to call make.
The compilation result will be located in /path/to/my_app/build directory.

Sample applications are provided in the examples directory.

28.3. Makefile Description

28.3.1. General Rules For DPDK Makefiles

In the DPDK, Makefiles always follow the same scheme:

	Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

	Define specific variables for RTE build system.

	Include a specific $(RTE_SDK)/mk/rte.XYZ.mk, where XYZ can be app, lib, extapp, extlib, obj, gnuconfigure,
and so on, depending on what kind of object you want to build.
See Makefile Types below.

	Include user-defined rules and variables.

The following is a very simple example of an external application Makefile:

include $(RTE_SDK)/mk/rte.vars.mk

binary name
APP = helloworld

all source are stored in SRCS-y
SRCS-y := main.c

CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)

include $(RTE_SDK)/mk/rte.extapp.mk

28.3.2. Makefile Types

Depending on the .mk file which is included at the end of the user Makefile, the Makefile will have a different role.
Note that it is not possible to build a library and an application in the same Makefile.
For that, the user must create two separate Makefiles, possibly in two different directories.

In any case, the rte.vars.mk file must be included in the user Makefile as soon as possible.

28.3.2.1. Application

These Makefiles generate a binary application.

	rte.app.mk: Application in the development kit framework

	rte.extapp.mk: External application

	rte.hostapp.mk: Host application in the development kit framework

28.3.2.2. Library

Generate a .a library.

	rte.lib.mk: Library in the development kit framework

	rte.extlib.mk: external library

	rte.hostlib.mk: host library in the development kit framework

28.3.2.3. Install

	rte.install.mk: Does not build anything, it is only used to create links or copy files to the installation directory.
This is useful for including files in the development kit framework.

28.3.2.4. Kernel Module

	rte.module.mk: Build a kernel module in the development kit framework.

28.3.2.5. Objects

	rte.obj.mk: Object aggregation (merge several .o in one) in the development kit framework.

	rte.extobj.mk: Object aggregation (merge several .o in one) outside the development kit framework.

28.3.2.6. Misc

	rte.doc.mk: Documentation in the development kit framework

	rte.gnuconfigure.mk: Build an application that is configure-based.

	rte.subdir.mk: Build several directories in the development kit framework.

28.3.3. Useful Variables Provided by the Build System

	RTE_SDK: The absolute path to the DPDK sources.
When compiling the development kit, this variable is automatically set by the framework.
It has to be defined by the user as an environment variable if compiling an external application.

	RTE_SRCDIR: The path to the root of the sources. When compiling the development kit, RTE_SRCDIR = RTE_SDK.
When compiling an external application, the variable points to the root of external application sources.

	RTE_OUTPUT: The path to which output files are written.
Typically, it is $(RTE_SRCDIR)/build, but it can be overridden by the O= option in the make command line.

	RTE_TARGET: A string identifying the target for which we are building.
The format is arch-machine-execenv-toolchain.
When compiling the SDK, the target is deduced by the build system from the configuration (.config).
When building an external application, it must be specified by the user in the Makefile or as an environment variable.

	RTE_SDK_BIN: References $(RTE_SDK)/$(RTE_TARGET).

	RTE_ARCH: Defines the architecture (i686, x86_64).
It is the same value as CONFIG_RTE_ARCH but without the double-quotes around the string.

	RTE_MACHINE: Defines the machine.
It is the same value as CONFIG_RTE_MACHINE but without the double-quotes around the string.

	RTE_TOOLCHAIN: Defines the toolchain (gcc , icc).
It is the same value as CONFIG_RTE_TOOLCHAIN but without the double-quotes around the string.

	RTE_EXEC_ENV: Defines the executive environment (linuxapp).
It is the same value as CONFIG_RTE_EXEC_ENV but without the double-quotes around the string.

	RTE_KERNELDIR: This variable contains the absolute path to the kernel sources that will be used to compile the kernel modules.
The kernel headers must be the same as the ones that will be used on the target machine (the machine that will run the application).
By default, the variable is set to /lib/modules/$(shell uname -r)/build,
which is correct when the target machine is also the build machine.

	RTE_DEVEL_BUILD: Stricter options (stop on warning). It defaults to y in a git tree.

28.3.4. Variables that Can be Set/Overridden in a Makefile Only

	VPATH: The path list that the build system will search for sources. By default, RTE_SRCDIR will be included in VPATH.

	CFLAGS: Flags to use for C compilation. The user should use += to append data in this variable.

	LDFLAGS: Flags to use for linking. The user should use += to append data in this variable.

	ASFLAGS: Flags to use for assembly. The user should use += to append data in this variable.

	CPPFLAGS: Flags to use to give flags to C preprocessor (only useful when assembling .S files).
The user should use += to append data in this variable.

	LDLIBS: In an application, the list of libraries to link with (for example, -L /path/to/libfoo -lfoo).
The user should use += to append data in this variable.

	SRC-y: A list of source files (.c, .S, or .o if the source is a binary) in case of application, library or object Makefiles.
The sources must be available from VPATH.

	INSTALL-y-$(INSTPATH): A list of files to be installed in $(INSTPATH).
The files must be available from VPATH and will be copied in $(RTE_OUTPUT)/$(INSTPATH). Can be used in almost any RTE Makefile.

	SYMLINK-y-$(INSTPATH): A list of files to be installed in $(INSTPATH).
The files must be available from VPATH and will be linked (symbolically) in $(RTE_OUTPUT)/$(INSTPATH).
This variable can be used in almost any DPDK Makefile.

	PREBUILD: A list of prerequisite actions to be taken before building. The user should use += to append data in this variable.

	POSTBUILD: A list of actions to be taken after the main build. The user should use += to append data in this variable.

	PREINSTALL: A list of prerequisite actions to be taken before installing. The user should use += to append data in this variable.

	POSTINSTALL: A list of actions to be taken after installing. The user should use += to append data in this variable.

	PRECLEAN: A list of prerequisite actions to be taken before cleaning. The user should use += to append data in this variable.

	POSTCLEAN: A list of actions to be taken after cleaning. The user should use += to append data in this variable.

	DEPDIR-y: Only used in the development kit framework to specify if the build of the current directory depends on build of another one.
This is needed to support parallel builds correctly.

28.3.5. Variables that can be Set/Overridden by the User on the Command Line Only

Some variables can be used to configure the build system behavior. They are documented in
Development Kit Root Makefile Help and
External Application/Library Makefile Help

	WERROR_CFLAGS: By default, this is set to a specific value that depends on the compiler.
Users are encouraged to use this variable as follows:

CFLAGS += $(WERROR_CFLAGS)

This avoids the use of different cases depending on the compiler (icc or gcc).
Also, this variable can be overridden from the command line, which allows bypassing of the flags for testing purposes.

28.3.6. Variables that Can be Set/Overridden by the User in a Makefile or Command Line

	CFLAGS_my_file.o: Specific flags to add for C compilation of my_file.c.

	LDFLAGS_my_app: Specific flags to add when linking my_app.

	EXTRA_CFLAGS: The content of this variable is appended after CFLAGS when compiling.

	EXTRA_LDFLAGS: The content of this variable is appended after LDFLAGS when linking.

	EXTRA_LDLIBS: The content of this variable is appended after LDLIBS when linking.

	EXTRA_ASFLAGS: The content of this variable is appended after ASFLAGS when assembling.

	EXTRA_CPPFLAGS: The content of this variable is appended after CPPFLAGS when using a C preprocessor on assembly files.

 Created using Sphinx 1.3.5.

 29. Development Kit Root Makefile Help

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

29. Development Kit Root Makefile Help

The DPDK provides a root level Makefile with targets for configuration, building, cleaning, testing, installation and others.
These targets are explained in the following sections.

29.1. Configuration Targets

The configuration target requires the name of the target, which is specified using T=mytarget and it is mandatory.
The list of available targets are in $(RTE_SDK)/config (remove the defconfig _ prefix).

Configuration targets also support the specification of the name of the output directory, using O=mybuilddir.
This is an optional parameter, the default output directory is build.

	Config

This will create a build directory, and generates a configuration from a template.
A Makefile is also created in the new build directory.

Example:

make config O=mybuild T=x86_64-native-linuxapp-gcc

29.2. Build Targets

Build targets support the optional specification of the name of the output directory, using O=mybuilddir.
The default output directory is build.

	all, build or just make

Build the DPDK in the output directory previously created by a make config.

Example:

make O=mybuild

	clean

Clean all objects created using make build.

Example:

make clean O=mybuild

	%_sub

Build a subdirectory only, without managing dependencies on other directories.

Example:

make lib/librte_eal_sub O=mybuild

	%_clean

Clean a subdirectory only.

Example:

make lib/librte_eal_clean O=mybuild

29.3. Install Targets

	Install

The list of available targets are in $(RTE_SDK)/config (remove the defconfig_ prefix).

The GNU standards variables may be used:
http://gnu.org/prep/standards/html_node/Directory-Variables.html and
http://gnu.org/prep/standards/html_node/DESTDIR.html

Example:

make install DESTDIR=myinstall prefix=/usr

29.4. Test Targets

	test

Launch automatic tests for a build directory specified using O=mybuilddir.
It is optional, the default output directory is build.

Example:

make test O=mybuild

29.5. Documentation Targets

	doc

Generate the documentation (API and guides).

	doc-api-html

Generate the Doxygen API documentation in html.

	doc-guides-html

Generate the guides documentation in html.

	doc-guides-pdf

Generate the guides documentation in pdf.

29.6. Deps Targets

	depdirs

This target is implicitly called by make config.
Typically, there is no need for a user to call it,
except if DEPDIRS-y variables have been updated in Makefiles.
It will generate the file $(RTE_OUTPUT)/.depdirs.

Example:

make depdirs O=mybuild

	depgraph

This command generates a dot graph of dependencies.
It can be displayed to debug circular dependency issues, or just to understand the dependencies.

Example:

make depgraph O=mybuild > /tmp/graph.dot && dotty /tmp/ graph.dot

29.7. Misc Targets

	help

Show a quick help.

29.8. Other Useful Command-line Variables

The following variables can be specified on the command line:

	V=

Enable verbose build (show full compilation command line, and some intermediate commands).

	D=

Enable dependency debugging. This provides some useful information about why a target is built or not.

	EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_LDLIBS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

	CROSS=

Specify a cross toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

29.9. Make in a Build Directory

All targets described above are called from the SDK root $(RTE_SDK).
It is possible to run the same Makefile targets inside the build directory.
For instance, the following command:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linuxapp-gcc
make O=mybuild

is equivalent to:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linuxapp-gcc
cd mybuild

no need to specify O= now
make

29.10. Compiling for Debug

To compile the DPDK and sample applications with debugging information included and the optimization level set to 0,
the EXTRA_CFLAGS environment variable should be set before compiling as follows:

export EXTRA_CFLAGS='-O0 -g'

 Created using Sphinx 1.3.5.

 30. Extending the DPDK

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

30. Extending the DPDK

This chapter describes how a developer can extend the DPDK to provide a new library,
a new target, or support a new target.

30.1. Example: Adding a New Library libfoo

To add a new library to the DPDK, proceed as follows:

	Add a new configuration option:

for f in config/*; do \
 echo CONFIG_RTE_LIBFOO=y >> $f; done

	Create a new directory with sources:

mkdir ${RTE_SDK}/lib/libfoo
touch ${RTE_SDK}/lib/libfoo/foo.c
touch ${RTE_SDK}/lib/libfoo/foo.h

	Add a foo() function in libfoo.

Definition is in foo.c:

void foo(void)
{
}

Declaration is in foo.h:

extern void foo(void);

	Update lib/Makefile:

vi ${RTE_SDK}/lib/Makefile
add:
DIRS-$(CONFIG_RTE_LIBFOO) += libfoo

	Create a new Makefile for this library, for example, derived from mempool Makefile:

cp ${RTE_SDK}/lib/librte_mempool/Makefile ${RTE_SDK}/lib/libfoo/

vi ${RTE_SDK}/lib/libfoo/Makefile
replace:
librte_mempool -> libfoo
rte_mempool -> foo

	Update mk/DPDK.app.mk, and add -lfoo in LDLIBS variable when the option is enabled.
This will automatically add this flag when linking a DPDK application.

	Build the DPDK with the new library (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make

	Check that the library is installed:

ls build/lib
ls build/include

30.1.1. Example: Using libfoo in the Test Application

The test application is used to validate all functionality of the DPDK.
Once you have added a library, a new test case should be added in the test application.

	A new test_foo.c file should be added, that includes foo.h and calls the foo() function from test_foo().
When the test passes, the test_foo() function should return 0.

	Makefile, test.h and commands.c must be updated also, to handle the new test case.

	Test report generation: autotest.py is a script that is used to generate the test report that is available in the
${RTE_SDK}/doc/rst/test_report/autotests directory. This script must be updated also.
If libfoo is in a new test family, the links in ${RTE_SDK}/doc/rst/test_report/test_report.rst must be updated.

	Build the DPDK with the updated test application (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make

 Created using Sphinx 1.3.5.

 31. Building Your Own Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

31. Building Your Own Application

31.1. Compiling a Sample Application in the Development Kit Directory

When compiling a sample application (for example, hello world), the following variables must be exported:
RTE_SDK and RTE_TARGET.

~/DPDK$ cd examples/helloworld/
~/DPDK/examples/helloworld$ export RTE_SDK=/home/user/DPDK
~/DPDK/examples/helloworld$ export RTE_TARGET=x86_64-native-linuxapp-gcc
~/DPDK/examples/helloworld$ make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

The binary is generated in the build directory by default:

~/DPDK/examples/helloworld$ ls build/app
helloworld helloworld.map

31.2. Build Your Own Application Outside the Development Kit

The sample application (Hello World) can be duplicated in a new directory as a starting point for your development:

~$ cp -r DPDK/examples/helloworld my_rte_app
~$ cd my_rte_app/
~/my_rte_app$ export RTE_SDK=/home/user/DPDK
~/my_rte_app$ export RTE_TARGET=x86_64-native-linuxapp-gcc
~/my_rte_app$ make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

31.3. Customizing Makefiles

31.3.1. Application Makefile

The default makefile provided with the Hello World sample application is a good starting point. It includes:

	$(RTE_SDK)/mk/rte.vars.mk at the beginning

	$(RTE_SDK)/mk/rte.extapp.mk at the end

The user must define several variables:

	APP: Contains the name of the application.

	SRCS-y: List of source files (*.c, *.S).

31.3.2. Library Makefile

It is also possible to build a library in the same way:

	Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

	Include $(RTE_SDK)/mk/rte.extlib.mk at the end.

The only difference is that APP should be replaced by LIB, which contains the name of the library. For example, libfoo.a.

31.3.3. Customize Makefile Actions

Some variables can be defined to customize Makefile actions. The most common are listed below. Refer to
Makefile Description section in
Development Kit Build System

chapter for details.

	VPATH: The path list where the build system will search for sources. By default,
RTE_SRCDIR will be included in VPATH.

	CFLAGS_my_file.o: The specific flags to add for C compilation of my_file.c.

	CFLAGS: The flags to use for C compilation.

	LDFLAGS: The flags to use for linking.

	CPPFLAGS: The flags to use to provide flags to the C preprocessor (only useful when assembling .S files)

	LDLIBS: A list of libraries to link with (for example, -L /path/to/libfoo - lfoo)

 Created using Sphinx 1.3.5.

 32. External Application/Library Makefile help

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

32. External Application/Library Makefile help

External applications or libraries should include specific Makefiles from RTE_SDK, located in mk directory.
These Makefiles are:

	${RTE_SDK}/mk/rte.extapp.mk: Build an application

	${RTE_SDK}/mk/rte.extlib.mk: Build a static library

	${RTE_SDK}/mk/rte.extobj.mk: Build objects (.o)

32.1. Prerequisites

The following variables must be defined:

	${RTE_SDK}: Points to the root directory of the DPDK.

	${RTE_TARGET}: Reference the target to be used for compilation (for example, x86_64-native-linuxapp-gcc).

32.2. Build Targets

Build targets support the specification of the name of the output directory, using O=mybuilddir.
This is optional; the default output directory is build.

	all, “nothing” (meaning just make)

Build the application or the library in the specified output directory.

Example:

make O=mybuild

	clean

Clean all objects created using make build.

Example:

make clean O=mybuild

32.3. Help Targets

	help

Show this help.

32.4. Other Useful Command-line Variables

The following variables can be specified at the command line:

	S=

Specify the directory in which the sources are located. By default, it is the current directory.

	M=

Specify the Makefile to call once the output directory is created. By default, it uses $(S)/Makefile.

	V=

Enable verbose build (show full compilation command line and some intermediate commands).

	D=

Enable dependency debugging. This provides some useful information about why a target must be rebuilt or not.

	EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

	CROSS=

Specify a cross-toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

32.5. Make from Another Directory

It is possible to run the Makefile from another directory, by specifying the output and the source dir. For example:

export RTE_SDK=/path/to/DPDK
export RTE_TARGET=x86_64-native-linuxapp-icc
make -f /path/to/my_app/Makefile S=/path/to/my_app O=/path/to/build_dir

 Created using Sphinx 1.3.5.

 33. Performance Optimization Guidelines

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

 Part 3: Performance Optimization

33. Performance Optimization Guidelines

33.1. Introduction

The following sections describe optimizations used in the DPDK and optimizations that should be considered for a new applications.

They also highlight the performance-impacting coding techniques that should,
and should not be, used when developing an application using the DPDK.

And finally, they give an introduction to application profiling using a Performance Analyzer from Intel to optimize the software.

 Created using Sphinx 1.3.5.

 34. Writing Efficient Code

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

34. Writing Efficient Code

This chapter provides some tips for developing efficient code using the DPDK.
For additional and more general information,
please refer to the Intel® 64 and IA-32 Architectures Optimization Reference Manual
which is a valuable reference to writing efficient code.

34.1. Memory

This section describes some key memory considerations when developing applications in the DPDK environment.

34.1.1. Memory Copy: Do not Use libc in the Data Plane

Many libc functions are available in the DPDK, via the Linux* application environment.
This can ease the porting of applications and the development of the configuration plane.
However, many of these functions are not designed for performance.
Functions such as memcpy() or strcpy() should not be used in the data plane.
To copy small structures, the preference is for a simpler technique that can be optimized by the compiler.
Refer to the VTune™ Performance Analyzer Essentials publication from Intel Press for recommendations.

For specific functions that are called often,
it is also a good idea to provide a self-made optimized function, which should be declared as static inline.

The DPDK API provides an optimized rte_memcpy() function.

34.1.2. Memory Allocation

Other functions of libc, such as malloc(), provide a flexible way to allocate and free memory.
In some cases, using dynamic allocation is necessary,
but it is really not advised to use malloc-like functions in the data plane because
managing a fragmented heap can be costly and the allocator may not be optimized for parallel allocation.

If you really need dynamic allocation in the data plane, it is better to use a memory pool of fixed-size objects.
This API is provided by librte_mempool.
This data structure provides several services that increase performance, such as memory alignment of objects,
lockless access to objects, NUMA awareness, bulk get/put and per-lcore cache.
The rte_malloc () function uses a similar concept to mempools.

34.1.3. Concurrent Access to the Same Memory Area

Read-Write (RW) access operations by several lcores to the same memory area can generate a lot of data cache misses,
which are very costly.
It is often possible to use per-lcore variables, for example, in the case of statistics.
There are at least two solutions for this:

	Use RTE_PER_LCORE variables. Note that in this case, data on lcore X is not available to lcore Y.

	Use a table of structures (one per lcore). In this case, each structure must be cache-aligned.

Read-mostly variables can be shared among lcores without performance losses if there are no RW variables in the same cache line.

34.1.4. NUMA

On a NUMA system, it is preferable to access local memory since remote memory access is slower.
In the DPDK, the memzone, ring, rte_malloc and mempool APIs provide a way to create a pool on a specific socket.

Sometimes, it can be a good idea to duplicate data to optimize speed.
For read-mostly variables that are often accessed,
it should not be a problem to keep them in one socket only, since data will be present in cache.

34.1.5. Distribution Across Memory Channels

Modern memory controllers have several memory channels that can load or store data in parallel.
Depending on the memory controller and its configuration,
the number of channels and the way the memory is distributed across the channels varies.
Each channel has a bandwidth limit,
meaning that if all memory access operations are done on the first channel only, there is a potential bottleneck.

By default, the Mempool Library spreads the addresses of objects among memory channels.

34.2. Communication Between lcores

To provide a message-based communication between lcores,
it is advised to use the DPDK ring API, which provides a lockless ring implementation.

The ring supports bulk and burst access,
meaning that it is possible to read several elements from the ring with only one costly atomic operation
(see Ring Library).
Performance is greatly improved when using bulk access operations.

The code algorithm that dequeues messages may be something similar to the following:

 #define MAX_BULK 32

 while (1) {
 /* Process as many elements as can be dequeued. */
 count = rte_ring_dequeue_burst(ring, obj_table, MAX_BULK);
 if (unlikely(count == 0))
 continue;

 my_process_bulk(obj_table, count);
}

34.3. PMD Driver

The DPDK Poll Mode Driver (PMD) is also able to work in bulk/burst mode,
allowing the factorization of some code for each call in the send or receive function.

Avoid partial writes.
When PCI devices write to system memory through DMA,
it costs less if the write operation is on a full cache line as opposed to part of it.
In the PMD code, actions have been taken to avoid partial writes as much as possible.

34.3.1. Lower Packet Latency

Traditionally, there is a trade-off between throughput and latency.
An application can be tuned to achieve a high throughput,
but the end-to-end latency of an average packet will typically increase as a result.
Similarly, the application can be tuned to have, on average,
a low end-to-end latency, at the cost of lower throughput.

In order to achieve higher throughput,
the DPDK attempts to aggregate the cost of processing each packet individually by processing packets in bursts.

Using the testpmd application as an example,
the burst size can be set on the command line to a value of 16 (also the default value).
This allows the application to request 16 packets at a time from the PMD.
The testpmd application then immediately attempts to transmit all the packets that were received,
in this case, all 16 packets.

The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the network port.
This behavior is desirable when tuning for high throughput because
the cost of tail pointer updates to both the RX and TX queues can be spread across 16 packets,
effectively hiding the relatively slow MMIO cost of writing to the PCIe* device.
However, this is not very desirable when tuning for low latency because
the first packet that was received must also wait for another 15 packets to be received.
It cannot be transmitted until the other 15 packets have also been processed because
the NIC will not know to transmit the packets until the TX tail pointer has been updated,
which is not done until all 16 packets have been processed for transmission.

To consistently achieve low latency, even under heavy system load,
the application developer should avoid processing packets in bunches.
The testpmd application can be configured from the command line to use a burst value of 1.
This will allow a single packet to be processed at a time, providing lower latency,
but with the added cost of lower throughput.

34.4. Locks and Atomic Operations

Atomic operations imply a lock prefix before the instruction,
causing the processor’s LOCK# signal to be asserted during execution of the following instruction.
This has a big impact on performance in a multicore environment.

Performance can be improved by avoiding lock mechanisms in the data plane.
It can often be replaced by other solutions like per-lcore variables.
Also, some locking techniques are more efficient than others.
For instance, the Read-Copy-Update (RCU) algorithm can frequently replace simple rwlocks.

34.5. Coding Considerations

34.5.1. Inline Functions

Small functions can be declared as static inline in the header file.
This avoids the cost of a call instruction (and the associated context saving).
However, this technique is not always efficient; it depends on many factors including the compiler.

34.5.2. Branch Prediction

The Intel® C/C++ Compiler (icc)/gcc built-in helper functions likely() and unlikely()
allow the developer to indicate if a code branch is likely to be taken or not.
For instance:

if (likely(x > 1))
 do_stuff();

34.6. Setting the Target CPU Type

The DPDK supports CPU microarchitecture-specific optimizations by means of CONFIG_RTE_MACHINE option
in the DPDK configuration file.
The degree of optimization depends on the compiler’s ability to optimize for a specific microarchitecture,
therefore it is preferable to use the latest compiler versions whenever possible.

If the compiler version does not support the specific feature set (for example, the Intel® AVX instruction set),
the build process gracefully degrades to whatever latest feature set is supported by the compiler.

Since the build and runtime targets may not be the same,
the resulting binary also contains a platform check that runs before the
main() function and checks if the current machine is suitable for running the binary.

Along with compiler optimizations,
a set of preprocessor defines are automatically added to the build process (regardless of the compiler version).
These defines correspond to the instruction sets that the target CPU should be able to support.
For example, a binary compiled for any SSE4.2-capable processor will have RTE_MACHINE_CPUFLAG_SSE4_2 defined,
thus enabling compile-time code path selection for different platforms.

 Created using Sphinx 1.3.5.

 35. Profile Your Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

35. Profile Your Application

Intel processors provide performance counters to monitor events.
Some tools provided by Intel can be used to profile and benchmark an application.
See the VTune Performance Analyzer Essentials publication from Intel Press for more information.

For a DPDK application, this can be done in a Linux* application environment only.

The main situations that should be monitored through event counters are:

	Cache misses

	Branch mis-predicts

	DTLB misses

	Long latency instructions and exceptions

Refer to the
Intel Performance Analysis Guide [http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf]
for details about application profiling.

 Created using Sphinx 1.3.5.

 36. Glossary

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Programmer’s Guide

36. Glossary

	ACL

	Access Control List

	API

	Application Programming Interface

	ASLR

	Linux* kernel Address-Space Layout Randomization

	BSD

	Berkeley Software Distribution

	Clr

	Clear

	CIDR

	Classless Inter-Domain Routing

	Control Plane

	The control plane is concerned with the routing of packets and with
providing a start or end point.

	Core

	A core may include several lcores or threads if the processor supports
hyperthreading.

	Core Components

	A set of libraries provided by the DPDK, including eal, ring, mempool,
mbuf, timers, and so on.

	CPU

	Central Processing Unit

	CRC

	Cyclic Redundancy Check

	ctrlmbuf

	An mbuf carrying control data.

	Data Plane

	In contrast to the control plane, the data plane in a network architecture
are the layers involved when forwarding packets. These layers must be
highly optimized to achieve good performance.

	DIMM

	Dual In-line Memory Module

	Doxygen

	A documentation generator used in the DPDK to generate the API reference.

	DPDK

	Data Plane Development Kit

	DRAM

	Dynamic Random Access Memory

	EAL

	The Environment Abstraction Layer (EAL) provides a generic interface that
hides the environment specifics from the applications and libraries. The
services expected from the EAL are: development kit loading and launching,
core affinity/ assignment procedures, system memory allocation/description,
PCI bus access, inter-partition communication.

	FIFO

	First In First Out

	FPGA

	Field Programmable Gate Array

	GbE

	Gigabit Ethernet

	HW

	Hardware

	HPET

	High Precision Event Timer; a hardware timer that provides a precise time
reference on x86 platforms.

	ID

	Identifier

	IOCTL

	Input/Output Control

	I/O

	Input/Output

	IP

	Internet Protocol

	IPv4

	Internet Protocol version 4

	IPv6

	Internet Protocol version 6

	lcore

	A logical execution unit of the processor, sometimes called a hardware
thread.

	KNI

	Kernel Network Interface

	L1

	Layer 1

	L2

	Layer 2

	L3

	Layer 3

	L4

	Layer 4

	LAN

	Local Area Network

	LPM

	Longest Prefix Match

	master lcore

	The execution unit that executes the main() function and that launches
other lcores.

	mbuf

	An mbuf is a data structure used internally to carry messages (mainly
network packets). The name is derived from BSD stacks. To understand the
concepts of packet buffers or mbuf, refer to TCP/IP Illustrated, Volume 2:
The Implementation.

	MESI

	Modified Exclusive Shared Invalid (CPU cache coherency protocol)

	MTU

	Maximum Transfer Unit

	NIC

	Network Interface Card

	OOO

	Out Of Order (execution of instructions within the CPU pipeline)

	NUMA

	Non-uniform Memory Access

	PCI

	Peripheral Connect Interface

	PHY

	An abbreviation for the physical layer of the OSI model.

	pktmbuf

	An mbuf carrying a network packet.

	PMD

	Poll Mode Driver

	QoS

	Quality of Service

	RCU

	Read-Copy-Update algorithm, an alternative to simple rwlocks.

	Rd

	Read

	RED

	Random Early Detection

	RSS

	Receive Side Scaling

	RTE

	Run Time Environment. Provides a fast and simple framework for fast packet
processing, in a lightweight environment as a Linux* application and using
Poll Mode Drivers (PMDs) to increase speed.

	Rx

	Reception

	Slave lcore

	Any lcore that is not the master lcore.

	Socket

	A physical CPU, that includes several cores.

	SLA

	Service Level Agreement

	srTCM

	Single Rate Three Color Marking

	SRTD

	Scheduler Round Trip Delay

	SW

	Software

	Target

	In the DPDK, the target is a combination of architecture, machine,
executive environment and toolchain. For example:
i686-native-linuxapp-gcc.

	TCP

	Transmission Control Protocol

	TC

	Traffic Class

	TLB

	Translation Lookaside Buffer

	TLS

	Thread Local Storage

	trTCM

	Two Rate Three Color Marking

	TSC

	Time Stamp Counter

	Tx

	Transmission

	TUN/TAP

	TUN and TAP are virtual network kernel devices.

	VLAN

	Virtual Local Area Network

	Wr

	Write

	WRED

	Weighted Random Early Detection

	WRR

	Weighted Round Robin

 Created using Sphinx 1.3.5.

 Network Interface Controller Drivers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Network Interface Controller Drivers

	1. Overview of Networking Drivers

	2. BNX2X Poll Mode Driver
	2.1. Supported Features

	2.2. Non-supported Features

	2.3. Co-existence considerations

	2.4. Supported QLogic NICs

	2.5. Prerequisites

	2.6. Pre-Installation Configuration
	2.6.1. Config File Options

	2.6.2. Driver Compilation

	2.7. Linux
	2.7.1. Linux Installation

	2.7.2. Sample Application Notes

	2.7.3. SR-IOV: Prerequisites and sample Application Notes

	3. CXGBE Poll Mode Driver
	3.1. Features

	3.2. Limitations

	3.3. Supported Chelsio T5 NICs

	3.4. Prerequisites

	3.5. Pre-Installation Configuration
	3.5.1. Config File Options

	3.5.2. Driver Compilation

	3.6. Linux
	3.6.1. Linux Installation

	3.6.2. Running testpmd

	3.7. FreeBSD
	3.7.1. FreeBSD Installation

	3.7.2. Running testpmd

	3.8. Sample Application Notes
	3.8.1. Enable/Disable Flow Control

	3.8.2. Jumbo Mode

	4. Driver for VM Emulated Devices
	4.1. Validated Hypervisors

	4.2. Recommended Guest Operating System in Virtual Machine

	4.3. Setting Up a KVM Virtual Machine

	4.4. Known Limitations of Emulated Devices

	5. ENA Poll Mode Driver
	5.1. Overview

	5.2. Management Interface

	5.3. Data Path Interface

	5.4. Configuration information

	5.5. Building DPDK

	5.6. Supported ENA adapters

	5.7. Supported Operating Systems

	5.8. Supported features

	5.9. Unsupported features

	5.10. Prerequisites

	5.11. Usage example

	6. ENIC Poll Mode Driver
	6.1. Version Information

	6.2. How to obtain ENIC PMD integrated DPDK

	6.3. Configuration information

	6.4. Limitations

	6.5. How to build the suite?

	6.6. Supported Cisco VIC adapters

	6.7. Supported Operating Systems

	6.8. Supported features

	6.9. Known bugs and Unsupported features in this release

	6.10. Prerequisites

	6.11. Additional Reference

	6.12. Contact Information

	7. FM10K Poll Mode Driver
	7.1. FTAG Based Forwarding of FM10K

	7.2. Vector PMD for FM10K
	7.2.1. RX Constraints

	7.2.2. TX Constraint

	7.3. Limitations
	7.3.1. Switch manager

	7.3.2. CRC striping

	7.3.3. Maximum packet length

	7.3.4. Statistic Polling Frequency

	7.3.5. Interrupt mode

	8. I40E Poll Mode Driver
	8.1. Features

	8.2. Prerequisites

	8.3. Pre-Installation Configuration
	8.3.1. Config File Options

	8.3.2. Driver Compilation

	8.4. Linux
	8.4.1. Running testpmd

	8.4.2. SR-IOV: Prerequisites and sample Application Notes

	8.5. Sample Application Notes
	8.5.1. Vlan filter

	8.5.2. Flow Director

	9. IXGBE Driver
	9.1. Vector PMD for IXGBE
	9.1.1. RX Constraints

	9.1.2. TX Constraint

	9.1.3. Sample Application Notes

	9.2. Malicious Driver Detection not Supported

	9.3. Statistics

	10. I40E/IXGBE/IGB Virtual Function Driver
	10.1. SR-IOV Mode Utilization in a DPDK Environment
	10.1.1. Physical and Virtual Function Infrastructure

	10.1.2. Validated Hypervisors

	10.1.3. Expected Guest Operating System in Virtual Machine

	10.2. Setting Up a KVM Virtual Machine Monitor

	10.3. DPDK SR-IOV PMD PF/VF Driver Usage Model
	10.3.1. Fast Host-based Packet Processing

	10.4. SR-IOV (PF/VF) Approach for Inter-VM Communication

	11. MLX4 poll mode driver library
	11.1. Implementation details

	11.2. Features

	11.3. Limitations

	11.4. Configuration
	11.4.1. Compilation options

	11.4.2. Environment variables

	11.4.3. Run-time configuration

	11.4.4. Kernel module parameters

	11.5. Prerequisites
	11.5.1. Getting Mellanox OFED

	11.6. Usage example

	12. MLX5 poll mode driver
	12.1. Implementation details

	12.2. Features

	12.3. Limitations

	12.4. Configuration
	12.4.1. Compilation options

	12.4.2. Environment variables

	12.4.3. Run-time configuration

	12.5. Prerequisites
	12.5.1. Getting Mellanox OFED

	12.6. Notes for testpmd

	12.7. Usage example

	13. NFP poll mode driver library
	13.1. Dependencies

	13.2. Building the software

	13.3. System configuration

	14. SZEDATA2 poll mode driver library
	14.1. Prerequisites

	14.2. Configuration

	14.3. Using the SZEDATA2 PMD

	14.4. Example of usage

	15. Poll Mode Driver for Emulated Virtio NIC
	15.1. Virtio Implementation in DPDK

	15.2. Features and Limitations of virtio PMD

	15.3. Prerequisites

	15.4. Virtio with kni vhost Back End

	15.5. Virtio with qemu virtio Back End

	16. Poll Mode Driver that wraps vhost library
	16.1. Vhost Implementation in DPDK

	16.2. Features and Limitations of vhost PMD

	16.3. Vhost PMD arguments

	16.4. Vhost PMD event handling

	16.5. Vhost PMD with testpmd application

	17. Poll Mode Driver for Paravirtual VMXNET3 NIC
	17.1. VMXNET3 Implementation in the DPDK

	17.2. Features and Limitations of VMXNET3 PMD

	17.3. Prerequisites

	17.4. VMXNET3 with a Native NIC Connected to a vSwitch

	17.5. VMXNET3 Chaining VMs Connected to a vSwitch

	18. Libpcap and Ring Based Poll Mode Drivers
	18.1. Using the Drivers from the EAL Command Line
	18.1.1. Libpcap-based PMD

	18.1.2. Rings-based PMD

	18.1.3. Using the Poll Mode Driver from an Application

Figures

Fig. 10.8 Virtualization for a Single Port NIC in SR-IOV Mode

Fig. 10.9 Performance Benchmark Setup

Fig. 10.10 Fast Host-based Packet Processing

Fig. 10.11 Inter-VM Communication

Fig. 15.3 Host2VM Communication Example Using kni vhost Back End

Fig. 15.5 Host2VM Communication Example Using qemu vhost Back End

Fig. 17.1 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Fig. 17.2 VMXNET3 with a Native NIC Connected to a vSwitch

Fig. 17.3 VMXNET3 Chaining VMs Connected to a vSwitch

 Created using Sphinx 1.3.5.

 1. Overview of Networking Drivers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

1. Overview of Networking Drivers

The networking drivers may be classified in two categories:

	physical for real devices

	virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for
SR-IOV.
The interface seen in the virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions
of these devices.
The bottom half part of ethdev is implemented by the drivers.
Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties,
portability or even documentation availability.
Most of these differences are summarized below.

Table 1.1 Features availability in networking drivers

 2. BNX2X Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

2. BNX2X Poll Mode Driver

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support
for QLogic 578xx 10/20 Gbps family of adapters as well as their virtual
functions (VF) in SR-IOV context. It is supported on several standard Linux
distros like Red Hat 7.x and SLES12 OS. It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website [http://www.qlogic.com].

2.1. Supported Features

BNX2X PMD has support for:

	Base L2 features

	Unicast/multicast filtering

	Promiscuous mode

	Port hardware statistics

	SR-IOV VF

2.2. Non-supported Features

The features not yet supported include:

	TSS (Transmit Side Scaling)

	RSS (Receive Side Scaling)

	LRO/TSO offload

	Checksum offload

	SR-IOV PF

	Rx TX scatter gather

2.3. Co-existence considerations

	BCM578xx being a CNA can have both NIC and Storage personalities.
However, coexistence with storage protocol drivers (cnic, bnx2fc and
bnx2fi) is not supported on the same adapter. So storage personality
has to be disabled on that adapter when used in DPDK applications.

	For SR-IOV case, bnx2x PMD will be used to bind to SR-IOV VF device and
Linux native kernel driver (bnx2x) will be attached to SR-IOV PF.

2.4. Supported QLogic NICs

	578xx

2.5. Prerequisites

	Requires firmware version 7.2.51.0. It is included in most of the
standard Linux distros. If it is not available visit
QLogic Driver Download Center [http://driverdownloads.qlogic.com]
to get the required firmware.

2.6. Pre-Installation Configuration

2.6.1. Config File Options

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_BNX2X_PMD (default y)

Toggle compilation of bnx2x driver.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG (default n)

Toggle display of generic debugging messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_INIT (default n)

Toggle display of initialization related messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

2.6.2. Driver Compilation

BNX2X PMD for Linux x86_64 gcc target, run the following “make”
command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-gcc install

To compile BNX2X PMD for Linux x86_64 clang target, run the following “make”
command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-clang install

To compile BNX2X PMD for Linux i686 gcc target, run the following “make”
command:

cd <DPDK-source-directory>
make config T=i686-native-linuxapp-gcc install

To compile BNX2X PMD for Linux i686 gcc target, run the following “make”
command:

cd <DPDK-source-directory>
make config T=i686-native-linuxapp-gcc install

To compile BNX2X PMD for FreeBSD x86_64 clang target, run the following “gmake”
command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-clang install

To compile BNX2X PMD for FreeBSD x86_64 gcc target, run the following “gmake”
command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-gcc install -Wl,-rpath=/usr/local/lib/gcc48 CC=gcc48

To compile BNX2X PMD for FreeBSD x86_64 gcc target, run the following “gmake”
command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-gcc install -Wl,-rpath=/usr/local/lib/gcc48 CC=gcc48

2.7. Linux

2.7.1. Linux Installation

2.7.2. Sample Application Notes

This section demonstrates how to launch testpmd with QLogic 578xx
devices managed by librte_pmd_bnx2x in Linux operating system.

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Load igb_uio or vfio-pci driver:

insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

	Bind the QLogic adapters to igb_uio or vfio-pci loaded in the
previous step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:84:00.0 0000:84:00.1

or

Setup VFIO permissions for regular users and then bind to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:84:00.0 0000:84:00.1

	Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,
 usable_bd=1020, total_bd=1024,
 tx_pages=4
PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,
 usable_bd=510, total_bd=512,
 rx_pages=1, cq_pages=8
PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

2.7.3. SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

	Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

	Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

	Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

	Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry
of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:
ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

	PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or
virsh etc. bnx2x PMD should be used to bind the VF devices in the guest VM
using the instructions outlined in the Application notes below.

 Created using Sphinx 1.3.5.

 3. CXGBE Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

3. CXGBE Poll Mode Driver

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support
for Chelsio T5 10/40 Gbps family of adapters. CXGBE PMD has support
for the latest Linux and FreeBSD operating systems.

More information can be found at Chelsio Communications Official Website [http://www.chelsio.com].

3.1. Features

CXGBE PMD has support for:

	Multiple queues for TX and RX

	Receiver Side Steering (RSS)

	VLAN filtering

	Checksum offload

	Promiscuous mode

	All multicast mode

	Port hardware statistics

	Jumbo frames

3.2. Limitations

The Chelsio T5 devices provide two/four ports but expose a single PCI bus
address, thus, librte_pmd_cxgbe registers itself as a
PCI driver that allocates one Ethernet device per detected port.

For this reason, one cannot whitelist/blacklist a single port without
whitelisting/blacklisting the other ports on the same device.

3.3. Supported Chelsio T5 NICs

	1G NICs: T502-BT

	10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

	40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

	Other T5 NICs: T522-CR

3.4. Prerequisites

	Requires firmware version 1.13.32.0 and higher. Visit
Chelsio Download Center [http://service.chelsio.com] to get latest firmware
bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the
Chelsio Unified Wire package should get you the latest firmware. More
information can be obtained from the User Guide that is bundled with the
Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire
package must be manually flashed via cxgbetool available in FreeBSD source
repository.

Instructions on how to manually flash the firmware are given in section
Linux Installation for Linux and section FreeBSD Installation
for FreeBSD.

3.5. Pre-Installation Configuration

3.5.1. Config File Options

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

	CONFIG_RTE_LIBRTE_CXGBE_DEBUG (default n)

Toggle display of generic debugging messages.

	CONFIG_RTE_LIBRTE_CXGBE_DEBUG_REG (default n)

Toggle display of registers related run-time check messages.

	CONFIG_RTE_LIBRTE_CXGBE_DEBUG_MBOX (default n)

Toggle display of firmware mailbox related run-time check messages.

	CONFIG_RTE_LIBRTE_CXGBE_DEBUG_TX (default n)

Toggle display of transmission data path run-time check messages.

	CONFIG_RTE_LIBRTE_CXGBE_DEBUG_RX (default n)

Toggle display of receiving data path run-time check messages.

3.5.2. Driver Compilation

To compile CXGBE PMD for Linux x86_64 gcc target, run the following “make”
command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-gcc install

To compile CXGBE PMD for FreeBSD x86_64 clang target, run the following “gmake”
command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-clang install

3.6. Linux

3.6.1. Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio
Unified Wire package for Linux operating system are as follows:

	Load the kernel module:

modprobe cxgb4

	Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

	Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

	Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

	Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

	Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

	Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.13.32.0, TP 0.1.4.8

3.6.2. Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5
devices managed by librte_pmd_cxgbe in Linux operating system.

	Change to DPDK source directory where the target has been compiled in
section Driver Compilation:

cd <DPDK-source-directory>

	Load the kernel module:

modprobe cxgb4

	Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note

Both the interfaces of a Chelsio T5 2-port adapter are bound to the
same PCI bus address.

	Unload the kernel module:

modprobe -ar cxgb4 csiostor

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

	Load igb_uio or vfio-pci driver:

insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

	Bind the Chelsio T5 adapters to igb_uio or vfio-pci loaded in the previous
step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:02:00.4

or

Setup VFIO permissions for regular users and then bind to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:02:00.4

Note

Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

	Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd. Refer section Enable/Disable Flow Control for more details.

3.7. FreeBSD

3.7.1. FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio
Unified Wire package for FreeBSD operating system are as follows:

	Load the kernel module:

kldload if_cxgbe

	Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

Example output:

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

	Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

	Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

	Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

	Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.13.32.0

3.7.2. Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5
devices managed by librte_pmd_cxgbe in FreeBSD operating system.

	Change to DPDK source directory where the target has been compiled in
section Driver Compilation:

cd <DPDK-source-directory>

	Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-bsdapp-clang/kmod/contigmem.ko /boot/kernel/

	Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and
allocate 2 x 1G blocks of contiguous memory to be used for DPDK later on.
This is to avoid issues with potential memory fragmentation during later
system up time, which may result in failure of allocating the contiguous
memory required for the contigmem kernel module.

	Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

	Repeat step 1 to ensure that you are in the DPDK source directory.

	Load the cxgbe kernel module:

kldload if_cxgbe

	Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note

Both the interfaces of a Chelsio T5 2-port adapter are bound to the
same PCI bus address.

	Unload the kernel module:

kldunload if_cxgbe

	Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in
the next step.

Note

Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

	Load nic_uio kernel driver:

kldload ./x86_64-native-bsdapp-clang/kmod/nic_uio.ko

	Start testpmd with basic parameters:

./x86_64-native-bsdapp-clang/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd. Refer section Enable/Disable Flow Control for more details.

3.8. Sample Application Notes

3.8.1. Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

3.8.2. Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd.
One method involves using the mtu command, which changes the mtu of an
individual port without having to stop the selected port. Another method
involves stopping all the ports first and then running max-pkt-len command
to configure the mtu of all the ports with a single command.

	To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

	To configure all the ports at once, stop all the ports first and run the
max-pkt-len command as follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

 Created using Sphinx 1.3.5.

 4. Driver for VM Emulated Devices

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

4. Driver for VM Emulated Devices

The DPDK EM poll mode driver supports the following emulated devices:

	qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

	VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

	VMware emulated Intel® 8274L Gigabit Ethernet Controller.

4.1. Validated Hypervisors

The validated hypervisors are:

	KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

	KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

	VMware ESXi 5.0, Update 1

4.2. Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

	Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

4.3. Setting Up a KVM Virtual Machine

The following describes a target environment:

	Host Operating System: Fedora 14

	Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

	Guest Operating System: Fedora 14

	Linux Kernel Version: Refer to the DPDK Getting Started Guide

	Target Applications: testpmd

The setup procedure is as follows:

	Download qemu-kvm-0.14.0 from
http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules,
you must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:
http://www.linux-kvm.org/page/HOWTO1.

	Create a Virtual Machine and install Fedora 14 on the Virtual Machine.
This is referred to as the Guest Operating System (Guest OS).

	Start the Virtual Machine with at least one emulated e1000 device.

Note

The Qemu provides several choices for the emulated network device backend.
Most commonly used is a TAP networking backend that uses a TAP networking device in the host.
For more information about Qemu supported networking backends and different options for configuring networking at Qemu,
please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices,
backed up with two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

	Configure your TAP networking interfaces using ip/ifconfig tools.

	Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

	Install the DPDK and run testpmd.

4.4. Known Limitations of Emulated Devices

The following are known limitations:

	The Qemu e1000 RX path does not support multiple descriptors/buffers per packet.
Therefore, rte_mbuf should be big enough to hold the whole packet.
For example, to allow testpmd to receive jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

	Qemu e1000 does not validate the checksum of incoming packets.

	Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be exclusive.

	Qemu e1000 does not support interrupt auto-clear, application should disable interrupt immediately when woken up.

 Created using Sphinx 1.3.5.

 5. ENA Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

5. ENA Poll Mode Driver

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic
Network Adapter (ENA) family.

5.1. Overview

The ENA driver exposes a lightweight management interface with a
minimal set of memory mapped registers and an extendable command set
through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed
independent (i.e., the same driver is used for 10GbE, 25GbE, 40GbE,
etc.), and it negotiates and supports an extendable feature set.

ENA adapters allow high speed and low overhead Ethernet traffic
processing by providing a dedicated Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds.

5.2. Management Interface

ENA management interface is exposed by means of:

	Device Registers

	Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers)
are accessed only during driver initialization and are not involved
in further normal device operation.

AQ is used for submitting management commands, and the
results/responses are reported asynchronously through ACQ.

ENA introduces a very small set of management commands with room for
vendor-specific extensions. Most of the management operations are
framed in a generic Get/Set feature command.

The following admin queue commands are supported:

	Create I/O submission queue

	Create I/O completion queue

	Destroy I/O submission queue

	Destroy I/O completion queue

	Get feature

	Set feature

	Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature
properties.

5.3. Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx
SQ correspondingly). Each SQ has a completion queue (CQ) associated
with it.

The SQs and CQs are implemented as descriptor rings in contiguous
physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

5.4. Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

	CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion
of the ENA PMD driver in the DPDK compilation.

	CONFIG_RTE_LIBRTE_ENA_DEBUG_INIT (default y): Enables or disables debug
logging of device initialization within the ENA PMD driver.

	CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables debug
logging of RX logic within the ENA PMD driver.

	CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables debug
logging of TX logic within the ENA PMD driver.

	CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables debug
logging of low level tx/rx logic in ena_com(base) within the ENA PMD driver.

ENA Configuration Parameters

	Number of Queues

This is the requested number of queues upon initialization, however, the actual
number of receive and transmit queues to be created will be the minimum between
the maximal number supported by the device and number of queues requested.

	Size of Queues

This is the requested size of receive/transmit queues, while the actual size
will be the minimum between the requested size and the maximal receive/transmit
supported by the device.

5.5. Building DPDK

See the DPDK Getting Started Guide for Linux for
instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the
documentation that comes with DPDK suite.

5.6. Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

	1d0f:ec20 - ENA VF

	1d0f:ec21 - ENA VF with LLQ support

5.7. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements
section of the DPDK documentation or refer to DPDK Release Notes.

5.8. Supported features

	Jumbo frames up to 9K

	Port Hardware Statistics

	IPv4/TCP/UDP checksum offload

	TSO offload

	Multiple receive and transmit queues

	RSS

	Low Latency Queue for Tx

5.9. Unsupported features

The features supported by the device and not yet supported by this PMD include:

	Asynchronous Event Notification Queue (AENQ)

5.10. Prerequisites

	Prepare the system as recommended by DPDK suite. This includes environment
variables, hugepages configuration, tool-chains and configuration

	Insert igb_uio kernel module using the command ‘modprobe igb_uio’

	Bind the intended ENA device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the
application runs to completion, the ENA can be detached from igb_uio if necessary.

5.11. Usage example

This section demonstrates how to launch testpmd with Amazon ENA
devices managed by librte_pmd_ena.

	Load the kernel modules:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

Note

Currently Amazon ENA PMD driver depends on igb_uio user space I/O kernel module

	Mount and request huge pages:

mount -t hugetlbfs nodev /mnt/hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

	Bind UIO driver to ENA device (using provided by DPDK binding tool):

./tools/dpdk_nic_bind.py --bind=igb_uio 0000:02:00.1

	Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.1 on NUMA socket -1
EAL: probe driver: 1d0f:ec20 rte_ena_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ena_dev_init(): Initializing 0:2:0.1
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

 Created using Sphinx 1.3.5.

 6. ENIC Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

6. ENIC Poll Mode Driver

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet
NICs. These adapters are also referred to as vNICs below. If you are running
or would like to run DPDK software applications on Cisco UCS servers using
Cisco VIC adapters the following documentation is relevant.

6.1. Version Information

The version of the ENIC PMD driver is 1.0.0.6 and will be printed by ENIC PMD
during the initialization.

6.2. How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz
should be downloaded from http://dpdk.org

6.3. Configuration information

	DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

	CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion
of the ENIC PMD driver in the DPDK compilation.

	CONFIG_RTE_LIBRTE_ENIC_DEBUG (default n): Enables or disables debug
logging within the ENIC PMD driver.

	vNIC Configuration Parameters

	Number of Queues

The maximum number of receive and transmit queues are configurable on a per
vNIC basis through the Cisco UCS Manager (CIMC or UCSM). These values
should be configured to be greater than or equal to the nb_rx_q and nb_tx_q
parameters expected to used in the call to the rte_eth_dev_configure()
function.

	Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on
a per vNIC bases via the UCS Manager and should be greater than or equal to
the nb_rx_desc and nb_tx_desc parameters expected to be used in the calls
to rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() respectively.

	Interrupts

Only one interrupt per vNIC interface should be configured in the UCS
manager regardless of the number receive/transmit queues. The ENIC PMD
uses this interrupt to get information about errors in the fast path.

6.4. Limitations

	VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will
priority tag egress packets according to 802.1Q if they were not already
VLAN tagged by software. If the adapter is connected to a properly configured
switch, there will be no unexpected behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is
connected point-to-point to another adapter port or connected though a router
instead of a switch, all ingress packets will be VLAN tagged. Programs such
as l3fwd which do not account for VLAN tags in packets will misbehave. The
solution is to enable VLAN stripping on ingress. The follow code fragment is
example of how to accomplish this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

6.5. How to build the suite?

The build instructions for the DPDK suite should be followed. By default
the ENIC PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please refer the
documentation that comes with DPDK suite.

6.6. Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

	VIC 1280

	VIC 1240

	VIC 1225

	VIC 1285

	VIC 1225T

	VIC 1227

	VIC 1227T

	VIC 1380

	VIC 1340

	VIC 1385

	VIC 1387

	
	Flow director features are not supported on generation 1 Cisco VIC adapters

	(M81KR and P81E)

6.7. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies
section of DPDK documentation.

6.8. Supported features

	Unicast, multicast and broadcast transmission and reception

	Receive queue polling

	Port Hardware Statistics

	Hardware VLAN acceleration

	IP checksum offload

	Receive side VLAN stripping

	Multiple receive and transmit queues

	Flow Director ADD, UPDATE, DELETE, STATS operation support for IPV4 5-TUPLE
flows

	Promiscuous mode

	Setting RX VLAN (supported via UCSM/CIMC only)

	VLAN filtering (supported via UCSM/CIMC only)

	Execution of application by unprivileged system users

	IPV4, IPV6 and TCP RSS hashing

6.9. Known bugs and Unsupported features in this release

	Signature or flex byte based flow direction

	Drop feature of flow direction

	VLAN based flow direction

	non-IPV4 flow direction

	Setting of extended VLAN

	UDP RSS hashing

6.10. Prerequisites

	Prepare the system as recommended by DPDK suite. This includes environment
variables, hugepages configuration, tool-chains and configuration

	Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the
user wants to use VFIO framework

	Insert uio kernel module using the command ‘modprobe uio’ if the user wants
to use UIO framework

	DPDK suite should be configured based on the user’s decision to use VFIO or
UIO framework

	If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver
(enic), use ‘ifconfig’ to bring the interface down. The dpdk_nic_bind.py tool
can then be used to unbind the device’s bus id from the enic kernel mode
driver.

	Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use
VFIO framework using dpdk_nic_bind.py.

	Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use
UIO framework using dpdk_nic_bind.py.

At this point the system should be ready to run DPDK applications. Once the
application runs to completion, the vNIC can be detached from vfio-pci or
igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO.
VFIO framework helps an unprivileged user to run the applications.
For an unprivileged user to run the applications on DPDK and ENIC PMD,
it may be necessary to increase the maximum locked memory of the user.
The following command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

The value depends on the memory configuration of the application, DPDK and
PMD. Typically, the limit has to be raised to higher than 2GB.
e.g., 2621440

The compilation of any unused drivers can be disabled using the
configuration file in config/ directory (e.g., config/common_linuxapp).
This would help in bringing down the time taken for building the
libraries and the initialization time of the application.

6.11. Additional Reference

	http://www.cisco.com/c/en/us/products/servers-unified-computing

6.12. Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD
maintainers:

	John Daley <johndale@cisco.com>

	Nelson Escobar <neescoba@cisco.com>

 Created using Sphinx 1.3.5.

 7. FM10K Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

7. FM10K Poll Mode Driver

The FM10K poll mode driver library provides support for the Intel FM10000
(FM10K) family of 40GbE/100GbE adapters.

7.1. FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs
support the addition of a Fabric Tag (FTAG) to carry special information.
The FTAG is placed at the beginning of the frame, it contains information
such as where the packet comes from and goes, and the vlan tag. In FTAG based
forwarding mode, the switch logic forwards packets according to glort (global
resource tag) information, rather than the mac and vlan table. Currently this
feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal
like “-w 84:00.0,enable_ftag=1”, and the application should make sure an
appropriate FTAG is inserted for every frame on TX side.

7.2. Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O.
It improves load/store bandwidth efficiency of L1 data cache by using a wider
SSE/AVX ‘’register (1)’‘.
The wider register gives space to hold multiple packet buffers so as to save
on the number of instructions when bulk processing packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for
vPMD packet I/O. They are transparently registered at runtime RX/TX execution
if all required conditions are met.

	To date, only an SSE version of FM10K vPMD is available.
To ensure that vPMD is in the binary code, set
CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk
packet transfers. The following sections explain RX and TX constraints in the
vPMD.

7.2.1. RX Constraints

7.2.1.1. Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power
of 2. With this pre-condition, the ring pointer can easily scroll back to the
head after hitting the tail without a conditional check. In addition Vector RX
can use this assumption to do a bit mask using ring_size - 1.

7.2.1.2. Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in
vPMD. They are:

	IEEE1588

	Flow director

	Header split

	RX checksum offload

Other features are supported using optional MACRO configuration. They include:

	HW VLAN strip

	L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

To guarantee the constraint, the following configuration flags in dev_conf.rxmode
will be checked:

	hw_vlan_extend

	hw_ip_checksum

	header_split

	fdir_conf->mode

7.2.1.3. RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes
that the RX burst should be greater than 4 packets per burst. It returns zero if using
nb_pkt < 4 in the receive handler. If nb_pkt is not a multiple of 4, a
floor alignment will be applied.

7.2.2. TX Constraint

7.2.2.1. Features not Supported by TX Vector PMD

TX vPMD only works when txq_flags is set to FM10K_SIMPLE_TX_FLAG.
This means that it does not support TX multi-segment, VLAN offload or TX csum
offload. The following MACROs are used for these three features:

	ETH_TXQ_FLAGS_NOMULTSEGS

	ETH_TXQ_FLAGS_NOVLANOFFL

	ETH_TXQ_FLAGS_NOXSUMSCTP

	ETH_TXQ_FLAGS_NOXSUMUDP

	ETH_TXQ_FLAGS_NOXSUMTCP

7.3. Limitations

7.3.1. Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host
interfaces. The FM10000 PMD driver only manages host interfaces. For the
switch component another switch driver has to be loaded prior to to the
FM10000 PMD driver. The switch driver can be acquired for Intel support or
from the Match Interface [https://github.com/match-interface] project.
Only Testpoint is validated with DPDK, the latest version that has been
validated with DPDK2.2 is 4.1.6.

7.3.2. CRC striping

The FM10000 family of NICs strip the CRC for every packets coming into the
host interface. So, CRC will be stripped even when the
rxmode.hw_strip_crc member is set to 0 in struct rte_eth_conf.

7.3.3. Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 15364, frames
up to 15364 bytes can still reach the host interface.

7.3.4. Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics
are read from the hardware registers when rte_eth_stats_get() or
rte_eth_xstats_get() is called. The packet counting registers are 32 bits
while the byte counting registers are 48 bits. As a result, the statistics must
be polled regularly in order to ensure the consistency of the returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets
this gives almost 100 million packets/second, causing 32 bit integer overflow
after approx 40 seconds. To ensure these overflows are detected and accounted
for in the statistics, it is necessary to read statistic regularly. It is
suggested to read stats every 20 seconds, which will ensure the statistics
are accurate.

7.3.5. Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only
drivers which support multiple interrupt vectors e.g. vfio-pci can work
for fm10k interrupt mode.

 Created using Sphinx 1.3.5.

 8. I40E Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

8. I40E Poll Mode Driver

The I40E PMD (librte_pmd_i40e) provides poll mode driver support
for the Intel X710/XL710/X722 10/40 Gbps family of adapters.

8.1. Features

Features of the I40E PMD are:

	Multiple queues for TX and RX

	Receiver Side Scaling (RSS)

	MAC/VLAN filtering

	Packet type information

	Flow director

	Cloud filter

	Checksum offload

	VLAN/QinQ stripping and inserting

	TSO offload

	Promiscuous mode

	Multicast mode

	Port hardware statistics

	Jumbo frames

	Link state information

	Link flow control

	Mirror on port, VLAN and VSI

	Interrupt mode for RX

	Scattered and gather for TX and RX

	Vector Poll mode driver

	DCB

	VMDQ

	SR-IOV VF

	Hot plug

	IEEE1588/802.1AS timestamping

8.2. Prerequisites

	Identifying your adapter using Intel Support [http://www.intel.com/support] and get the latest NVM/FW images.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

	To get better performance on Intel platforms, please follow the “How to get best performance with NICs on Intel platforms”
section of the Getting Started Guide for Linux.

8.3. Pre-Installation Configuration

8.3.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

	CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

	CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

	CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

Toggle the use of Vector PMD instead of normal RX/TX path.
To enable vPMD for RX, bulk allocation for Rx must be allowed.

	CONFIG_RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE (default y)

Toggle to enable RX olflags.
This is only meaningful when Vector PMD is used.

	CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

	CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

	CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF (default 4)

Number of queues reserved for each SR-IOV VF.

	CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

	CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL (default -1)

Interrupt Throttling interval.

8.3.2. Driver Compilation

To compile the I40E PMD see Getting Started Guide for Linux or
Getting Started Guide for FreeBSD depending on your platform.

8.4. Linux

8.4.1. Running testpmd

This section demonstrates how to launch testpmd with Intel XL710/X710
devices managed by librte_pmd_i40e in the Linux operating system.

	Load igb_uio or vfio-pci driver:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

	Bind the XL710/X710 adapters to igb_uio or vfio-pci loaded in the previous step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:83:00.0

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:83:00.0

	Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 83:00.0 -- -i

Example output:

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

8.4.2. SR-IOV: Prerequisites and sample Application Notes

	Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

	Bring up the PF ports:

ifconfig ens802f0 up

	Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry
of the parent PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

	Assign VF to VM, and bring up the VM.
Please see the documentation for the I40E/IXGBE/IGB Virtual Function Driver.

8.5. Sample Application Notes

8.5.1. Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -c ffff -n 4 -- -i --forward-mode=mac
...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

8.5.2. Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to specific queues.
The Flow Director filters can match the different fields for different type of packet: flow type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
 verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
 verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked out from matching.

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -c ffff -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
 --rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5, src_ip=2.2.2.3, src_port=32, dst_port=32 to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
 src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
 fwd pf queue 1 fd_id 1

Check the flow director status:

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
 MODE: PERFECT
 SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other
 ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
 l2_payload
 FLEX PAYLOAD INFO:
 max_len: 16 payload_limit: 480
 payload_unit: 2 payload_seg: 3
 bitmask_unit: 2 bitmask_num: 2
 MASK:
 vlan_tci: 0x0000,
 src_ipv4: 0x00000000,
 dst_ipv4: 0x00000000,
 src_port: 0x0000,
 dst_port: 0x0000
 src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
 dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000
 FLEX PAYLOAD SRC OFFSET:
 L2_PAYLOAD: 0 1 2 3 4 5 6 ...
 L3_PAYLOAD: 0 1 2 3 4 5 6 ...
 L4_PAYLOAD: 0 1 2 3 4 5 6 ...
 FLEX MASK CFG:
 ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 guarant_count: 1 best_count: 0
 guarant_space: 512 best_space: 7168
 collision: 0 free: 0
 maxhash: 0 maxlen: 0
 add: 0 remove: 0
 f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

 Created using Sphinx 1.3.5.

 9. IXGBE Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

9. IXGBE Driver

9.1. Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O.
It improves load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX register 1 (1).
The wider register gives space to hold multiple packet buffers so as to save instruction number when processing bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet I/O.
They are transparently registered at runtime RX/TX execution if all condition checks pass.

	To date, only an SSE version of IX GBE vPMD is available.
To ensure that vPMD is in the binary code, ensure that the option CONFIG_RTE_IXGBE_INC_VECTOR=y is in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

9.1.1. RX Constraints

9.1.1.1. Prerequisites and Pre-conditions

The following prerequisites apply:

	To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

	rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

	rxq->rx_free_thresh < rxq->nb_rx_desc

	(rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

	rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode.
If an incoming packet is greater than the maximum acceptable length of one “mbuf” data size (by default, the size is 2 KB),
vPMD for RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

9.1.1.2. Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD.
They are:

	IEEE1588

	FDIR

	Header split

	RX checksum off load

Other features are supported using optional MACRO configuration. They include:

	HW VLAN strip

	HW extend dual VLAN

	Enabled by RX_OLFLAGS (RTE_IXGBE_RX_OLFLAGS_ENABLE=y)

To guarantee the constraint, configuration flags in dev_conf.rxmode will be checked:

	hw_vlan_strip

	hw_vlan_extend

	hw_ip_checksum

	header_split

	dev_conf

fdir_conf->mode will also be checked.

9.1.1.3. RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater than 32 per burst.
It returns zero if using nb_pkt < 32 as the expected packet number in the receive handler.

9.1.2. TX Constraint

9.1.2.1. Prerequisite

The only prerequisite is related to tx_rs_thresh.
The tx_rs_thresh value must be greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST,
but less or equal to RTE_IXGBE_TX_MAX_FREE_BUF_SZ.
Consequently, by default the tx_rs_thresh value is in the range 32 to 64.

9.1.2.2. Feature not Supported by RX Vector PMD

TX vPMD only works when txq_flags is set to IXGBE_SIMPLE_FLAGS.

This means that it does not support TX multi-segment, VLAN offload and TX csum offload.
The following MACROs are used for these three features:

	ETH_TXQ_FLAGS_NOMULTSEGS

	ETH_TXQ_FLAGS_NOVLANOFFL

	ETH_TXQ_FLAGS_NOXSUMSCTP

	ETH_TXQ_FLAGS_NOXSUMUDP

	ETH_TXQ_FLAGS_NOXSUMTCP

9.1.3. Sample Application Notes

9.1.3.1. testpmd

By default, using CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=y:

./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01

When CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=n, better performance can be achieved:

./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01 --disable-hw-vlan

9.1.3.2. l3fwd

When running l3fwd with vPMD, there is one thing to note.
In the configuration, ensure that port_conf.rxmode.hw_ip_checksum=0.
Otherwise, by default, RX vPMD is disabled.

9.1.3.3. load_balancer

As in the case of l3fwd, set configure port_conf.rxmode.hw_ip_checksum=0 to enable vPMD.
In addition, for improved performance, use -bsz “(32,32),(64,64),(32,32)” in load_balancer to avoid using the default burst size of 144.

9.2. Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious
Driver Detection) which checks the behavior of the VF driver.
If this feature is enabled, the VF must use the advanced context descriptor
correctly and set the CC (Check Context) bit.
DPDK PF doesn’t support MDD, but kernel PF does. We may hit problem in this
scenario kernel PF + DPDK VF. If user enables MDD in kernel PF, DPDK VF will
not work. Because kernel PF thinks the VF is malicious. But actually it’s not.
The only reason is the VF doesn’t act as MDD required.
There’s significant performance impact to support MDD. DPDK should check if
the advanced context descriptor should be set and set it. And DPDK has to ask
the info about the header length from the upper layer, because parsing the
packet itself is not acceptable. So, it’s too expensive to support MDD.
When using kernel PF + DPDK VF on x550, please make sure using the kernel
driver that disables MDD or can disable MDD. (Some kernel driver can use
this CLI ‘insmod ixgbe.ko MDD=0,0’ to disable MDD. Some kernel driver disables
it by default.)

9.3. Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to
remain consistent. Running a DPDK application without polling the statistics will
cause registers on hardware to count to the maximum value, and “stick” at
that value.

In order to avoid statistic registers every reaching the maximum value,
read the statistics from the hardware using rte_eth_stats_get() or
rte_eth_xstats_get().

The maximum time between statistics polls that ensures consistent results can
be calculated as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

 Created using Sphinx 1.3.5.

 10. I40E/IXGBE/IGB Virtual Function Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

10. I40E/IXGBE/IGB Virtual Function Driver

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details)
support the following modes of operation in a virtualized environment:

	SR-IOV mode: Involves direct assignment of part of the port resources to different guest operating systems
using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard,
also known as “native mode” or “pass-through” mode.
In this chapter, this mode is referred to as IOV mode.

	VMDq mode: Involves central management of the networking resources by an IO Virtual Machine (IOVM) or
a Virtual Machine Monitor (VMM), also known as software switch acceleration mode.
In this chapter, this mode is referred to as the Next Generation VMDq mode.

10.1. SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode.
Therefore, it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and
expose them to a virtual machine as a separate PCI function called a “Virtual Function”.
Refer to Fig. 10.8.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig. 10.8),
while still having global data in common to share with the Physical Function and other Virtual Functions.
The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD) serves for the Intel® 82576 Gigabit Ethernet Controller,
Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller NIC,
Intel® Fortville 10/40 Gigabit Ethernet Controller NIC’s virtual PCI function, or PCIe host-interface of the Intel Ethernet Switch
FM10000 Series.
Meanwhile the DPDK Poll Mode Driver (PMD) also supports “Physical Function” of such NIC’s on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit Ethernet Controller,
Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller,
and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

	SR-IOV provides hardware based I/O sharing [http://www.intel.com/network/connectivity/solutions/vmdc.htm]

	PCI-SIG-Single Root I/O Virtualization Support on IA [http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html]

	Scalable I/O Virtualized Servers [http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html]

[image: ../_images/single_port_nic.png]
Fig. 10.8 Virtualization for a Single Port NIC in SR-IOV Mode

10.1.1. Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the supported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and therefore have no access
to the global NIC resources that are shared between other functions for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the queues assigned to it.
For global resource access, a Virtual Function has to send a request to the Physical Function for that port,
and the Physical Function operates on the global resources on behalf of the Virtual Function.
For this out-of-band communication, an SR-IOV enabled NIC provides a memory buffer for each Virtual Function,
which is called a “Mailbox”.

10.1.1.1. The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions (VF)
globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device.
Each VF can have a maximum of 16 queue pairs.
The Physical Function in host could be only configured by the Linux* fm10k driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]), DPDK PMD PF driver doesn’t support it yet.

For example,

	Using Linux* fm10k driver:

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

10.1.1.2. Intel® Fortville 10/40 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128 Virtual Functions (VF)
globally per Intel® Fortville 10/40 Gigabit Ethernet Controller NIC device.
Each VF can have a maximum of 16 queue pairs.
The Physical Function in host could be either configured by the Linux* i40e driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver.
When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

	Using Linux* i40e driver:

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

	Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

	Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI device, and
launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

The available queue number(at most 4) per VF depends on the total number of pool, which is
determined by the max number of VF at PF initialization stage and the number of queue specified
in config:

	If the max number of VF is set in the range of 1 to 32:

If the number of rxq is specified as 4(e.g. ‘–rxq 4’ in testpmd), then there are totally 32
pools(ETH_32_POOLS), and each VF could have 4 or less(e.g. 2) queues;

If the number of rxq is specified as 2(e.g. ‘–rxq 2’ in testpmd), then there are totally 32
pools(ETH_32_POOLS), and each VF could have 2 queues;

	If the max number of VF is in the range of 33 to 64:

If the number of rxq is 4 (‘–rxq 4’ in testpmd), then error message is expected as rxq is not
correct at this case;

If the number of rxq is 2 (‘–rxq 2’ in testpmd), then there is totally 64 pools(ETH_64_POOLS),
and each VF have 2 queues;

On host, to enable VF RSS functionality, rx mq mode should be set as ETH_MQ_RX_VMDQ_RSS
or ETH_MQ_RX_RSS mode, and SRIOV mode should be activated(max_vfs >= 1).
It also needs config VF RSS information like hash function, RSS key, RSS key length.

testpmd -c 0xffff -n 4 -- --coremask=<core-mask> --rxq=4 --txq=4 -i

The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is:
The hash and key are shared among PF and all VF, the RETA table with 128 entries is also shared
among PF and all VF; So it could not to provide a method to query the hash and reta content per
VF on guest, while, if possible, please query them on host(PF) for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

10.1.1.3. Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Physical Function per Intel® 82599
10 Gigabit Ethernet Controller NIC port.
The reason for this is that the device allows for a maximum of 128 queues per port and a virtual/physical function has to
have at least one queue pair (RX/TX).
The current implementation of the DPDK ixgbevf driver supports a single queue pair (RX/TX) per Virtual Function.
The Physical Function in host could be either configured by the Linux* ixgbe driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver.
When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

	Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

	Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

10.1.1.4. Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight virtual machines (VMs).
The controller has 16 TX and 16 RX queues.
They are generally referred to (or thought of) as queue pairs (one TX and one RX queue).
This gives the controller 16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive operations.
The controller has eight pools, with each pool containing two queue pairs, that is, two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight virtual machines (VMs) per port.
The eight queues can be accessed by eight different VMs if configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues),
that means, one Transmit and one Receive queue assigned to each VF.

For example,

	Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

	Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a four-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence, starting from 0 to 7.
However:

	Virtual Functions 0 and 4 belong to Physical Function 0

	Virtual Functions 1 and 5 belong to Physical Function 1

	Virtual Functions 2 and 6 belong to Physical Function 2

	Virtual Functions 3 and 7 belong to Physical Function 3

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

10.1.2. Validated Hypervisors

The validated hypervisor is:

	KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mailbox interface,
the solution is hypervisor-agnostic.
Xen* and VMware* (when SR- IOV is supported) will also be able to support the DPDK with Virtual Function driver support.

10.1.3. Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

	Fedora* 14 (64-bit)

	Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

10.2. Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

	Host Operating System: Fedora 14

	Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

	Guest Operating System: Fedora 14

	Linux Kernel Version: Refer to the DPDK Getting Started Guide

	Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

	Before booting the Host OS, open BIOS setup and enable Intel® VT features.

	While booting the Host OS kernel, pass the intel_iommu=on kernel command line argument using GRUB.
When using DPDK PF driver on host, pass the iommu=pt kernel command line argument in GRUB.

	Download qemu-kvm-0.14.0 from
http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules,
you must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

	Create a Virtual Machine and install Fedora 14 on the Virtual Machine.
This is referred to as the Guest Operating System (Guest OS).

	Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

	In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the number of VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note

You need to explicitly specify number of vfs for each port, for example,
in the command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

	List the PCI devices connected and notice that the Host OS shows two Physical Functions (traditional ports)
and four Virtual Functions (two for each port).
This is the result of the previous step.

	Insert the pci_stub module to hold the PCI devices that are freed from the default driver using the following command
(see http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more information):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions.
A script to perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

	Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

-smp = number of smp cores

— -boot = boot option

-hda = virtual disk image

— -device = device to attach

Note

— The pci-assign,host=08:10.0 alue indicates that you want to attach a PCI device
to a Virtual Machine and the respective (Bus:Device.Function)
numbers should be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM,
but this is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the cpu_model
to emulate in a Virtual Machine. Therefore, it can be used as:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

	Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linuxapp-gcc
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 -- -i

	Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the lspci command output in the Guest OS.
The virtual functions will be listed as available for use.

	Configure and install the DPDK with an x86_64-native-linuxapp-gcc configuration on the Guest OS as normal,
that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linuxapp-gcc O=x86_64-native-linuxapp-gcc
cd x86_64-native-linuxapp-gcc
make

Note

If you are unable to compile the DPDK and you are getting “error: CPU you selected does not support x86-64 instruction set”,
power off the Guest OS and start the virtual machine with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9.
You must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note

Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled.
For the expected benchmark performance, you must pin the cores from the Guest OS to the Host OS (taskset can be used to do this) and
you must also look at the PCI Bus layout on the board to ensure you are not running the traffic over the QPI Interface.

Note

	The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility for virtual machine management
that can also be used to create, start, stop and delete virtual machines.
If this option is used, step 2 and 6 in the instructions provided will be different.

	virsh, a command line utility for virtual machine management,
can also be used to bind and unbind devices to a virtual machine in Ubuntu.
If this option is used, step 6 in the instructions provided will be different.

	The Virtual Machine Monitor (see Fig. 10.9) is equivalent to a Host OS with KVM installed as described in the instructions.

[image: ../_images/perf_benchmark.png]
Fig. 10.9 Performance Benchmark Setup

10.3. DPDK SR-IOV PMD PF/VF Driver Usage Model

10.3.1. Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling.
In a virtualization environment,
the DPDK VF PMD driver performs the same throughput result as a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS,
DPI can be offloaded on the host fast path.

Fig. 10.10 shows the scenario where some VMs directly communicate externally via a VFs,
while others connect to a virtual switch and share the same uplink bandwidth.

[image: ../_images/fast_pkt_proc.png]
Fig. 10.10 Fast Host-based Packet Processing

10.4. SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms.
SR-IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in the NIC.
So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware acceleration.
However, when VF crosses physical ports (VM0<->VM2), there is no such hardware bridge.
In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 10.11 shows an example.
In this case an update of the MAC address lookup tables in both the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to the PF specific pool.
So when a packet comes in, its destination MAC address will match and forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding,
that is, the packet is forwarded to the correct PF pool.
The SR-IOV NIC switch forwards the packet to a specific VM according to the MAC destination address
which belongs to the destination VF on the VM.

[image: ../_images/inter_vm_comms.png]
Fig. 10.11 Inter-VM Communication

 Created using Sphinx 1.3.5.

 11. MLX4 poll mode driver library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

11. MLX4 poll mode driver library

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support
for Mellanox ConnectX-3 and Mellanox ConnectX-3 Pro 10/40 Gbps adapters
as well as their virtual functions (VF) in SR-IOV context.

Information and documentation about this family of adapters can be found on
the Mellanox website [http://www.mellanox.com]. Help is also provided by
the Mellanox community [http://community.mellanox.com/welcome].

There is also a section dedicated to this poll mode driver [http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk].

Note

Due to external dependencies, this driver is disabled by default. It must
be enabled manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and
recompiling DPDK.

11.1. Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI
bus address, thus unlike most drivers, librte_pmd_mlx4 registers itself as a
PCI driver that allocates one Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also
white/blacklisting the others on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated
kernel support), librte_pmd_mlx4 relies heavily on system calls for control
operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel
combined with hardware specifications that allow it to handle virtual memory
addresses directly ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces
which remain functional, although they stop receiving unicast packets as
long as they share the same MAC address.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

11.2. Features

	RSS, also known as RCA, is supported. In this mode the number of
configured RX queues must be a power of two.

	VLAN filtering is supported.

	Link state information is provided.

	Promiscuous mode is supported.

	All multicast mode is supported.

	Multiple MAC addresses (unicast, multicast) can be configured.

	Scattered packets are supported for TX and RX.

	Inner L3/L4 (IP, TCP and UDP) TX/RX checksum offloading and validation.

	Outer L3 (IP) TX/RX checksum offloading and validation for VXLAN frames.

	Secondary process TX is supported.

11.3. Limitations

	RSS hash key cannot be modified.

	RSS RETA cannot be configured

	RSS always includes L3 (IPv4/IPv6) and L4 (UDP/TCP). They cannot be
dissociated.

	Hardware counters are not implemented (they are software counters).

	Secondary process RX is not supported.

11.4. Configuration

11.4.1. Compilation options

These options can be modified in the .config file.

	CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

	CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option
adds additional run-time checks and debugging messages at the cost of
lower performance.

	CONFIG_RTE_LIBRTE_MLX4_SGE_WR_N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering
this number improves performance but also limits the ability to receive
scattered packets (packets that do not fit a single mbuf). The default
value is a safe tradeoff.

	CONFIG_RTE_LIBRTE_MLX4_MAX_INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency but
lowers throughput.

	CONFIG_RTE_LIBRTE_MLX4_TX_MP_CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from
which buffers are to be transmitted must be associated to memory regions
(MRs). This is a slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

	CONFIG_RTE_LIBRTE_MLX4_SOFT_COUNTERS (default 1)

Toggle software counters. No counters are available if this option is
disabled since hardware counters are not supported.

11.4.2. Environment variables

	MLX4_INLINE_RECV_SIZE

A nonzero value enables inline receive for packets up to that size. May
significantly improve performance in some cases but lower it in
others. Requires careful testing.

11.4.3. Run-time configuration

	The only constraint when RSS mode is requested is to make sure the number
of RX queues is a power of two. This is a hardware requirement.

	librte_pmd_mlx4 brings kernel network interfaces up during initialization
because it is affected by their state. Forcing them down prevents packets
reception.

	ethtool operations on related kernel interfaces also affect the PMD.

11.4.4. Kernel module parameters

The mlx4_core kernel module has several parameters that affect the
behavior and/or the performance of librte_pmd_mlx4. Some of them are described
below.

	num_vfs (integer or triplet, optionally prefixed by device address
strings)

Create the given number of VFs on the specified devices.

	log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is
enabled by using a negative value, the last four bits of which have a
special meaning.

	-1: force device-managed flow steering (DMFS).

	-7: configure optimized steering mode to improve performance with the
following limitation: VLAN filtering is not supported with this mode.
This is the recommended mode in case VLAN filter is not needed.

11.5. Prerequisites

This driver relies on external libraries and kernel drivers for resources
allocations and initialization. The following dependencies are not part of
DPDK and must be installed separately:

	libibverbs

User space verbs framework used by librte_pmd_mlx4. This library provides
a generic interface between the kernel and low-level user space drivers
such as libmlx4.

It allows slow and privileged operations (context initialization, hardware
resources allocations) to be managed by the kernel and fast operations to
never leave user space.

	libmlx4

Low-level user space driver library for Mellanox ConnectX-3 devices,
it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware
queues.

	Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side verbs API and low level device drivers that
manage actual hardware initialization and resources sharing with user
space processes.

Unlike most other PMDs, these modules must remain loaded and bound to
their devices:

	mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

	mlx4_en: Ethernet device driver that provides kernel network interfaces.

	mlx4_ib: InifiniBand device driver.

	ib_uverbs: user space driver for verbs (entry point for libibverbs).

	Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to
match the kernel modules and libraries they come with.

Note

Both libraries are BSD and GPL licensed. Linux kernel modules are GPL
licensed.

Currently supported by DPDK:

	Mellanox OFED 3.1.

	Firmware version 2.35.5100 and higher.

	Supported architectures: x86_64 and POWER8.

11.5.1. Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics
Alliance’s website [https://www.openfabrics.org/] and provided by package
managers on most distributions, this PMD requires Ethernet extensions that
may not be supported at the moment (this is a work in progress).

Mellanox OFED [http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers]
includes the necessary support and should be used in the meantime. For DPDK,
only libibverbs, libmlx4, mlnx-ofed-kernel packages and firmware updates are
required from that distribution.

Note

Several versions of Mellanox OFED are available. Installing the version
this DPDK release was developed and tested against is strongly
recommended. Please check the prerequisites.

11.6. Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3
devices managed by librte_pmd_mlx4.

	Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can
be run:

/etc/init.d/openibd restart

Note

User space I/O kernel modules (uio and igb_uio) are not used and do
not have to be loaded.

	Make sure Ethernet interfaces are in working order and linked to kernel
verbs. Related sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

	Optionally, retrieve their PCI bus addresses for whitelisting:

{
 for intf in eth2 eth3 eth4 eth5;
 do
 (cd "/sys/class/net/${intf}/device/" && pwd -P);
 done;
} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

Note

There are only two distinct PCI bus addresses because the Mellanox
ConnectX-3 adapters installed on this system are dual port.

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Start testpmd with basic parameters:

testpmd -c 0xff00 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

 Created using Sphinx 1.3.5.

 12. MLX5 poll mode driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

12. MLX5 poll mode driver

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support for
Mellanox ConnectX-4 and Mellanox ConnectX-4 Lx families of
10/25/40/50/100 Gb/s adapters as well as their virtual functions (VF) in
SR-IOV context.

Information and documentation about these adapters can be found on the
Mellanox website [http://www.mellanox.com]. Help is also provided by the
Mellanox community [http://community.mellanox.com/welcome].

There is also a section dedicated to this poll mode driver [http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk].

Note

Due to external dependencies, this driver is disabled by default. It must
be enabled manually by setting CONFIG_RTE_LIBRTE_MLX5_PMD=y and
recompiling DPDK.

12.1. Implementation details

Besides its dependency on libibverbs (that implies libmlx5 and associated
kernel support), librte_pmd_mlx5 relies heavily on system calls for control
operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel
combined with hardware specifications that allow it to handle virtual memory
addresses directly ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces
which remain functional, although they stop receiving unicast packets as
long as they share the same MAC address.

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against
libibverbs.

12.2. Features

	Multiple TX and RX queues.

	Support for scattered TX and RX frames.

	IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

	Several RSS hash keys, one for each flow type.

	Configurable RETA table.

	Support for multiple MAC addresses.

	VLAN filtering.

	RX VLAN stripping.

	TX VLAN insertion.

	RX CRC stripping configuration.

	Promiscuous mode.

	Multicast promiscuous mode.

	Hardware checksum offloads.

	Flow director (RTE_FDIR_MODE_PERFECT and RTE_FDIR_MODE_PERFECT_MAC_VLAN).

	Secondary process TX is supported.

12.3. Limitations

	KVM and VMware ESX SR-IOV modes are not supported yet.

	Inner RSS for VXLAN frames is not supported yet.

	Port statistics through software counters only.

	Hardware checksum offloads for VXLAN inner header are not supported yet.

	Secondary process RX is not supported.

12.4. Configuration

12.4.1. Compilation options

These options can be modified in the .config file.

	CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

	CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option
adds additional run-time checks and debugging messages at the cost of
lower performance.

	CONFIG_RTE_LIBRTE_MLX5_SGE_WR_N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering
this number improves performance but also limits the ability to receive
scattered packets (packets that do not fit a single mbuf). The default
value is a safe tradeoff.

	CONFIG_RTE_LIBRTE_MLX5_MAX_INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency.
Can improve PPS performance when PCI backpressure is detected and may be
useful for scenarios involving heavy traffic on many queues.

Since the additional software logic necessary to handle this mode can
lower performance when there is no backpressure, it is not enabled by
default.

	CONFIG_RTE_LIBRTE_MLX5_TX_MP_CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from
which buffers are to be transmitted must be associated to memory regions
(MRs). This is a slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

12.4.2. Environment variables

	MLX5_ENABLE_CQE_COMPRESSION

A nonzero value lets ConnectX-4 return smaller completion entries to
improve performance when PCI backpressure is detected. It is most useful
for scenarios involving heavy traffic on many queues.

Since the additional software logic necessary to handle this mode can
lower performance when there is no backpressure, it is not enabled by
default.

	MLX5_PMD_ENABLE_PADDING

Enables HW packet padding in PCI bus transactions.

When packet size is cache aligned and CRC stripping is enabled, 4 fewer
bytes are written to the PCI bus. Enabling padding makes such packets
aligned again.

In cases where PCI bandwidth is the bottleneck, padding can improve
performance by 10%.

This is disabled by default since this can also decrease performance for
unaligned packet sizes.

12.4.3. Run-time configuration

	librte_pmd_mlx5 brings kernel network interfaces up during initialization
because it is affected by their state. Forcing them down prevents packets
reception.

	ethtool operations on related kernel interfaces also affect the PMD.

12.5. Prerequisites

This driver relies on external libraries and kernel drivers for resources
allocations and initialization. The following dependencies are not part of
DPDK and must be installed separately:

	libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides
a generic interface between the kernel and low-level user space drivers
such as libmlx5.

It allows slow and privileged operations (context initialization, hardware
resources allocations) to be managed by the kernel and fast operations to
never leave user space.

	libmlx5

Low-level user space driver library for Mellanox ConnectX-4 devices,
it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware
queues.

	Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side Verbs API and low level device drivers that
manage actual hardware initialization and resources sharing with user
space processes.

Unlike most other PMDs, these modules must remain loaded and bound to
their devices:

	mlx5_core: hardware driver managing Mellanox ConnectX-4 devices and
related Ethernet kernel network devices.

	mlx5_ib: InifiniBand device driver.

	ib_uverbs: user space driver for Verbs (entry point for libibverbs).

	Firmware update

Mellanox OFED releases include firmware updates for ConnectX-4 adapters.

Because each release provides new features, these updates must be applied to
match the kernel modules and libraries they come with.

Note

Both libraries are BSD and GPL licensed. Linux kernel modules are GPL
licensed.

Currently supported by DPDK:

	Mellanox OFED 3.1-1.0.3, 3.1-1.5.7.1 or 3.2-2.0.0.0 depending
on usage.

The following features are supported with version 3.1-1.5.7.1 and
above only:

	IPv6, UPDv6, TCPv6 RSS.

	RX checksum offloads.

	IBM POWER8.

The following features are supported with version 3.2-2.0.0.0 and
above only:

	Flow director.

	RX VLAN stripping.

	TX VLAN insertion.

	RX CRC stripping configuration.

	Minimum firmware version:

With MLNX_OFED 3.1-1.0.3:

	ConnectX-4: 12.12.1240

	ConnectX-4 Lx: 14.12.1100

With MLNX_OFED 3.1-1.5.7.1:

	ConnectX-4: 12.13.0144

	ConnectX-4 Lx: 14.13.0144

With MLNX_OFED 3.2-2.0.0.0:

	ConnectX-4: 12.14.2036

	ConnectX-4 Lx: 14.14.2036

12.5.1. Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics
Alliance’s website [https://www.openfabrics.org/] and provided by package
managers on most distributions, this PMD requires Ethernet extensions that
may not be supported at the moment (this is a work in progress).

Mellanox OFED [http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux]
includes the necessary support and should be used in the meantime. For DPDK,
only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are
required from that distribution.

Note

Several versions of Mellanox OFED are available. Installing the version
this DPDK release was developed and tested against is strongly
recommended. Please check the prerequisites.

12.6. Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per
port, librte_pmd_mlx5 supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no
command-line parameter to enable additional protocols (UDP and TCP as well
as IP), the following commands must be entered from its CLI to get the same
behavior as librte_pmd_mlx4:

> port stop all
> port config all rss all
> port start all

12.7. Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-4
devices managed by librte_pmd_mlx5.

	Load the kernel modules:

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED is fully installed, the following script can
be run:

/etc/init.d/openibd restart

Note

User space I/O kernel modules (uio and igb_uio) are not used and do
not have to be loaded.

	Make sure Ethernet interfaces are in working order and linked to kernel
verbs. Related sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth30
eth31
eth32
eth33

	Optionally, retrieve their PCI bus addresses for whitelisting:

{
 for intf in eth2 eth3 eth4 eth5;
 do
 (cd "/sys/class/net/${intf}/device/" && pwd -P);
 done;
} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Start testpmd with basic parameters:

testpmd -c 0xff00 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

 Created using Sphinx 1.3.5.

 13. NFP poll mode driver library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

13. NFP poll mode driver library

Netronome’s sixth generation of flow processors pack 216 programmable
cores and over 100 hardware accelerators that uniquely combine packet,
flow, security and content processing in a single device that scales
up to 400 Gbps.

This document explains how to use DPDK with the Netronome Poll Mode
Driver (PMD) supporting Netronome’s Network Flow Processor 6xxx
(NFP-6xxx).

Currently the driver supports virtual functions (VFs) only.

13.1. Dependencies

Before using the Netronome’s DPDK PMD some NFP-6xxx configuration,
which is not related to DPDK, is required. The system requires
installation of Netronome’s BSP (Board Support Package) which includes
Linux drivers, programs and libraries.

If you have a NFP-6xxx device you should already have the code and
documentation for doing this configuration. Contact
support@netronome.com to obtain the latest available firmware.

The NFP Linux kernel drivers (including the required PF driver for the
NFP) are available on Github at
https://github.com/Netronome/nfp-drv-kmods along with build
instructions.

DPDK runs in userspace and PMDs uses the Linux kernel UIO interface to
allow access to physical devices from userspace. The NFP PMD requires
a separate UIO driver, nfp_uio, to perform correct
initialization. This driver is part of Netronome´s BSP and it is
equivalent to Intel’s igb_uio driver.

13.2. Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory.
Because Netronome´s BSP dependencies the driver is disabled by default
in DPDK build using common_linuxapp configuration file. Enabling the
driver or if you use another configuration file and want to have NFP
support, this variable is needed:

	CONFIG_RTE_LIBRTE_NFP_PMD=y

Once DPDK is built all the DPDK apps and examples include support for
the NFP PMD.

13.3. System configuration

Using the NFP PMD is not different to using other PMDs. Usual steps are:

	Configure hugepages: All major Linux distributions have the hugepages
functionality enabled by default. By default this allows the system uses for
working with transparent hugepages. But in this case some hugepages need to
be created/reserved for use with the DPDK through the hugetlbfs file system.
First the virtual file system need to be mounted:

mount -t hugetlbfs none /mnt/hugetlbfs

The command uses the common mount point for this file system and it needs to
be created if necessary.

Configuring hugepages is performed via sysfs:

/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

This sysfs file is used to specify the number of hugepages to reserve.
For example:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

This will reserve 2GB of memory using 1024 2MB hugepages. The file may be
read to see if the operation was performed correctly:

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

The number of unused hugepages may also be inspected.

Before executing the DPDK app it should match the value of nr_hugepages.

cat /sys/kernel/mm/hugepages/hugepages-2048kB/free_hugepages

The hugepages reservation should be performed at system initialization and
it is usual to use a kernel parameter for configuration. If the reservation
is attempted on a busy system it will likely fail. Reserving memory for
hugepages may be done adding the following to the grub kernel command line:

default_hugepagesz=1M hugepagesz=2M hugepages=1024

This will reserve 2GBytes of memory using 2Mbytes huge pages.

Finally, for a NUMA system the allocation needs to be made on the correct
NUMA node. In a DPDK app there is a master core which will (usually) perform
memory allocation. It is important that some of the hugepages are reserved
on the NUMA memory node where the network device is attached. This is because
of a restriction in DPDK by which TX and RX descriptors rings must be created
on the master code.

Per-node allocation of hugepages may be inspected and controlled using sysfs.
For example:

cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

For a NUMA system there will be a specific hugepage directory per node
allowing control of hugepage reservation. A common problem may occur when
hugepages reservation is performed after the system has been working for
some time. Configuration using the global sysfs hugepage interface will
succeed but the per-node allocations may be unsatisfactory.

The number of hugepages that need to be reserved depends on how the app uses
TX and RX descriptors, and packets mbufs.

	Enable SR-IOV on the NFP-6xxx device: The current NFP PMD works with
Virtual Functions (VFs) on a NFP device. Make sure that one of the Physical
Function (PF) drivers from the above Github repository is installed and
loaded.

Virtual Functions need to be enabled before they can be used with the PMD.
Before enabling the VFs it is useful to obtain information about the
current NFP PCI device detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device
whose PCI system identity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The
-k option shows the device driver, if any, that devices are bound to.
Depending on the modules loaded at this point the new PCI devices may be
bound to nfp_netvf driver.

	To install the uio kernel module (manually): All major Linux
distributions have support for this kernel module so it is straightforward
to install it:

modprobe uio

The module should now be listed by the lsmod command.

	To install the nfp_uio kernel module (manually): This module supports
NFP-6xxx devices through the UIO interface.

This module is part of Netronome´s BSP and it should be available when the
BSP is installed.

modprobe nfp_uio.ko

The module should now be listed by the lsmod command.

Depending on which NFP modules are loaded, nfp_uio may be automatically
bound to the NFP PCI devices by the system. Otherwise the binding needs
to be done explicitly. This is the case when nfp_netvf, the Linux kernel
driver for NFP VFs, was loaded when VFs were created. As described later
in this document this configuration may also be performed using scripts
provided by the Netronome´s BSP.

First the device needs to be unbound, for example from the nfp_netvf
driver:

echo 0000:03:08.0 > /sys/bus/pci/devices/0000:03:08.0/driver/unbind

lspci -d19ee: -k

The output of lspci should now show that 0000:03:08.0 is not bound to
any driver.

The next step is to add the NFP PCI ID to the NFP UIO driver:

echo 19ee 6003 > /sys/bus/pci/drivers/nfp_uio/new_id

And then to bind the device to the nfp_uio driver:

echo 0000:03:08.0 > /sys/bus/pci/drivers/nfp_uio/bind

lspci -d19ee: -k

lspci should show that device bound to nfp_uio driver.

	Using tools from Netronome´s BSP to install and bind modules: DPDK provides
scripts which are useful for installing the UIO modules and for binding the
right device to those modules avoiding doing so manually. However, these scripts
have not support for Netronome´s UIO driver. Along with drivers, the BSP installs
those DPDK scripts slightly modified with support for Netronome´s UIO driver.

Those specific scripts can be found in Netronome´s BSP installation directory.
Refer to BSP documentation for more information.

	setup.sh

	dpdk_nic_bind.py

Configuration may be performed by running setup.sh which invokes
dpdk_nic_bind.py as needed. Executing setup.sh will display a menu of
configuration options.

 Created using Sphinx 1.3.5.

 14. SZEDATA2 poll mode driver library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

14. SZEDATA2 poll mode driver library

The SZEDATA2 poll mode driver library implements support for cards from COMBO
family (COMBO-80G, COMBO-100G).
The SZEDATA2 PMD uses interface provided by libsze2 library to communicate
with COMBO cards over sze2 layer.

More information about family of
COMBO cards [https://www.liberouter.org/technologies/cards/]
and used technology
(NetCOPE platform [https://www.liberouter.org/technologies/netcope/]) can be
found on the Liberouter website [https://www.liberouter.org/].

Note

This driver has external dependencies.
Therefore it is disabled in default configuration files.
It can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y
and recompiling.

Note

Currently the driver is supported only on x86_64 architectures.
Only x86_64 versions of the external libraries are provided.

14.1. Prerequisites

This PMD requires kernel modules which are responsible for initialization and
allocation of resources needed for sze2 layer function.
Communication between PMD and kernel modules is mediated by libsze2 library.
These kernel modules and library are not part of DPDK and must be installed
separately:

	libsze2 library

The library provides API for initialization of sze2 transfers, receiving and
transmitting data segments.

	Kernel modules

	combov3

	szedata2_cv3

Kernel modules manage initialization of hardware, allocation and
sharing of resources for user space applications.

Information about getting the dependencies can be found here [https://www.liberouter.org/technologies/netcope/access-to-libsze2-library/].

14.2. Configuration

These configuration options can be modified before compilation in the
.config file:

	CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

	CONFIG_RTE_LIBRTE_PMD_SZEDATA2_AS default value: 0

This option defines type of firmware address space.
Currently supported value is:

	0 for firmwares:

	NIC_100G1_LR4

	HANIC_100G1_LR4

	HANIC_100G1_SR10

14.3. Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV.
SZEDATA2 device is automatically recognized during EAL initialization.
No special command line options are needed.

Kernel modules have to be loaded before running the DPDK application.

14.4. Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1.
transmit channel:

$RTE_TARGET/app/testpmd -c 0xf -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)
PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding
 io packet forwarding - CRC stripping disabled - packets/burst=32
 nb forwarding cores=2 - nb forwarding ports=1
 RX queues=2 - RX desc=128 - RX free threshold=0
 RX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX queues=2 - TX desc=512 - TX free threshold=0
 TX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX RS bit threshold=0 - TXQ flags=0x0
testpmd>

 Created using Sphinx 1.3.5.

 15. Poll Mode Driver for Emulated Virtio NIC

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

15. Poll Mode Driver for Emulated Virtio NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor.
In the Data Plane Development Kit (DPDK),
we provide a virtio Poll Mode Driver (PMD) as a software solution, comparing to SRIOV hardware solution,
for fast guest VM to guest VM communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend.
The DPDK extends kni to support vhost raw socket interface,
which enables vhost to directly read/ write packets from/to a physical port.
With this enhancement, virtio could achieve quite promising performance.

In future release, we will also make enhancement to vhost backend,
releasing peak performance of virtio PMD driver.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM,
please refer to Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends,
standard qemu vhost back end and vhost kni back end.

15.1. Virtio Implementation in DPDK

For details about the virtio spec, refer to Virtio PCI Card Specification written by Rusty Russell.

As a PMD, virtio provides packet reception and transmission callbacks virtio_recv_pkts and virtio_xmit_pkts.

In virtio_recv_pkts, index in range [vq->vq_used_cons_idx , vq->vq_ring.used->idx) in vring is available for virtio to burst out.

In virtio_xmit_pkts, same index range in vring is available for virtio to clean.
Virtio will enqueue to be transmitted packets into vring, advance the vq->vq_ring.avail->idx,
and then notify the host back end if necessary.

15.2. Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and transmission.

	It supports merge-able buffers per packet when receiving packets and scattered buffer per packet
when transmitting packets. The packet size supported is from 64 to 1518.

	It supports multicast packets and promiscuous mode.

	The descriptor number for the RX/TX queue is hard-coded to be 256 by qemu.
If given a different descriptor number by the upper application,
the virtio PMD generates a warning and fall back to the hard-coded value.

	Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to support them.
When backend can’t support vlan filter, virtio app on guest should disable vlan filter to make sure
the virtio port is configured correctly. E.g. specify ‘–disable-hw-vlan’ in testpmd command line.

	RTE_PKTMBUF_HEADROOM should be defined larger than sizeof(struct virtio_net_hdr), which is 10 bytes.

	Virtio does not support runtime configuration.

	Virtio supports Link State interrupt.

	Virtio supports software vlan stripping and inserting.

	Virtio supports using port IO to get PCI resource when uio/igb_uio module is not available.

15.3. Prerequisites

The following prerequisites apply:

	In the BIOS, turn VT-x and VT-d on

	Linux kernel with KVM module; vhost module loaded and ioeventfd supported.
Qemu standard backend without vhost support isn’t tested, and probably isn’t supported.

15.4. Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

[image: ../_images/host_vm_comms.png]
Fig. 15.3 Host2VM Communication Example Using kni vhost Back End

Host2VM communication example

	Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed here.
Please refer to the DPDK Getting Started Guide for detailed instructions.

	Launch the kni user application:

examples/kni/build/app/kni -c 0xf -n 4 -- -p 0x1 -P --config="(0,1,3)"

This command generates one network device vEth0 for physical port.
If specify more physical ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads.
One thread loops to fetch packets from the physical NIC port into the kni receive queue.
The other user thread loops to send packets in the kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni receive queue,
place them onto kni’s raw socket’s queue and wake up the vhost kernel thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to Kernel NIC Interface.

	Enable the kni raw socket functionality for the specified physical NIC port,
get the generated file descriptor and set it in the qemu command line parameter.
Always remember to set ioeventfd_on and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which in turns corresponds to a physical port,
which means received packets come from vEth0, and transmitted packets is sent to vEth0.

	In the guest, bind the virtio device to the uio_pci_generic kernel module and start the forwarding application.
When the virtio port in guest bursts rx, it is getting packets from the raw socket’s receive queue.
When the virtio port bursts tx, it is sending packet to the tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

[image: ../_images/console.png]
Fig. 15.4 Running testpmd

	Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI rx queue->KNI raw socket queue->Guest VM virtio port 0 rx burst->Guest VM virtio port 0 tx burst-> KNI tx queue->82599 PF-> IXIA packet generator

15.5. Virtio with qemu virtio Back End

[image: ../_images/host_vm_comms_qemu.png]
Fig. 15.5 Host2VM Communication Example Using qemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on
-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest VM virtio port 0 rx burst-> Guest VM 82599 VF port1 tx burst-> IXIA packet generator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 rx burst-> Guest VM virtio port 0 tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

 Created using Sphinx 1.3.5.

 16. Poll Mode Driver that wraps vhost library

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

16. Poll Mode Driver that wraps vhost library

This PMD is a thin wrapper of the DPDK vhost library.
The user can handle virtqueues as one of normal DPDK port.

16.1. Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

16.2. Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and event handling.

	It has multiple queues support.

	It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

	It supports Port Hotplug functionality.

	Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on guest.

16.3. Vhost PMD arguments

The user can specify below arguments in –vdev option.

	iface:

It is used to specify a path to connect to a QEMU virtio-net device.

	queues:

It is used to specify the number of queues virtio-net device has.
(Default: 1)

16.4. Vhost PMD event handling

This section describes how to handle vhost PMD events.

The user can register an event callback handler with rte_eth_dev_callback_register().
The registered callback handler will be invoked with one of below event types.

	RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

	RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call rte_eth_vhost_get_queue_event() in the callback handler.
Because changing multiple statuses may occur only one event, call the function repeatedly as long as it doesn’t return negative value.

16.5. Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

	Launch the testpmd with vhost PMD:

./testpmd -c f -n 4 --vdev 'eth_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here.
Please refer to the DPDK Getting Started Guide for detailed instructions.

	Launch the QEMU:

qemu-system-x86_64 <snip>
 -chardev socket,id=chr0,path=/tmp/sock0 \
 -netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
 -device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest.
After initialization processes between QEMU and DPDK vhost library are done, status of the port will be linked up.

 Created using Sphinx 1.3.5.

 17. Poll Mode Driver for Paravirtual VMXNET3 NIC

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

17. Poll Mode Driver for Paravirtual VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware* ESXi.
It is designed for performance and is not related to VMXNET or VMXENET2.
It offers all the features available in VMXNET2, and adds several new features such as,
multi-queue support (also known as Receive Side Scaling, RSS),
IPv6 offloads, and MSI/MSI-X interrupt delivery.
Because operating system vendors do not provide built-in drivers for this card,
VMware Tools must be installed to have a driver for the VMXNET3 network adapter available.
One can use the same device in a DPDK application with VMXNET3 PMD introduced in DPDK API.

Currently, the driver provides basic support for using the device in a DPDK application running on a guest OS.
Optimization is needed on the backend, that is, the VMware* ESXi vmkernel switch, to achieve optimal performance end-to-end.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

	Vmxnet3 with a native NIC connected to a vSwitch

	Vmxnet3 chaining VMs connected to a vSwitch

17.1. VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts.
It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts.
Also, it does not support scattered packet reception as part of the device operations supported.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space
and it is solely responsible to free that memory when not needed.
The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs.
During RX/TX, the packet buffers are exchanged by their GPAs,
and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers.
The interface is similar to that of the other PMDs available in the DPDK API.
The driver pre-allocates the packet buffers and loads the command ring descriptors in advance.
The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors,
which are eventually pulled by the PMD.
After reception, the DPDK application frees the descriptors and loads new packet buffers for the coming packets.
The interrupts are disabled and there is no notification required.
This keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of the command ring
and notifies the hypervisor.
In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring.
The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory.

17.2. Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and transmission.
There are several options available for filtering packets at VMXNET3 device level including:

	MAC Address based filtering:
	Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

	Multicast with Multicast Filter table - NOT SUPPORTED

	Promiscuous mode - SUPPORTED

	RSS based load balancing between queues - SUPPORTED

	VLAN filtering:
	VLAN tag based filtering without load balancing - SUPPORTED

Note

	Release 1.6.0 does not support separate headers and body receive cmd_ring and hence,
multiple segment buffers are not supported.
Only cmd_ring_0 is used for packet buffers, one for each descriptor.

	Receive and transmit of scattered packets is not supported.

	Multicast with Multicast Filter table is not supported.

17.3. Prerequisites

The following prerequisites apply:

	Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client must be assigned.
This is shown in the figure below.

[image: ../_images/vmxnet3_int.png]
Fig. 17.1 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Note

Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet adaptors while adding an Ethernet device.
Ensure that the VM type used offers a VMXNET3 device. Refer to the VMware documentation for a listed of VMs.

Note

Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note

Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3 device.

17.4. VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

[image: ../_images/vswitch_vm.png]
Fig. 17.2 VMXNET3 with a Native NIC Connected to a vSwitch

Note

Other instructions on preparing to use DPDK such as, hugepage enabling, uio port binding are not listed here.
Please refer to DPDK Getting Started Guide and DPDK Sample Application’s User Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
 -> VMware ESXi vSwitch
 -> VMXNET3 device
 -> Guest VM VMXNET3 port 0 rx burst
 -> Guest VM 82599 VF port 0 tx burst
 -> 82599 VF
 -> Packet generator

17.5. VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-Phy communication channel.

[image: ../_images/vm_vm_comms.png]
Fig. 17.3 VMXNET3 Chaining VMs Connected to a vSwitch

Note

When using the L2 Forwarding or L3 Forwarding applications,
a destination MAC address needs to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
 -> Guest VM 82599 port 0 rx burst
 -> Guest VM VMXNET3 port 1 tx burst
 -> VMXNET3 device
 -> VMware ESXi vSwitch
 -> VMXNET3 device
 -> Guest VM VMXNET3 port 0 rx burst
 -> Guest VM 82599 VF port 1 tx burst
 -> 82599 VF
 -> Packet generator

 Created using Sphinx 1.3.5.

 18. Libpcap and Ring Based Poll Mode Drivers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Network Interface Controller Drivers

18. Libpcap and Ring Based Poll Mode Drivers

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware,
the DPDK also includes two pure-software PMDs. These two drivers are:

	A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap,
- both from files on disk, as well as from physical NIC devices using standard Linux kernel drivers.

	A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring)
to be accessed using the PMD APIs, as though they were physical NICs.

Note

The libpcap -based PMD is disabled by default in the build configuration files,
owing to an external dependency on the libpcap development files which must be installed on the board.
Once the libpcap development files are installed,
the library can be enabled by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

18.1. Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices,
using one or more of these drivers,
to be created at application startup time during EAL initialization.

To do so, the –vdev= parameter must be passed to the EAL.
This takes take options to allow ring and pcap-based Ethernet to be allocated and used transparently by the application.
This can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

18.1.1. Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option.
The device name must start with the eth_pcap prefix followed by numbers or letters.
The name is unique for each device. Each device can have multiple stream options and multiple devices can be used.
Multiple device definitions can be arranged using multiple –vdev.
Device name and stream options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'eth_pcap0,stream_opt0=..,stream_opt1=..' --vdev='eth_pcap1,stream_opt0=..'

18.1.1.1. Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following two rules are respected:

	A device is provided with two different streams - reception and transmission.

	A device is provided with one network interface name used for reading and writing packets.

The different stream types are:

	rx_pcap: Defines a reception stream based on a pcap file.
The driver reads each packet within the given pcap file as if it was receiving it from the wire.
The value is a path to a valid pcap file.

rx_pcap=/path/to/file.pcap

	tx_pcap: Defines a transmission stream based on a pcap file.
The driver writes each received packet to the given pcap file.
The value is a path to a pcap file.
The file is overwritten if it already exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

	rx_iface: Defines a reception stream based on a network interface name.
The driver reads packets coming from the given interface using the Linux kernel driver for that interface.
The value is an interface name.

rx_iface=eth0

	tx_iface: Defines a transmission stream based on a network interface name.
The driver sends packets to the given interface using the Linux kernel driver for that interface.
The value is an interface name.

tx_iface=eth0

	iface: Defines a device mapping a network interface.
The driver both reads and writes packets from and to the given interface.
The value is an interface name.

iface=eth0

18.1.1.2. Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_iface=eth0,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_iface=eth1' -- --port-topology=chained

Forward packets through two network interfaces:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,iface=eth0' --vdev='eth_pcap1;iface=eth1'

18.1.1.3. Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX streams
by reading the first 512 packets on every RX stream and discarding them.
When using a libpcap-based PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be discarded.
Otherwise, the first 512 packets from the input pcap file will be discarded by the RX flushing operation.

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained --no-flush-rx

18.1.2. Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based rte_ethdevs can be used as below.
The device names passed to the –vdev option must start with eth_ring and take no additional parameters.
Multiple devices may be specified, separated by commas.

./testpmd -c E -n 4 --vdev=eth_ring0 --vdev=eth_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

[image: ../_images/forward_stats.png]
+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

18.1.3. Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is,
rte_ethdev structure, instances at run-time in the end-application,
for example, using rte_eth_from_rings() or rte_eth_from_pcaps() APIs.
For the rings-based PMD, this functionality could be used, for example,
to allow data exchange between cores using rings to be done in exactly the
same way as sending or receiving packets from an Ethernet device.
For the libpcap-based PMD, it allows an application to open one or more pcap files
and use these as a source of packet input to the application.

18.1.3.1. Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back
for reception on the same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2
#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("eth_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("eth_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them,
that is, traffic sent to port 0 is read back from port 1 and vice-versa,
the final two lines could be changed as below:

port0 = rte_eth_from_rings("eth_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("eth_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example,
where one may want to have inter-core communication using pseudo Ethernet devices rather than raw rings,
for reasons of API consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower than using the native rings API.
This is because DPDK Ethernet drivers make use of function pointers to call the appropriate enqueue or dequeue functions,
while the rte_ring specific functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD,
it should be configured and started in the same way as a regular Ethernet device, that is,
by calling rte_eth_dev_configure() to set the number of receive and transmit queues,
then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues and
finally calling rte_eth_dev_start() to allow transmission and reception of packets to begin.

 Created using Sphinx 1.3.5.

 Crypto Device Drivers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Crypto Device Drivers

	1. Crypto Device Supported Functionality Matrices

	2. AESN-NI Multi Buffer Crytpo Poll Mode Driver
	2.1. Features

	2.2. Limitations

	2.3. Installation

	2.4. Initialization

	3. AES-NI GCM Crypto Poll Mode Driver
	3.1. Features

	3.2. Initialization

	3.3. Limitations

	4. Null Crypto Poll Mode Driver
	4.1. Features

	4.2. Limitations

	4.3. Installation

	4.4. Initialization

	5. SNOW 3G Crypto Poll Mode Driver
	5.1. Features

	5.2. Limitations

	5.3. Installation

	5.4. Initialization

	6. Quick Assist Crypto Poll Mode Driver
	6.1. Features

	6.2. Limitations

	6.3. Installation

	6.4. Installation using 01.org QAT driver

	6.5. Installation using kernel.org driver

	6.6. Binding the available VFs to the DPDK UIO driver

 Created using Sphinx 1.3.5.

 1. Crypto Device Supported Functionality Matrices

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

1. Crypto Device Supported Functionality Matrices

Supported Feature Flags

	Feature Flags
	qat
	null
	aesni_mb
	aesni_gcm
	snow3g

	RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO
	x
	x
	
	
	

	RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO
	
	
	
	
	

	RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING
	x
	x
	x
	x
	x

	RTE_CRYPTODEV_FF_CPU_SSE
	
	
	x
	x
	x

	RTE_CRYPTODEV_FF_CPU_AVX
	
	
	x
	x
	x

	RTE_CRYPTODEV_FF_CPU_AVX2
	
	
	x
	x
	

	RTE_CRYPTODEV_FF_CPU_AESNI
	
	
	x
	x
	

	RTE_CRYPTODEV_FF_HW_ACCELERATED
	x
	
	
	
	

Supported Cipher Algorithms

	Cipher Algorithms
	qat
	null
	aesni_mb
	aesni_gcm
	snow3g

	NULL
	
	x
	
	
	

	AES_CBC_128
	x
	
	x
	
	

	AES_CBC_192
	x
	
	x
	
	

	AES_CBC_256
	x
	
	x
	
	

	AES_CTR_128
	
	
	
	
	

	AES_CTR_192
	
	
	
	
	

	AES_CTR_256
	
	
	
	
	

	SNOW3G_UEA2
	x
	
	
	
	x

Supported Authentication Algorithms

	Cipher Algorithms
	qat
	null
	aesni_mb
	aesni_gcm
	snow3g

	NONE
	
	x
	
	
	

	MD5
	
	
	
	
	

	MD5_HMAC
	
	
	x
	
	

	SHA1
	
	
	
	
	

	SHA1_HMAC
	x
	
	x
	
	

	SHA224
	
	
	
	
	

	SHA224_HMAC
	
	
	x
	
	

	SHA256
	
	
	
	
	

	SHA256_HMAC
	x
	
	x
	
	

	SHA384
	
	
	
	
	

	SHA384_HMAC
	
	
	x
	
	

	SHA512
	
	
	
	
	

	SHA512_HMAC
	x
	
	x
	
	

	AES_XCBC
	x
	
	x
	
	

	SNOW3G_UIA2
	x
	
	
	
	x

Supported AEAD Algorithms

	AEAD Algorithms
	qat
	null
	aesni_mb
	aesni_gcm
	snow3g

	AES_GCM_128
	x
	
	x
	
	

	AES_GCM_192
	x
	
	
	
	

	AES_GCM_256
	x
	
	
	
	

 Created using Sphinx 1.3.5.

 2. AESN-NI Multi Buffer Crytpo Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

2. AESN-NI Multi Buffer Crytpo Poll Mode Driver

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver
support for utilizing Intel multi buffer library, see the white paper
Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors [https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer].

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

2.1. Features

AESNI MB PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_SYM_CIPHER_AES128_CBC

	RTE_CRYPTO_SYM_CIPHER_AES256_CBC

	RTE_CRYPTO_SYM_CIPHER_AES512_CBC

Hash algorithms:

	RTE_CRYPTO_SYM_HASH_SHA1_HMAC

	RTE_CRYPTO_SYM_HASH_SHA256_HMAC

	RTE_CRYPTO_SYM_HASH_SHA512_HMAC

2.2. Limitations

	Chained mbufs are not supported.

	Hash only is not supported.

	Cipher only is not supported.

	Only in-place is currently supported (destination address is the same as source address).

	Only supports session-oriented API implementation (session-less APIs are not supported).

	Not performance tuned.

2.3. Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the mult-
buffer library from here [https://downloadcenter.intel.com/download/22972]
and compile it on their user system before building DPDK. When building the
multi-buffer library it is necessary to have YASM package installed and also
requires the overriding of YASM path when building, as a path is hard coded in
the Makefile of the release package.

make YASM=/usr/bin/yasm

2.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path where
the library was extracted.

	Build the multi buffer library (explained in Installation section).

	Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_eal_vdev_init(“cryptodev_aesni_mb_pmd”) within the application.

	Use –vdev=”cryptodev_aesni_mb_pmd” in the EAL options, which will call rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_aesni_mb_pmd,socket_id=1,max_nb_sessions=128"

 Created using Sphinx 1.3.5.

 3. AES-NI GCM Crypto Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

3. AES-NI GCM Crypto Poll Mode Driver

The AES-NI GCM PMD (librte_pmd_aesni_gcm) provides poll mode crypto driver
support for utilizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation
to learn more about it, including installation).

The AES-NI GCM PMD has current only been tested on Fedora 21 64-bit with gcc.

3.1. Features

AESNI GCM PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_AES_GCM

Authentication algorithms:

	RTE_CRYPTO_AUTH_AES_GCM

3.2. Initialization

In order to enable this virtual crypto PMD, user must:

	Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path where
the library was extracted.

	Build the multi buffer library (go to Installation section in AES-NI MB PMD documentation).

	Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_eal_vdev_init(“cryptodev_aesni_gcm_pmd”) within the application.

	Use –vdev=”cryptodev_aesni_gcm_pmd” in the EAL options, which will call rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_aesni_gcm_pmd,socket_id=1,max_nb_sessions=128"

3.3. Limitations

	Chained mbufs are not supported.

	Hash only is not supported.

	Cipher only is not supported.

	Only in-place is currently supported (destination address is the same as source address).

	Only supports session-oriented API implementation (session-less APIs are not supported).

	Not performance tuned.

 Created using Sphinx 1.3.5.

 4. Null Crypto Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

4. Null Crypto Poll Mode Driver

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode
driver which provides a minimal implementation for a software crypto device. As
a null device it does not modify the data in the mbuf on which the crypto
operation is to operate and it only has support for a single cipher and
authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then
each mbuf in the burst will be enqueued in an internal buffer for collection on
a dequeue call as long as the mbuf has a valid rte_mbuf_offload operation with
a valid rte_cryptodev_session or rte_crypto_xform chain of operations.

4.1. Features

Modes:

	RTE_CRYPTO_XFORM_CIPHER ONLY

	RTE_CRYPTO_XFORM_AUTH ONLY

	RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH

	RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER

Cipher algorithms:

	RTE_CRYPTO_CIPHER_NULL

Authentication algorithms:

	RTE_CRYPTO_AUTH_NULL

4.2. Limitations

	Only in-place is currently supported (destination address is the same as
source address).

4.3. Installation

The Null Crypto PMD is enabled and built by default in both the Linux and
FreeBSD builds.

4.4. Initialization

To use the PMD in an application, user must:

	Call rte_eal_vdev_init(“cryptodev_null_pmd”) within the application.

	Use –vdev=”cryptodev_null_pmd” in the EAL options, which will call rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_null_pmd,socket_id=1,max_nb_sessions=128"

 Created using Sphinx 1.3.5.

 5. SNOW 3G Crypto Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

5. SNOW 3G Crypto Poll Mode Driver

The SNOW 3G PMD (librte_pmd_snow3g) provides poll mode crypto driver
support for utilizing Intel Libsso library, which implements F8 and F9 functions
for SNOW 3G UEA2 cipher and UIA2 hash algorithms.

5.1. Features

SNOW 3G PMD has support for:

Cipher algorithm:

	RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA2

Authentication algorithm:

	RTE_CRYPTO_SYM_AUTH_SNOW3G_UIA2

5.2. Limitations

	Chained mbufs are not supported.

	Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.

	Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.

5.3. Installation

To build DPDK with the SNOW3G_PMD the user is required to download
the export controlled libsso library, by requesting it from
https://networkbuilders.intel.com/network-technologies/dpdk,
and compiling it on their system before building DPDK:

make -f Makefile_snow3g

Note: If using a gcc version higher than 5.0, and compilation fails, apply the following patch:

/libsso/src/snow3g/sso_snow3g.c

static inline void ClockFSM_4(sso_snow3gKeyState4_t *pCtx, __m128i *data)
{
 __m128i F, R;
- uint32_t K, L;
+ uint32_t K;
+ /* Declare unused if SNOW3G_WSM/SNB are defined */
+ uint32_t L __attribute__ ((unused)) = 0;

 F = _mm_add_epi32(pCtx->LFSR_X[15], pCtx->FSM_X[0]);
 R = _mm_xor_si128(pCtx->LFSR_X[5], pCtx->FSM_X[2]);

/libsso/include/sso_snow3g_internal.h

-inline void ClockFSM_1(sso_snow3gKeyState1_t *pCtx, uint32_t *data);
-inline void ClockLFSR_1(sso_snow3gKeyState1_t *pCtx);
-inline void sso_snow3gStateInitialize_1(sso_snow3gKeyState1_t * pCtx, sso_snow3g_key_schedule_t *pKeySched, uint8_t *pIV);
+void ClockFSM_1(sso_snow3gKeyState1_t *pCtx, uint32_t *data);
+void ClockLFSR_1(sso_snow3gKeyState1_t *pCtx);
+void sso_snow3gStateInitialize_1(sso_snow3gKeyState1_t * pCtx, sso_snow3g_key_schedule_t *pKeySched, uint8_t *pIV);

5.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Export the environmental variable LIBSSO_PATH with the path where
the library was extracted.

	Build the LIBSSO library (explained in Installation section).

	Set CONFIG_RTE_LIBRTE_PMD_SNOW3G=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_eal_vdev_init(“cryptodev_snow3g_pmd”) within the application.

	Use –vdev=”cryptodev_snow3g_pmd” in the EAL options, which will call rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_snow3g_pmd,socket_id=1,max_nb_sessions=128"

 Created using Sphinx 1.3.5.

 6. Quick Assist Crypto Poll Mode Driver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Crypto Device Drivers

6. Quick Assist Crypto Poll Mode Driver

The QAT PMD provides poll mode crypto driver support for Intel QuickAssist
Technology DH895xxC hardware accelerator.

6.1. Features

The QAT PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_SYM_CIPHER_AES128_CBC

	RTE_CRYPTO_SYM_CIPHER_AES192_CBC

	RTE_CRYPTO_SYM_CIPHER_AES256_CBC

	RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA2

	RTE_CRYPTO_CIPHER_AES_GCM

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_AES_XCBC_MAC

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

6.2. Limitations

	Chained mbufs are not supported.

	Hash only is not supported except Snow3G UIA2.

	Cipher only is not supported except Snow3G UEA2.

	Only supports the session-oriented API implementation (session-less APIs are not supported).

	Not performance tuned.

	Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.

	Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.

	No BSD support as BSD QAT kernel driver not available.

6.3. Installation

To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The
VF devices exposed by this driver will be used by QAT PMD.

If you are running on kernel 4.4 or greater, see instructions for
Installation using kernel.org driver below. If you are on a kernel earlier
than 4.4, see Installation using 01.org QAT driver.

6.4. Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org [https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches]
Consult the Getting Started Guide at the same URL for further information.

The steps below assume you are:

	Building on a platform with one DH895xCC device.

	Using package qatmux.l.2.3.0-34.tgz.

	On Fedora21 kernel 3.17.4-301.fc21.x86_64.

In the BIOS ensure that SRIOV is enabled and VT-d is disabled.

Uninstall any existing QAT driver, for example by running:

	./installer.sh uninstall in the directory where originally installed.

	or rmmod qat_dh895xcc; rmmod intel_qat.

Build and install the SRIOV-enabled QAT driver:

mkdir /QAT
cd /QAT
copy qatmux.l.2.3.0-34.tgz to this location
tar zxof qatmux.l.2.3.0-34.tgz

export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host

You can use cat /proc/icp_dh895xcc_dev0/version to confirm the driver is correctly installed.
You can use lspci -d:443 to confirm the bdf of the 32 VF devices are available per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO driver.

Note: If using a later kernel and the build fails with an error relating to strict_stroul not being available apply the following patch:

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5)
+ #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64(str, base, num, endPtr) \
 do { \
 if (str[0] == '-') \
 { \
 *(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \
 }else { \
 *(num) = simple_strtoull((str), &(endPtr), (base)); \
 } \
 } while(0)
+ #endif
#endif
#endif

If the build fails due to missing header files you may need to do following:

	sudo yum install zlib-devel

	sudo yum install openssl-devel

If the build or install fails due to mismatching kernel sources you may need to do the following:

	sudo yum install kernel-headers-`uname -r`

	sudo yum install kernel-src-`uname -r`

	sudo yum install kernel-devel-`uname -r`

6.5. Installation using kernel.org driver

Assuming you are running on at least a 4.4 kernel, you can use the stock kernel.org QAT
driver to start the QAT hardware.

The steps below assume you are:

	Running DPDK on a platform with one DH895xCC device.

	On a kernel at least version 4.4.

In BIOS ensure that SRIOV is enabled and VT-d is disabled.

Ensure the QAT driver is loaded on your system, by executing:

lsmod | grep qat

You should see the following output:

qat_dh895xcc 5626 0
intel_qat 82336 1 qat_dh895xcc

Next, you need to expose the VFs using the sysfs file system.

First find the bdf of the DH895xCC device:

lspci -d : 435

You should see output similar to:

03:00.0 Co-processor: Intel Corporation Coleto Creek PCIe Endpoint

Using the sysfs, enable the VFs:

echo 32 > /sys/bus/pci/drivers/dh895xcc/0000\:03\:00.0/sriov_numvfs

If you get an error, it’s likely you’re using a QAT kernel driver earlier than kernel 4.4.

To verify that the VFs are available for use - use lspci -d:443 to confirm
the bdf of the 32 VF devices are available per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO driver.

	Note: If the QAT kernel modules are not loaded and you see an error like

	Failed to load MMP firmware qat_895xcc_mmp.bin this may be as a
result of not using a distribution, but just updating the kernel directly.

Download firmware from the kernel firmware repo at:
http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/

Copy qat binaries to /lib/firmware:
* cp qat_895xcc.bin /lib/firmware
* cp qat_895xcc_mmp.bin /lib/firmware

cd to your linux source root directory and start the qat kernel modules:
* insmod ./drivers/crypto/qat/qat_common/intel_qat.ko
* insmod ./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko

	Note:The following warning in /var/log/messages can be ignored:

	IOMMU should be enabled for SR-IOV to work correctly

6.6. Binding the available VFs to the DPDK UIO driver

The unbind command below assumes bdfs of 03:01.00-03:04.07, if yours are different adjust the unbind command below:

cd $RTE_SDK
modprobe uio
insmod ./build/kmod/igb_uio.ko

for device in $(seq 1 4); do \
 for fn in $(seq 0 7); do \
 echo -n 0000:03:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
 done; \
done

echo "8086 0443" > /sys/bus/pci/drivers/igb_uio/new_id

You can use lspci -vvd:443 to confirm that all devices are now in use by igb_uio kernel driver.

 Created using Sphinx 1.3.5.

 Sample Applications User Guide

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

Sample Applications User Guide

	1. Introduction
	1.1. Documentation Roadmap

	2. Command Line Sample Application
	2.1. Overview

	2.2. Compiling the Application

	2.3. Running the Application

	2.4. Explanation

	3. Ethtool Sample Application
	3.1. Compiling the Application

	3.2. Running the Application

	3.3. Using the application

	3.4. Explanation

	3.5. Ethtool interface

	4. Exception Path Sample Application
	4.1. Overview

	4.2. Compiling the Application

	4.3. Running the Application

	4.4. Explanation

	5. Hello World Sample Application
	5.1. Compiling the Application

	5.2. Running the Application

	5.3. Explanation

	6. Basic Forwarding Sample Application
	6.1. Compiling the Application

	6.2. Running the Application

	6.3. Explanation

	7. RX/TX Callbacks Sample Application
	7.1. Compiling the Application

	7.2. Running the Application

	7.3. Explanation

	8. IP Fragmentation Sample Application
	8.1. Overview

	8.2. Building the Application

	8.3. Running the Application

	9. IPv4 Multicast Sample Application
	9.1. Overview

	9.2. Building the Application

	9.3. Running the Application

	9.4. Explanation

	10. IP Reassembly Sample Application
	10.1. Overview

	10.2. The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating port.Compiling the Application

	10.3. Running the Application

	10.4. Explanation

	11. Kernel NIC Interface Sample Application
	11.1. Overview

	11.2. Compiling the Application

	11.3. Loading the Kernel Module

	11.4. Running the Application

	11.5. KNI Operations

	11.6. Explanation

	12. Keep Alive Sample Application
	12.1. Overview

	12.2. Compiling the Application

	12.3. Running the Application

	12.4. Explanation

	13. L2 Forwarding with Crypto Sample Application
	13.1. Overview

	13.2. Compiling the Application

	13.3. Running the Application

	13.4. Explanation

	14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.
	14.1. Overview

	14.2. Compiling the Application

	14.3. Running the Application

	14.4. Explanation

	15. L2 Forwarding Sample Application (in Real and Virtualized Environments)
	15.1. Overview

	15.2. Compiling the Application

	15.3. Running the Application

	15.4. Explanation

	16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT)
	16.1. Compiling the Application

	16.2. Running the Application

	16.3. Explanation

	17. L3 Forwarding Sample Application
	17.1. Overview

	17.2. Compiling the Application

	17.3. Running the Application

	17.4. Explanation

	18. L3 Forwarding with Power Management Sample Application
	18.1. Introduction

	18.2. Overview

	18.3. Compiling the Application

	18.4. Running the Application

	18.5. Explanation

	19. L3 Forwarding with Access Control Sample Application
	19.1. Overview

	19.2. Compiling the Application

	19.3. Running the Application

	19.4. Explanation

	20. L3 Forwarding in a Virtualization Environment Sample Application
	20.1. Overview

	20.2. Compiling the Application

	20.3. Running the Application

	20.4. Explanation

	21. Link Status Interrupt Sample Application
	21.1. Overview

	21.2. Compiling the Application

	21.3. Running the Application

	21.4. Explanation

	22. Load Balancer Sample Application
	22.1. Overview

	22.2. Compiling the Application

	22.3. Running the Application

	22.4. Explanation

	23. Multi-process Sample Application
	23.1. Example Applications

	24. QoS Metering Sample Application
	24.1. Overview

	24.2. Compiling the Application

	24.3. Running the Application

	24.4. Explanation

	25. QoS Scheduler Sample Application
	25.1. Overview

	25.2. Compiling the Application

	25.3. Running the Application

	25.4. Explanation

	26. Intel® QuickAssist Technology Sample Application
	26.1. Overview

	26.2. Building the Application

	26.3. Running the Application

	27. Quota and Watermark Sample Application
	27.1. Overview

	27.2. Compiling the Application

	27.3. Running the Application

	27.4. Code Overview

	28. Timer Sample Application
	28.1. Compiling the Application

	28.2. Running the Application

	28.3. Explanation

	29. Packet Ordering Application
	29.1. Overview

	29.2. Compiling the Application

	29.3. Running the Application

	30. VMDQ and DCB Forwarding Sample Application
	30.1. Overview

	30.2. Compiling the Application

	30.3. Running the Application

	30.4. Explanation

	31. Vhost Sample Application
	31.1. Background

	31.2. Sample Code Overview

	31.3. Supported Distributions

	31.4. Prerequisites

	31.5. Compiling the Sample Code

	31.6. Running the Sample Code

	31.7. Running the Virtual Machine (QEMU)

	31.8. Running DPDK in the Virtual Machine

	31.9. Passing Traffic to the Virtual Machine Device

	32. Netmap Compatibility Sample Application
	32.1. Introduction

	32.2. Available APIs

	32.3. Caveats

	32.4. Porting Netmap Applications

	32.5. Compiling the “bridge” Sample Application

	32.6. Running the “bridge” Sample Application

	33. Internet Protocol (IP) Pipeline Application
	33.1. Application overview

	33.2. Design goals

	33.3. Running the application

	33.4. Application stages

	33.5. Configuration file syntax

	33.6. Library of pipeline types

	33.7. Command Line Interface (CLI)

	34. Test Pipeline Application
	34.1. Overview

	34.2. Compiling the Application

	34.3. Running the Application

	35. Distributor Sample Application
	35.1. Overview

	35.2. Compiling the Application

	35.3. Running the Application

	35.4. Explanation

	35.5. Debug Logging Support

	35.6. Statistics

	35.7. Application Initialization

	36. VM Power Management Application
	36.1. Introduction

	36.2. Overview

	36.3. Configuration

	36.4. Compiling and Running the Host Application

	36.5. Compiling and Running the Guest Applications

	37. TEP termination Sample Application
	37.1. Background

	37.2. Sample Code Overview

	37.3. Supported Distributions

	37.4. Prerequisites

	37.5. Compiling the Sample Code

	37.6. Running the Sample Code

	37.7. Running the Virtual Machine (QEMU)

	37.8. Running DPDK in the Virtual Machine

	37.9. Passing Traffic to the Virtual Machine Device

	38. dpdk_proc_info Application
	38.1. Running the Application

	39. PTP Client Sample Application
	39.1. Limitations

	39.2. How the Application Works

	39.3. Compiling the Application

	39.4. Running the Application

	39.5. Code Explanation

	40. Performance Thread Sample Application
	40.1. Overview

	40.2. Compiling the Application

	40.3. Running the Application

	40.4. Explanation

	40.5. The L-thread subsystem

	41. IPsec Security Gateway Sample Application
	41.1. Overview

	41.2. Constraints

	41.3. Compiling the Application

	41.4. Running the Application

	41.5. Configurations

Figures

Fig. 4.15 Packet Flow

Fig. 11.1 Kernel NIC Application Packet Flow

Fig. 14.2 Performance Benchmark Setup (Basic Environment)

Fig. 14.3 Performance Benchmark Setup (Virtualized Environment)

Fig. 15.6 Performance Benchmark Setup (Basic Environment)

Fig. 15.7 Performance Benchmark Setup (Virtualized Environment)

Fig. 13.2 Encryption flow Through the L2 Forwarding with Crypto Application

Fig. 19.5 A typical IPv4 ACL rule

Fig. 19.6 Rules example

Fig. 22.1 Load Balancer Application Architecture

Fig. 23.1 Example Data Flow in a Symmetric Multi-process Application

Fig. 23.2 Example Data Flow in a Client-Server Symmetric Multi-process Application

Fig. 23.3 Master-slave Process Workflow

Fig. 23.4 Slave Process Recovery Process Flow

Fig. 25.1 QoS Scheduler Application Architecture

Fig. 26.1 Intel® QuickAssist Technology Application Block Diagram

Fig. 27.1 Pipeline Overview

Fig. 27.2 Ring-based Processing Pipeline Performance Setup

Fig. 27.3 Threads and Pipelines

Fig. 30.1 Packet Flow Through the VMDQ and DCB Sample Application

Fig. 31.1 System Architecture for Virtio-based Networking (virtio-net).

Fig. 31.2 Virtio with Linux

Fig. 31.3 Vhost-net Architectural Overview

Fig. 31.4 Packet Flow Through the vhost-net Sample Application

Fig. 31.5 Packet Flow on TX in DPDK-testpmd

Fig. 34.1 Test Pipeline Application

Fig. 35.1 Performance Benchmarking Setup (Basic Environment)

Fig. 35.2 Distributor Sample Application Layout

Fig. 36.1 Highlevel Solution

Fig. 36.2 VM request to scale frequency
Fig. 37.1 Overlay Networking.
Fig. 37.2 TEP termination Framework Overview

Fig. 39.1 PTP Synchronization Protocol

Tables

Table 24.18 Output Traffic Marking

Table 25.1 Entity Types

Table 34.1 Table Types

 Created using Sphinx 1.3.5.

 1. Introduction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

1. Introduction

This document describes the sample applications that are included in the Data Plane Development Kit (DPDK).
Each chapter describes a sample application that showcases specific functionality and
provides instructions on how to compile, run and use the sample application.

1.1. Documentation Roadmap

The following is a list of DPDK documents in suggested reading order:

	Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on.
Also, provides the answers to frequently asked questions in FAQ format.

	Getting Started Guides : Describes how to install and
configure the DPDK software for your operating system;
designed to get users up and running quickly with the software.

	Programmer’s Guide: Describes:
	The software architecture and how to use it (through examples),
specifically in a Linux* application (linuxapp) environment.

	The content of the DPDK, the build system
(including the commands that can be used in the root DPDK Makefile to build the development kit and an application)
and guidelines for porting an application.

	Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

	API Reference : Provides detailed information about DPDK functions,
data structures and other programming constructs.

	Sample Applications User Guide : Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality and
provides instructions on how to compile, run and use the sample application.

 Created using Sphinx 1.3.5.

 2. Command Line Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

2. Command Line Sample Application

This chapter describes the Command Line sample application that
is part of the Data Plane Development Kit (DPDK).

2.1. Overview

The Command Line sample application is a simple application that
demonstrates the use of the command line interface in the DPDK.
This application is a readline-like interface that can be used
to debug a DPDK application, in a Linux* application environment.

Note

The rte_cmdline library should not be used in production code since
it is not validated to the same standard as other DPDK libraries.
See also the “rte_cmdline library should not be used in production code due to limited testing” item
in the “Known Issues” section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such as, completion,
cut/paste and some other special bindings that make configuration and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects.
There are three simple commands:

	add obj_name IP: Add a new object with an IP/IPv6 address associated to it.

	del obj_name: Delete the specified object.

	show obj_name: Show the IP associated with the specified object.

Note

To terminate the application, use Ctrl-d.

2.2. Compiling the Application

	Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/cmdline

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

2.3. Running the Application

To run the application in linuxapp environment, issue the following command:

$./build/cmdline -c f -n 4

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

2.4. Explanation

The following sections provide some explanation of the code.

2.4.1. EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL).
This is achieved as follows:

int main(int argc, char **argv)
{
 ret = rte_eal_init(argc, argv);
 if (ret < 0)
 rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the console:

cl = cmdline_stdin_new(main_ctx, "example> ");
cmdline_interact(cl);
cmdline_stdin_exit(cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case,
the application exits.

2.4.2. Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
 (cmdline_parse_inst_t *) &cmd_obj_del_show,
 (cmdline_parse_inst_t *) &cmd_obj_add,
 (cmdline_parse_inst_t *) &cmd_help,
 NULL,
};

Each command (of type cmdline_parse_inst_t) is defined statically.
It contains a pointer to a callback function that is executed when the command is parsed,
an opaque pointer, a help string and a list of tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

	String Token: Match a static string, a list of static strings or any string.

	Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.

	IP Address Token: Match an IPv4 or IPv6 address or network.

	Ethernet* Address Token: Match a MAC address.

In this example, a new token type obj_list is defined and implemented
in the parse_obj_list.c and parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
 cmdline_fixed_string_t action;
 cmdline_fixed_string_t name;
 struct object *obj;
};

static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, attribute ((unused)) void *data)
{
 /* ... */
}

cmdline_parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show_result, action, "show#del");

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_show_result, obj, &global_obj_list);

cmdline_parse_inst_t cmd_obj_del_show = {
 .f = cmd_obj_del_show_parsed, /* function to call */
 .data = NULL, /* 2nd arg of func */
 .help_str = "Show/del an object",
 .tokens = { /* token list, NULL terminated */
 (void *)&cmd_obj_action,
 (void *)&cmd_obj_obj,
 NULL,
 },
};

This command is composed of two tokens:

	The first token is a string token that can be show or del.

	The second token is an object that was previously added using the add command in the global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure.
A pointer to this structure is given as an argument to the callback function and can be used in the body of this function.

 Created using Sphinx 1.3.5.

 3. Ethtool Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

3. Ethtool Sample Application

The Ethtool sample application shows an implementation of an
ethtool-like API and provides a console environment that allows
its use to query and change Ethernet card parameters. The sample
is based upon a simple L2 frame reflector.

3.1. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SD}/examples/ethtool

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

3.2. Running the Application

The application requires an available core for each port, plus one.
The only available options are the standard ones for the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL)
options.

3.3. Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>

From this interface the available commands and descriptions of what
they do as as follows:

	drvinfo: Print driver info

	eeprom: Dump EEPROM to file

	link: Print port link states

	macaddr: Gets/sets MAC address

	mtu: Set NIC MTU

	open: Open port

	pause: Get/set port pause state

	portstats: Print port statistics

	regs: Dump port register(s) to file

	ringparam: Get/set ring parameters

	rxmode: Toggle port Rx mode

	stop: Stop port

	validate: Check that given MAC address is valid unicast address

	vlan: Add/remove VLAN id

	quit: Exit program

3.4. Explanation

The sample program has two parts: A background packet reflector
that runs on a slave core, and a foreground Ethtool Shell that
runs on the master core. These are described below.

3.4.1. Packet Reflector

The background packet reflector is intended to demonstrate basic
packet processing on NIC ports controlled by the Ethtool shim.
Each incoming MAC frame is rewritten so that it is returned to
the sender, using the port in question’s own MAC address as the
source address, and is then sent out on the same port.

3.4.2. Ethtool Shell

The foreground part of the Ethtool sample is a console-based
interface that accepts commands as described in using the
application. Individual call-back functions handle the detail
associated with each command, which make use of the functions
defined in the Ethtool interface to the DPDK functions.

3.5. Ethtool interface

The Ethtool interface is built as a separate library, and implements
the following functions:

	rte_ethtool_get_drvinfo()

	rte_ethtool_get_regs_len()

	rte_ethtool_get_regs()

	rte_ethtool_get_link()

	rte_ethtool_get_eeprom_len()

	rte_ethtool_get_eeprom()

	rte_ethtool_set_eeprom()

	rte_ethtool_get_pauseparam()

	rte_ethtool_set_pauseparam()

	rte_ethtool_net_open()

	rte_ethtool_net_stop()

	rte_ethtool_net_get_mac_addr()

	rte_ethtool_net_set_mac_addr()

	rte_ethtool_net_validate_addr()

	rte_ethtool_net_change_mtu()

	rte_ethtool_net_get_stats64()

	rte_ethtool_net_vlan_rx_add_vid()

	rte_ethtool_net_vlan_rx_kill_vid()

	rte_ethtool_net_set_rx_mode()

	rte_ethtool_get_ringparam()

	rte_ethtool_set_ringparam()

 Created using Sphinx 1.3.5.

 4. Exception Path Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

4. Exception Path Sample Application

The Exception Path sample application is a simple example that demonstrates the use of the DPDK
to set up an exception path for packets to go through the Linux* kernel.
This is done by using virtual TAP network interfaces.
These can be read from and written to by the DPDK application and
appear to the kernel as a standard network interface.

4.1. Overview

The application creates two threads for each NIC port being used.
One thread reads from the port and writes the data unmodified to a thread-specific TAP interface.
The second thread reads from a TAP interface and writes the data unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.

Fig. 4.15 Packet Flow

To make throughput measurements, kernel bridges must be setup to forward data between the bridges appropriately.

4.2. Compiling the Application

	Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/exception_path

	Set the target (a default target will be used if not specified).
For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

This application is intended as a linuxapp only.
See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

4.3. Running the Application

The application requires a number of command line options:

.build/exception_path [EAL options] -- -p PORTMASK -i IN_CORES -o OUT_CORES

where:

	-p PORTMASK: A hex bitmask of ports to use

	-i IN_CORES: A hex bitmask of cores which read from NIC

	-o OUT_CORES: A hex bitmask of cores which write to NIC

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

The number of bits set in each bitmask must be the same.
The coremask -c parameter of the EAL options should include IN_CORES and OUT_CORES.
The same bit must not be set in IN_CORES and OUT_CORES.
The affinities between ports and cores are set beginning with the least significant bit of each mask, that is,
the port represented by the lowest bit in PORTMASK is read from by the core represented by the lowest bit in IN_CORES,
and written to by the core represented by the lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

./build/exception_path -c f -n 4 -- -p 3 -i 3 -o c

4.3.1. Getting Statistics

While the application is running, statistics on packets sent and
received can be displayed by sending the SIGUSR1 signal to the application from another terminal:

killall -USR1 exception_path

The statistics can be reset by sending a SIGUSR2 signal in a similar way.

4.4. Explanation

The following sections provide some explanation of the code.

4.4.1. Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Application (in Real and Virtualized Environments).
In addition, the TAP interfaces must also be created.
A TAP interface is created for each lcore that is being used.
The code for creating the TAP interface is as follows:

/*
 * Create a tap network interface, or use existing one with same name.
 * If name[0]='\0' then a name is automatically assigned and returned in name.
 */

static int tap_create(char *name)
{
 struct ifreq ifr;
 int fd, ret;

 fd = open("/dev/net/tun", O_RDWR);
 if (fd < 0)
 return fd;

 memset(&ifr, 0, sizeof(ifr));

 /* TAP device without packet information */

 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
 if (name && *name)
 rte_snprinf(ifr.ifr_name, IFNAMSIZ, name);

 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);

 if (ret < 0) {
 close(fd);
 return ret;

 }

 if (name)
 snprintf(name, IFNAMSIZ, ifr.ifr_name);

 return fd;
}

The other step in the initialization process that is unique to this sample application
is the association of each port with two cores:

	One core to read from the port and write to a TAP interface

	A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the lcore IDs.
The population of this array is shown below:

 tx_port = 0;
 rx_port = 0;

 RTE_LCORE_FOREACH(i) {
 if (input_cores_mask & (1ULL << i)) {
 /* Skip ports that are not enabled */
 while ((ports_mask & (1 << rx_port)) == 0) {
 rx_port++;
 if (rx_port > (sizeof(ports_mask) * 8))
 goto fail; /* not enough ports */
 }
 port_ids[i] = rx_port++;
 } else if (output_cores_mask & (1ULL << i)) {
 /* Skip ports that are not enabled */
 while ((ports_mask & (1 << tx_port)) == 0) {
 tx_port++;
 if (tx_port > (sizeof(ports_mask) * 8))
 goto fail; /* not enough ports */
 }
 port_ids[i] = tx_port++;
 }
}

4.4.2. Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each lcore.
This function first checks the lcore_id against the user provided input_cores_mask and output_cores_mask to see
if this core is reading from or writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 Forwarding sample application
(see Receive, Process and Transmit Packets).
The packet transmission is done by calling write() with the file descriptor of the appropriate TAP interface
and then explicitly freeing the mbuf back to the pool.

/* Loop forever reading from NIC and writing to tap */

for (;;) {
 struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
 unsigned i;

 const unsigned nb_rx = rte_eth_rx_burst(port_ids[lcore_id], 0, pkts_burst, PKT_BURST_SZ);

 lcore_stats[lcore_id].rx += nb_rx;

 for (i = 0; likely(i < nb_rx); i++) {
 struct rte_mbuf *m = pkts_burst[i];
 int ret = write(tap_fd, rte_pktmbuf_mtod(m, void*),

 rte_pktmbuf_data_len(m));
 rte_pktmbuf_free(m);
 if (unlikely(ret<0))
 lcore_stats[lcore_id].dropped++;
 else
 lcore_stats[lcore_id].tx++;
 }
}

For the other case that reads from a TAP interface and writes to a NIC port,
packets are retrieved by doing a read() from the file descriptor of the appropriate TAP interface.
This fills in the data into the mbuf, then other fields are set manually.
The packet can then be transmitted as normal.

/* Loop forever reading from tap and writing to NIC */

for (;;) {
 int ret;
 struct rte_mbuf *m = rte_pktmbuf_alloc(pktmbuf_pool);

 if (m == NULL)
 continue;

 ret = read(tap_fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
 if (unlikely(ret < 0)) {
 FATAL_ERROR("Reading from %s interface failed", tap_name);
 }

 m->pkt.nb_segs = 1;
 m->pkt.next = NULL;
 m->pkt.data_len = (uint16_t)ret;

 ret = rte_eth_tx_burst(port_ids[lcore_id], 0, &m, 1);
 if (unlikely(ret < 1)) {
 rte_pktmuf_free(m);
 lcore_stats[lcore_id].dropped++;
 }
 else {
 lcore_stats[lcore_id].tx++;
 }
}

To set up loops for measuring throughput, TAP interfaces can be connected using bridging.
The steps to do this are described in the section that follows.

4.4.3. Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format tap_dpdk_nn,
where nn is the lcore ID. These TAP interfaces need to be configured for use:

ifconfig tap_dpdk_00 up

To set up a bridge between two interfaces so that packets sent to one interface can be read from another,
use the brctl tool:

brctl addbr "br0"
brctl addif br0 tap_dpdk_00
brctl addif br0 tap_dpdk_03
ifconfig br0 up

The TAP interfaces created by this application exist only when the application is running,
so the steps above need to be repeated each time the application is run.
To avoid this, persistent TAP interfaces can be created using openvpn:

openvpn --mktun --dev tap_dpdk_00

If this method is used, then the steps above have to be done only once and
the same TAP interfaces can be reused each time the application is run.
To remove bridges and persistent TAP interfaces, the following commands are used:

ifconfig br0 down
brctl delbr br0
openvpn --rmtun --dev tap_dpdk_00

 Created using Sphinx 1.3.5.

 5. Hello World Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

5. Hello World Sample Application

The Hello World sample application is an example of the simplest DPDK application that can be written.
The application simply prints an “helloworld” message on every enabled lcore.

5.1. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

5.2. Running the Application

To run the example in a linuxapp environment:

$./build/helloworld -c f -n 4

Refer to DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

5.3. Explanation

The following sections provide some explanation of code.

5.3.1. EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL).
This is done in the main() function using the following code:

int

main(int argc, char **argv)

{
 ret = rte_eal_init(argc, argv);
 if (ret < 0)
 rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case of a Linuxapp environment).
The argc and argv arguments are provided to the rte_eal_init() function.
The value returned is the number of parsed arguments.

5.3.2. Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore.
In this example, lcore_hello() is called on every available lcore.
The following is the definition of the function:

static int
lcore_hello(attribute ((unused)) void *arg)
{
 unsigned lcore_id;

 lcore_id = rte_lcore_id();
 printf("hello from core %u\n", lcore_id);
 return 0;
}

The code that launches the function on each lcore is as follows:

/* call lcore_hello() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
 rte_eal_remote_launch(lcore_hello, NULL, lcore_id);
}

/* call it on master lcore too */

lcore_hello(NULL);

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch() function.

 Created using Sphinx 1.3.5.

 6. Basic Forwarding Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

6. Basic Forwarding Sample Application

The Basic Forwarding sample application is a simple skeleton example of a
forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding
application. For more detailed implementations see the L2 and L3 forwarding
sample applications.

6.1. Compiling the Application

To compile the application export the path to the DPDK source tree and go to
the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/skeleton

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

6.2. Running the Application

To run the example in a linuxapp environment:

./build/basicfwd -c 2 -n 4

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

6.3. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

6.3.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

mbuf_pool = rte_mempool_create("MBUF_POOL",
 NUM_MBUFS * nb_ports,
 MBUF_SIZE,
 MBUF_CACHE_SIZE,
 sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL,
 rte_socket_id(),
 0);

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
port_init() function which is explained in the next section:

for (portid = 0; portid < nb_ports; portid++) {
 if (port_init(portid, mbuf_pool) != 0) {
 rte_exit(EXIT_FAILURE,
 "Cannot init port %" PRIu8 "\n", portid);
 }
}

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example lcore_main() is called on a single
lcore.

lcore_main();

The lcore_main() function is explained below.

6.3.2. The Port Initialization Function

The main functional part of the port initialization used in the Basic
Forwarding application is shown below:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
 struct rte_eth_conf port_conf = port_conf_default;
 const uint16_t rx_rings = 1, tx_rings = 1;
 struct ether_addr addr;
 int retval;
 uint16_t q;

 if (port >= rte_eth_dev_count())
 return -1;

 /* Configure the Ethernet device. */
 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
 if (retval != 0)
 return retval;

 /* Allocate and set up 1 RX queue per Ethernet port. */
 for (q = 0; q < rx_rings; q++) {
 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
 if (retval < 0)
 return retval;
 }

 /* Allocate and set up 1 TX queue per Ethernet port. */
 for (q = 0; q < tx_rings; q++) {
 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL);
 if (retval < 0)
 return retval;
 }

 /* Start the Ethernet port. */
 retval = rte_eth_dev_start(port);
 if (retval < 0)
 return retval;

 /* Enable RX in promiscuous mode for the Ethernet device. */
 rte_eth_promiscuous_enable(port);

 return 0;
}

The Ethernet ports are configured with default settings using the
rte_eth_dev_configure() function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
 .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
};

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable(port);

6.3.3. The Lcores Main

As we saw above the main() function calls an application function on the
available lcores. For the Basic Forwarding application the lcore function
looks like the following:

static __attribute__((noreturn)) void
lcore_main(void)
{
 const uint8_t nb_ports = rte_eth_dev_count();
 uint8_t port;

 /*
 * Check that the port is on the same NUMA node as the polling thread
 * for best performance.
 */
 for (port = 0; port < nb_ports; port++)
 if (rte_eth_dev_socket_id(port) > 0 &&
 rte_eth_dev_socket_id(port) !=
 (int)rte_socket_id())
 printf("WARNING, port %u is on remote NUMA node to "
 "polling thread.\n\tPerformance will "
 "not be optimal.\n", port);

 printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
 rte_lcore_id());

 /* Run until the application is quit or killed. */
 for (;;) {
 /*
 * Receive packets on a port and forward them on the paired
 * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
 */
 for (port = 0; port < nb_ports; port++) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
 }
}

The main work of the application is done within the loop:

for (;;) {
 for (port = 0; port < nb_ports; port++) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
}

Packets are received in bursts on the RX ports and transmitted in bursts on
the TX ports. The ports are grouped in pairs with a simple mapping scheme
using the an XOR on the port number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that
are transmitted. If packets fail to transmit, (nb_tx < nb_rx), then they
must be freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using
Ctrl-C.

 Created using Sphinx 1.3.5.

 7. RX/TX Callbacks Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

7. RX/TX Callbacks Sample Application

The RX/TX Callbacks sample application is a packet forwarding application that
demonstrates the use of user defined callbacks on received and transmitted
packets. The application performs a simple latency check, using callbacks, to
determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received
packets to add a timestamp. A separate callback is applied to all packets
prior to transmission to calculate the elapsed time, in CPU cycles.

7.1. Compiling the Application

To compile the application export the path to the DPDK source tree and go to
the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/rxtx_callbacks

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS
setting is on in the config/common_ config file that applies to the
target. This is generally on by default:

CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y

Build the application as follows:

make

7.2. Running the Application

To run the example in a linuxapp environment:

./build/rxtx_callbacks -c 2 -n 4

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

7.3. Explanation

The rxtx_callbacks application is mainly a simple forwarding application
based on the Basic Forwarding Sample Application. See that section of the documentation for more
details of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

7.3.1. The Main Function

The main() function performs the application initialization and calls the
execution threads for each lcore. This function is effectively identical to
the main() function explained in Basic Forwarding Sample Application.

The lcore_main() function is also identical.

The main difference is in the user defined port_init() function where the
callbacks are added. This is explained in the next section:

7.3.2. The Port Initialization Function

The main functional part of the port initialization is shown below with
comments:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
 struct rte_eth_conf port_conf = port_conf_default;
 const uint16_t rx_rings = 1, tx_rings = 1;
 struct ether_addr addr;
 int retval;
 uint16_t q;

 if (port >= rte_eth_dev_count())
 return -1;

 /* Configure the Ethernet device. */
 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
 if (retval != 0)
 return retval;

 /* Allocate and set up 1 RX queue per Ethernet port. */
 for (q = 0; q < rx_rings; q++) {
 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
 if (retval < 0)
 return retval;
 }

 /* Allocate and set up 1 TX queue per Ethernet port. */
 for (q = 0; q < tx_rings; q++) {
 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL);
 if (retval < 0)
 return retval;
 }

 /* Start the Ethernet port. */
 retval = rte_eth_dev_start(port);
 if (retval < 0)
 return retval;

 /* Enable RX in promiscuous mode for the Ethernet device. */
 rte_eth_promiscuous_enable(port);

 /* Add the callbacks for RX and TX.*/
 rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
 rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

 return 0;
}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

More than one callback can be added and additional information can be passed
to callback function pointers as a void*. In the examples above NULL
is used.

The add_timestamps() and calc_latency() functions are explained below.

7.3.3. The add_timestamps() Callback

The add_timestamps() callback is added to the RX port and is applied to
all packets received:

static uint16_t
add_timestamps(uint8_t port __rte_unused, uint16_t qidx __rte_unused,
 struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{
 unsigned i;
 uint64_t now = rte_rdtsc();

 for (i = 0; i < nb_pkts; i++)
 pkts[i]->udata64 = now;

 return nb_pkts;
}

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to
each packet (see the cycles section of the DPDK API Documentation for
details).

7.3.4. The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all
packets prior to transmission:

static uint16_t
calc_latency(uint8_t port __rte_unused, uint16_t qidx __rte_unused,
 struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{
 uint64_t cycles = 0;
 uint64_t now = rte_rdtsc();
 unsigned i;

 for (i = 0; i < nb_pkts; i++)
 cycles += now - pkts[i]->udata64;

 latency_numbers.total_cycles += cycles;
 latency_numbers.total_pkts += nb_pkts;

 if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {
 printf("Latency = %"PRIu64" cycles\n",
 latency_numbers.total_cycles / latency_numbers.total_pkts);

 latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
 }

 return nb_pkts;
}

The calc_latency() function accumulates the total number of packets and
the total number of cycles used. Once more than 100 million packets have been
transmitted the average cycle count per packet is printed out and the counters
are reset.

 Created using Sphinx 1.3.5.

 8. IP Fragmentation Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

8. IP Fragmentation Sample Application

The IPv4 Fragmentation application is a simple example of packet processing
using the Data Plane Development Kit (DPDK).
The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

8.1. Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:

	The first difference is that the IP Fragmentation sample application makes use of indirect buffers.

	The second difference is that the forwarding decision is taken
based on information read from the input packet’s IP header.

	The third difference is that the application differentiates between
IP and non-IP traffic by means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number,
associated with that IP address.
Any unmatched packets are forwarded to the originating port.

By default, input frame sizes up to 9.5 KB are supported.
Before forwarding, the input IP packet is fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

8.2. Building the Application

To build the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_fragmentation

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

8.3. Running the Application

The LPM object is created and loaded with the pre-configured entries read from
global l3fwd_ipv4_route_array and l3fwd_ipv6_route_array tables.
For each input packet, the packet forwarding decision
(that is, the identification of the output interface for the packet) is taken as a result of LPM lookup.
If the IP packet size is greater than default output MTU,
then the input packet is fragmented and several fragments are sent via the output interface.

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-q NQ]

where:

	-p PORTMASK is a hexadecimal bitmask of ports to configure

	-q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_fragmentation -c 0x14 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)
...
IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...
IP_FRAG: entering main loop on lcore 4
IP_FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: -- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_fragmentation -c 0x10 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
 {IPv4(100, 10, 0, 0), 16, 0},
 {IPv4(100, 20, 0, 0), 16, 1},
 {IPv4(100, 30, 0, 0), 16, 2},
 {IPv4(100, 40, 0, 0), 16, 3},
 {IPv4(100, 50, 0, 0), 16, 4},
 {IPv4(100, 60, 0, 0), 16, 5},
 {IPv4(100, 70, 0, 0), 16, 6},
 {IPv4(100, 80, 0, 0), 16, 7},
};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
};

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198 bytes,
seven IPv4 packets will be sent out from port #0 to the destination address 100.10.1.1:
six of those packets will have length 1500 bytes and one packet will have length 318 bytes.
IP Fragmentation sample application provides basic NUMA support
in that all the memory structures are allocated on all sockets that have active lcores on them.

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

 Created using Sphinx 1.3.5.

 9. IPv4 Multicast Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

9. IPv4 Multicast Sample Application

The IPv4 Multicast application is a simple example of packet processing
using the Data Plane Development Kit (DPDK).
The application performs L3 multicasting.

9.1. Overview

The application demonstrates the use of zero-copy buffers for packet forwarding.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
This guide highlights the differences between the two applications.
There are two key differences from the L2 Forwarding sample application:

	The IPv4 Multicast sample application makes use of indirect buffers.

	The forwarding decision is taken based on information read from the input packet’s IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method.
The lookup table is composed of pairs of destination IPv4 address (the FBK)
and a port mask associated with that IPv4 address.

For convenience and simplicity, this sample application does not take IANA-assigned multicast addresses into account,
but instead equates the last four bytes of the multicast group (that is, the last four bytes of the destination IP address)
with the mask of ports to multicast packets to.
Also, the application does not consider the Ethernet addresses;
it looks only at the IPv4 destination address for any given packet.

9.2. Building the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ipv4_multicast

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

Note

The compiled application is written to the build subdirectory.
To have the application written to a different location,
the O=/path/to/build/directory option may be specified in the make command.

9.3. Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-q NQ: determines the number of queues per lcore

Note

Unlike the basic L2/L3 Forwarding sample applications,
NUMA support is not provided in the IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -c 0x00f -n 3 -- -p 0x3 -q 1

In this command:

	The -c option enables cores 0, 1, 2 and 3

	The -n option specifies 3 memory channels

	The -p option enables ports 0 and 1

	The -q option assigns 1 queue to each lcore

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

9.4. Explanation

The following sections provide some explanation of the code.
As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The following sections describe aspects that are specific to the IPv4 Multicast sample application.

9.4.1. Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools.
Two of the pools are for indirect buffers used for packet duplication purposes.
Memory pools for indirect buffers are initialized differently from the memory pool for direct buffers:

packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);
clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF,
CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

The reason for this is because indirect buffers are not supposed to hold any packet data and
therefore can be initialized with lower amount of reserved memory for each buffer.

9.4.2. Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

static int

init_mcast_hash(void)
{
 uint32_t i;
 mcast_hash_params.socket_id = rte_socket_id();

 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
 if (mcast_hash == NULL){
 return -1;
 }

 for (i = 0; i < N_MCAST_GROUPS; i ++){
 if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) {
 return -1;
 }
 }
 return 0;
}

9.4.3. Forwarding

All forwarding is done inside the mcast_forward() function.
Firstly, the Ethernet* header is removed from the packet and the IPv4 address is extracted from the IPv4 header:

/* Remove the Ethernet header from the input packet */

iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct ether_hdr));
RTE_MBUF_ASSERT(iphdr != NULL);
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and
if the routing table has any ports assigned to the destination address:

if (!IS_IPV4_MCAST(dest_addr) ||
 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
 (port_mask = hash & enabled_port_mask) == 0) {
 rte_pktmbuf_free(m);
 return;
}

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt() function:

/* Get number of bits set. */

static inline uint32_t bitcnt(uint32_t v)
{
 uint32_t n;

 for (n = 0; v != 0; v &= v - 1, n++)
 ;
 return n;
}

This is done to determine which forwarding algorithm to use.
This is explained in more detail in the next section.

Thereafter, a destination Ethernet address is constructed:

/* construct destination Ethernet address */

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same destination Ethernet address.
The destination Ethernet address is constructed from the lower 23 bits of the multicast group OR-ed
with the Ethernet address 01:00:5e:00:00:00, as per RFC 1112:

#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated with a multicast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
 /* Prepare output packet and send it out. */

 if ((port_mask & 1) != 0) {
 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
 mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
 else if (use_clone == 0)
 rte_pktmbuf_free(m);
 }
}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint8_t port)
{
 struct ether_hdr *ethdr;
 uint16_t len;

 /* Construct Ethernet header. */

 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t) sizeof(*ethdr));

 RTE_MBUF_ASSERT(ethdr != NULL);

 ether_addr_copy(dest_addr, ðdr->d_addr);
 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);

 /* Put new packet into the output queue */

 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = pkt;
 qconf->tx_mbufs[port].len = ++len;

 /* Transmit packets */

 if (unlikely(MAX_PKT_BURST == len))
 send_burst(qconf, port);
}

9.4.4. Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy buffer cloning.
There are two approaches for creating the outgoing packet and although both are based on the data zero-copy idea,
there are some differences in the detail.

The first approach creates a clone of the input packet, for example,
walk though all segments of the input packet and for each of segment,
create a new buffer and attach that new buffer to the segment
(refer to rte_pktmbuf_clone() in the rte_mbuf library for more details).
A new buffer is then allocated for the packet header and is prepended to the cloned buffer.

The second approach does not make a clone, it just increments the reference counter for all input packet segment,
allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of packet’s metadata.
The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata,
so we can safely modify the data pointer of the input packet.
That allows us to skip creation if the output packet is for the last destination port
and instead modify input packet’s header in place.
For example, for N destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet,
that is, the “clone” operation is skipped completely.
However, there is a price to pay.
The input packet’s metadata must remain intact, so for N destination ports,
we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet),
first approach is faster.
As the number of outgoing ports (and/or input segments) grows, the second approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask,
either the first (with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually cloning the buffers):

static inline struct rte_mbuf *mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{
 struct rte_mbuf *hdr;

 /* Create new mbuf for the header. */

 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
 return NULL;

 /* If requested, then make a new clone packet. */

 if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
 rte_pktmbuf_free(hdr);
 return NULL;
 }

 /* prepend new header */

 hdr->pkt.next = pkt;

 /* update header's fields */

 hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len);
 hdr->pkt.nb_segs = (uint8_t)(pkt->pkt.nb_segs + 1);

 /* copy metadata from source packet */

 hdr->pkt.in_port = pkt->pkt.in_port;
 hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
 hdr->pkt.hash = pkt->pkt.hash;
 hdr->ol_flags = pkt->ol_flags;
 rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1);

 return hdr;
}

 Created using Sphinx 1.3.5.

 10. IP Reassembly Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

10. IP Reassembly Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK.
The application performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

10.1. Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding
with reassembly for IPv4 and IPv6 fragmented packets.
The initialization and run- time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The main difference from the L2 Forwarding sample application is that
it reassembles fragmented IPv4 and IPv6 packets before forwarding.
The maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

	The first difference is that the forwarding decision is taken based on information read from the input packet’s IP header.

	The second difference is that the application differentiates between IP and non-IP traffic by means of offload flags.

10.2. The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating port.Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_reassembly

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

10.3. Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[(s|ms)]]

where:

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-q NQ: Number of RX queues per lcore

	–maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535). Default value: 4096.

	–flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet.
If all fragments of the packet wouldn’t appear within given time-out,
then they are considered as invalid and will be dropped.
Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_reassembly -c 0x14 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
...

IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...

IP_RSMBL: entering main loop on lcore 4
IP_RSMBL: -- lcoreid=4 portid=2
IP_RSMBL: entering main loop on lcore 2
IP_RSMBL: -- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_reassembly -c 0x10 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

Please note that in order to test this application,
the traffic generator should be generating valid fragmented IP packets.
For IPv6, the only supported case is when no other extension headers other than
fragment extension header are present in the packet.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
 {IPv4(100, 10, 0, 0), 16, 0},
 {IPv4(100, 20, 0, 0), 16, 1},
 {IPv4(100, 30, 0, 0), 16, 2},
 {IPv4(100, 40, 0, 0), 16, 3},
 {IPv4(100, 50, 0, 0), 16, 4},
 {IPv4(100, 60, 0, 0), 16, 5},
 {IPv4(100, 70, 0, 0), 16, 6},
 {IPv4(100, 80, 0, 0), 16, 7},
};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
};

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1,
a reassembled IPv4 packet be sent out from port #0 to the destination address 100.10.1.1
once all the fragments are collected.

10.4. Explanation

The following sections provide some explanation of the sample application code.
As mentioned in the overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The following sections describe aspects that are specific to the IP reassemble sample application.

10.4.1. IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more detailed explanation of how to use this library.
Fragment table maintains information about already received fragments of the packet.
Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.
To avoid lock contention, each RX queue has its own Fragment Table,
e.g. the application can’t handle the situation when different fragments of the same packet arrive through different RX queues.
Each table entry can hold information about packet consisting of up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL)
{
 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue);
 return -1;
}

10.4.2. Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated.
At any given time up to (2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per packet>)
can be stored inside Fragment Table waiting for remaining fragments.
To keep mempool size under reasonable limits and to avoid situation when one RX queue can starve other queues,
each RX queue uses its own mempool.

nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);

snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);

if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

 RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
 return -1;
}

10.4.3. Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function.
If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 packets,
or rte_ipv6_reassemble_packet() for IPv6 packets.
These functions either return a pointer to valid mbuf that contains reassembled packet,
or NULL (if the packet can’t be reassembled for some reason).
Then l3fwd_simple_forward() continues with the code for the packet forwarding decision
(that is, the identification of the output interface for the packet) and
actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

	Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination Address, Packet ID>

	If the entry is found, then check if that entry already timed-out.
If yes, then free all previously received fragments,
and remove information about them from the entry.

	If no entry with such key is found, then try to create a new one by one of two ways:
	Use as empty entry

	Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.

	Update the entry with new fragment information and check
if a packet can be reassembled (the packet’s entry contains all fragments).
	If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled mbuf to the caller.

	If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error
(can’t insert new entry into the Fragment table, or invalid/timed-out fragment),
then it will free all associated with the packet fragments,
mark the table entry as invalid and return NULL to the caller.

10.4.4. Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table.
This macro is disabled by default.
To make ip_reassembly print the statistics to the standard output,
the user must send either an USR1, INT or TERM signal to the process.
For all of these signals, the ip_reassembly process prints Fragment table statistics for each RX queue,
plus the INT and TERM will cause process termination as usual.

 Created using Sphinx 1.3.5.

 11. Kernel NIC Interface Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

11. Kernel NIC Interface Sample Application

The Kernel NIC Interface (KNI) is a DPDK control plane solution that
allows userspace applications to exchange packets with the kernel networking stack.
To accomplish this, DPDK userspace applications use an IOCTL call
to request the creation of a KNI virtual device in the Linux* kernel.
The IOCTL call provides interface information and the DPDK’s physical address space,
which is re-mapped into the kernel address space by the KNI kernel loadable module
that saves the information to a virtual device context.
The DPDK creates FIFO queues for packet ingress and egress
to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver,
which upon receiving the IOCTL call access the DPDK’s FIFO queue to
receive/transmit packets from/to the DPDK userspace application.
The FIFO queues contain pointers to data packets in the DPDK. This:

	Provides a faster mechanism to interface with the kernel net stack and eliminates system calls

	Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)

	Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use
of the DPDK to create a path for packets to go through the Linux* kernel.
This is done by creating one or more kernel net devices for each of the DPDK ports.
The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and
also the exchange of packets between the DPDK application and the Linux* kernel.

11.1. Overview

The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used,
and allocates one or more KNI device for each physical NIC port with kernel module’s support.
For a physical NIC port, one thread reads from the port and writes to KNI devices,
and another thread reads from KNI devices and writes the data unmodified to the physical NIC port.
It is recommended to configure one KNI device for each physical NIC port.
If configured with more than one KNI devices for a physical NIC port,
it is just for performance testing, or it can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.

[image: ../_images/kernel_nic.png]
Fig. 11.1 Kernel NIC Application Packet Flow

11.2. Compiling the Application

Compile the application as follows:

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/kni

	Set the target (a default target is used if not specified)

Note

This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

	Build the application:

make

11.3. Loading the Kernel Module

Loading the KNI kernel module without any parameter is the typical way a DPDK application
gets packets into and out of the kernel net stack.
This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side:

#insmod rte_kni.ko

Pinning the kernel thread to a specific core can be done using a taskset command such as following:

#taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'`

This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0),
which means it needs to check if that lcore is available on the board.
This command must be sent after the application has been launched, as insmod does not start the kni thread.

For optimum performance,
the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application.

To provide flexibility of performance, the kernel module of the KNI,
located in the kmod sub-directory of the DPDK target directory,
can be loaded with parameter of kthread_mode as follows:

	#insmod rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side.
By default, it is in this single kernel thread mode.
It can set core affinity for this kernel thread by using Linux command taskset.

	#insmod rte_kni.ko kthread_mode =multiple

This mode will create a kernel thread for each KNI device for packet receiving in kernel side.
The core affinity of each kernel thread is set when creating the KNI device.
The lcore ID for each kernel thread is provided in the command line of launching the application.
Multiple kernel thread mode can provide scalable higher performance.

To measure the throughput in a loopback mode, the kernel module of the KNI,
located in the kmod sub-directory of the DPDK target directory,
can be loaded with parameters as follows:

	#insmod rte_kni.ko lo_mode=lo_mode_fifo

This loopback mode will involve ring enqueue/dequeue operations in kernel space.

	#insmod rte_kni.ko lo_mode=lo_mode_fifo_skb

This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.

11.4. Running the Application

The application requires a number of command line options:

kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"

Where:

	-P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	-p PORTMASK: Hexadecimal bitmask of ports to configure.

	–config=”(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]”:
Determines which lcores of RX, TX, kernel thread are mapped to which ports.

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstraction Layer (EAL) options.

The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on.
The -p PORTMASK parameter should include the ports indicated by the port in –config, neither more nor less.

The lcore_kthread in –config can be configured none, one or more lcore IDs.
In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port,
while no specific lcore affinity will be set for its kernel thread.
If configured one or more lcore IDs, one or more KNI devices will be allocated for each port,
while specific lcore affinity will be set for its kernel thread.
In single kernel thread mode, if configured none, a KNI device will be allocated for each port.
If configured one or more lcore IDs,
one or more KNI devices will be allocated for each port while
no lcore affinity will be set as there is only one kernel thread for all KNI devices.

For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX,
and one lcore of kernel thread for each port:

./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"

11.5. KNI Operations

Once the KNI application is started, one can use different Linux* commands to manage the net interfaces.
If more than one KNI devices configured for a physical port,
only the first KNI device will be paired to the physical device.
Operations on other KNI devices will not affect the physical port handled in user space application.

Assigning an IP address:

#ifconfig vEth0_0 192.168.0.1

Displaying the NIC registers:

#ethtool -d vEth0_0

Dumping the network traffic:

#tcpdump -i vEth0_0

When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.

11.6. Explanation

The following sections provide some explanation of code.

11.6.1. Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Application (in Real and Virtualized Environments)..
In addition, one or more kernel NIC interfaces are allocated for each
of the configured ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is as follows:

 static int
 kni_alloc(uint8_t port_id)
 {
 uint8_t i;
 struct rte_kni *kni;
 struct rte_kni_conf conf;
 struct kni_port_params **params = kni_port_params_array;

 if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
 return -1;

 params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;

 for (i = 0; i < params[port_id]->nb_kni; i++) {

 /* Clear conf at first */

 memset(&conf, 0, sizeof(conf));
 if (params[port_id]->nb_lcore_k) {
 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
 conf.core_id = params[port_id]->lcore_k[i];
 conf.force_bind = 1;
 } else
 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
 conf.group_id = (uint16_t)port_id;
 conf.mbuf_size = MAX_PACKET_SZ;

 /*
 * The first KNI device associated to a port
 * is the master, for multiple kernel thread
 * environment.
 */

 if (i == 0) {
 struct rte_kni_ops ops;
 struct rte_eth_dev_info dev_info;

 memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);

 conf.addr = dev_info.pci_dev->addr;
 conf.id = dev_info.pci_dev->id;

 memset(&ops, 0, sizeof(ops));

 ops.port_id = port_id;
 ops.change_mtu = kni_change_mtu;
 ops.config_network_if = kni_config_network_interface;

 kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);
 } else
 kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);

 if (!kni)
 rte_exit(EXIT_FAILURE, "Fail to create kni for "
 "port: %d\n", port_id);

 params[port_id]->kni[i] = kni;
 }
 return 0;
}

The other step in the initialization process that is unique to this sample application
is the association of each port with lcores for RX, TX and kernel threads.

	One lcore to read from the port and write to the associated one or more KNI devices

	Another lcore to read from one or more KNI devices and write to the port

	Other lcores for pinning the kernel threads on one by one

This is done by using the`kni_port_params_array[]` array, which is indexed by the port ID.
The code is as follows:

static int
parse_config(const char *arg)
{
 const char *p, *p0 = arg;
 char s[256], *end;
 unsigned size;
 enum fieldnames {
 FLD_PORT = 0,
 FLD_LCORE_RX,
 FLD_LCORE_TX,
 _NUM_FLD = KNI_MAX_KTHREAD + 3,
 };
 int i, j, nb_token;
 char *str_fld[_NUM_FLD];
 unsigned long int_fld[_NUM_FLD];
 uint8_t port_id, nb_kni_port_params = 0;

 memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));

 while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {
 p++;
 if ((p0 = strchr(p, ')')) == NULL)
 goto fail;

 size = p0 - p;

 if (size >= sizeof(s)) {
 printf("Invalid config parameters\n");
 goto fail;
 }

 snprintf(s, sizeof(s), "%.*s", size, p);
 nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');

 if (nb_token <= FLD_LCORE_TX) {
 printf("Invalid config parameters\n");
 goto fail;
 }

 for (i = 0; i < nb_token; i++) {
 errno = 0;
 int_fld[i] = strtoul(str_fld[i], &end, 0);
 if (errno != 0 || end == str_fld[i]) {
 printf("Invalid config parameters\n");
 goto fail;
 }
 }

 i = 0;
 port_id = (uint8_t)int_fld[i++];

 if (port_id >= RTE_MAX_ETHPORTS) {
 printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);
 goto fail;
 }

 if (kni_port_params_array[port_id]) {
 printf("Port %u has been configured\n", port_id);
 goto fail;
 }

 kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);
 kni_port_params_array[port_id]->port_id = port_id;
 kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
 kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];

 if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
 printf("lcore_rx %u or lcore_tx %u ID could not "
 "exceed the maximum %u\n",
 kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);
 goto fail;
 }

 for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
 kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
 kni_port_params_array[port_id]->nb_lcore_k = j;
 }

 print_config();

 return 0;

fail:

 for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
 if (kni_port_params_array[i]) {
 rte_free(kni_port_params_array[i]);
 kni_port_params_array[i] = NULL;
 }
 }

 return -1;

}

11.6.2. Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore.
This function first checks the lcore_id against the user provided lcore_rx and lcore_tx
to see if this lcore is reading from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces,
the packet reception is the same as in L2 Forwarding sample application
(see Receive, Process and Transmit Packets).
The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst().
The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.

/**
 * Interface to burst rx and enqueue mbufs into rx_q
 */

static void
kni_ingress(struct kni_port_params *p)
{
 uint8_t i, nb_kni, port_id;
 unsigned nb_rx, num;
 struct rte_mbuf *pkts_burst[PKT_BURST_SZ];

 if (p == NULL)
 return;

 nb_kni = p->nb_kni;
 port_id = p->port_id;

 for (i = 0; i < nb_kni; i++) {
 /* Burst rx from eth */
 nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);
 if (unlikely(nb_rx > PKT_BURST_SZ)) {
 RTE_LOG(ERR, APP, "Error receiving from eth\n");
 return;
 }

 /* Burst tx to kni */
 num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
 kni_stats[port_id].rx_packets += num;
 rte_kni_handle_request(p->kni[i]);

 if (unlikely(num < nb_rx)) {
 /* Free mbufs not tx to kni interface */
 kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);
 kni_stats[port_id].rx_dropped += nb_rx - num;
 }
 }
}

For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading
mbufs from kernel NIC interfaces by rte_kni_rx_burst().
The packet transmission is the same as in the L2 Forwarding sample application
(see Receive, Process and Transmit Packets).

/**
 * Interface to dequeue mbufs from tx_q and burst tx
 */

static void

kni_egress(struct kni_port_params *p)
{
 uint8_t i, nb_kni, port_id;
 unsigned nb_tx, num;
 struct rte_mbuf *pkts_burst[PKT_BURST_SZ];

 if (p == NULL)
 return;

 nb_kni = p->nb_kni;
 port_id = p->port_id;

 for (i = 0; i < nb_kni; i++) {
 /* Burst rx from kni */
 num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);
 if (unlikely(num > PKT_BURST_SZ)) {
 RTE_LOG(ERR, APP, "Error receiving from KNI\n");
 return;
 }

 /* Burst tx to eth */

 nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);

 kni_stats[port_id].tx_packets += nb_tx;

 if (unlikely(nb_tx < num)) {
 /* Free mbufs not tx to NIC */
 kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
 kni_stats[port_id].tx_dropped += num - nb_tx;
 }
 }
}

11.6.3. Callbacks for Kernel Requests

To execute specific PMD operations in user space requested by some Linux* commands,
callbacks must be implemented and filled in the struct rte_kni_ops structure.
Currently, setting a new MTU and configuring the network interface (up/ down) are supported.

static struct rte_kni_ops kni_ops = {
 .change_mtu = kni_change_mtu,
 .config_network_if = kni_config_network_interface,
};

/* Callback for request of changing MTU */

static int
kni_change_mtu(uint8_t port_id, unsigned new_mtu)
{
 int ret;
 struct rte_eth_conf conf;

 if (port_id >= rte_eth_dev_count()) {
 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
 return -EINVAL;
 }

 RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);

 /* Stop specific port */

 rte_eth_dev_stop(port_id);

 memcpy(&conf, &port_conf, sizeof(conf));

 /* Set new MTU */

 if (new_mtu > ETHER_MAX_LEN)
 conf.rxmode.jumbo_frame = 1;
 else
 conf.rxmode.jumbo_frame = 0;

 /* mtu + length of header + length of FCS = max pkt length */

 conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;

 ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
 if (ret < 0) {
 RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);
 return ret;
 }

 /* Restart specific port */

 ret = rte_eth_dev_start(port_id);
 if (ret < 0) {
 RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);
 return ret;
 }

 return 0;
}

/* Callback for request of configuring network interface up/down */

static int
kni_config_network_interface(uint8_t port_id, uint8_t if_up)
{
 int ret = 0;

 if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
 return -EINVAL;
 }

 RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",

 port_id, if_up ? "up" : "down");

 if (if_up != 0) {
 /* Configure network interface up */
 rte_eth_dev_stop(port_id);
 ret = rte_eth_dev_start(port_id);
 } else /* Configure network interface down */
 rte_eth_dev_stop(port_id);

 if (ret < 0)
 RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);
 return ret;
}

 Created using Sphinx 1.3.5.

 12. Keep Alive Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

12. Keep Alive Sample Application

The Keep Alive application is a simple example of a
heartbeat/watchdog for packet processing cores. It demonstrates how
to detect ‘failed’ DPDK cores and notify a fault management entity
of this failure. Its purpose is to ensure the failure of the core
does not result in a fault that is not detectable by a management
entity.

12.1. Overview

The application demonstrates how to protect against ‘silent outages’
on packet processing cores. A Keep Alive Monitor Agent Core (master)
monitors the state of packet processing cores (worker cores) by
dispatching pings at a regular time interval (default is 5ms) and
monitoring the state of the cores. Cores states are: Alive, MIA, Dead
or Buried. MIA indicates a missed ping, and Dead indicates two missed
pings within the specified time interval. When a core is Dead, a
callback function is invoked to restart the packet processing core;
A real life application might use this callback function to notify a
higher level fault management entity of the core failure in order to
take the appropriate corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism
or agent to supervise the Keep Alive Monitor Agent Core DPDK core is required
to detect its failure.

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtualized Environments). As
such, the initialization and run-time paths are very similar to those
of the L2 forwarding application.

12.2. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/keep_alive

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

12.3. Running the Application

The application has a number of command line options:

./build/l2fwd-keepalive [EAL options] \
 -- -p PORTMASK [-q NQ] [-K PERIOD] [-T PERIOD]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

	T PERIOD: statistics will be refreshed each PERIOD seconds (0 to
disable, 10 default, 86400 maximum).

To run the application in linuxapp environment with 4 lcores, 16 ports
8 RX queues per lcore and a ping interval of 10ms, issue the command:

./build/l2fwd-keepalive -c f -n 4 -- -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL)
options.

12.4. Explanation

The following sections provide some explanation of the The
Keep-Alive/’Liveliness’ conceptual scheme. As mentioned in the
overview section, the initialization and run-time paths are very
similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).

The Keep-Alive/’Liveliness’ conceptual scheme:

	A Keep- Alive Agent Runs every N Milliseconds.

	DPDK Cores respond to the keep-alive agent.

	If keep-alive agent detects time-outs, it notifies the
fault management entity through a callback function.

The following sections provide some explanation of the code aspects
that are specific to the Keep Alive sample application.

The keepalive functionality is initialized with a struct
rte_keepalive and the callback function to invoke in the
case of a timeout.

rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
if (rte_global_keepalive_info == NULL)
 rte_exit(EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings()
is configured to run every check_period milliseconds.

if (rte_timer_reset(&hb_timer,
 (check_period * rte_get_timer_hz()) / 1000,
 PERIODICAL,
 rte_lcore_id(),
 &rte_keepalive_dispatch_pings,
 rte_global_keepalive_info
) != 0)
 rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows
the same paths as the the L2 forwarding application. The only
addition to the main processing loop is the mark alive
functionality and the example random failures.

rte_keepalive_mark_alive(&rte_global_keepalive_info);
cur_tsc = rte_rdtsc();

/* Die randomly within 7 secs for demo purposes.. */
if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive(struct rte_keepalive *keepcfg)
{
 keepcfg->state_flags[rte_lcore_id()] = ALIVE;
}

 Created using Sphinx 1.3.5.

 13. L2 Forwarding with Crypto Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

13. L2 Forwarding with Crypto Sample Application

The L2 Forwarding with Crypto (l2fwd-crypto) sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK), in conjunction with the Cryptodev library.

13.1. Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash)
specified by the user from command line (or using the default values),
with a crypto device capable of doing that operation,
for each packet that is received on a RX_PORT and performs L2 forwarding.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other.
Also, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

13.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-crypto

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

13.3. Running the Application

The application requires a number of command line options:

./build/l2fwd-crypto [EAL options] -- [-p PORTMASK] [-q NQ] [-s] [-T PERIOD] /
[--cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY] /
[--cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[--cipher_key_random_size SIZE] [--iv IV] [--iv_random_size SIZE] /
[--auth_algo ALGO] [--auth_op GENERATE/VERIFY] [--auth_key KEY] /
[--auth_key_random_size SIZE] [--aad AAD] [--aad_random_size SIZE] /
[--digest size SIZE] [--sessionless]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

	q NQ: A number of queues (=ports) per lcore (default is 1)

	s: manage all ports from single core

	T PERIOD: statistics will be refreshed each PERIOD seconds

(0 to disable, 10 default, 86400 maximum)

	cdev_type: select preferred crypto device type: HW, SW or anything (ANY)

(default is ANY)

	chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),

Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash(HASH_ONLY)

(default is Cipher->Hash)

	cipher_algo: select the ciphering algorithm (default is AES CBC)

	cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

	cipher_key: set the ciphering key to be used. Bytes has to be separated with ”:”

	cipher_key_random_size: set the size of the ciphering key,

which will be generated randomly.

Note that if –cipher_key is used, this will be ignored.

	iv: set the IV to be used. Bytes has to be separated with ”:”

	iv_random_size: set the size of the IV, which will be generated randomly.

Note that if –iv is used, this will be ignored.

	auth_algo: select the authentication algorithm (default is SHA1-HMAC)

	cipher_op: select the authentication operation to perform: GENERATE or VERIFY

(default is GENERATE)

	auth_key: set the authentication key to be used. Bytes has to be separated with ”:”

	auth_key_random_size: set the size of the authentication key,

which will be generated randomly.

Note that if –auth_key is used, this will be ignored.

	aad: set the AAD to be used. Bytes has to be separated with ”:”

	aad_random_size: set the size of the AAD, which will be generated randomly.

Note that if –aad is used, this will be ignored.

	digest_size: set the size of the digest to be generated/verified.

	sessionless: no crypto session will be created.

The application requires that crypto devices capable of performing
the specified crypto operation are available on application initialization.
This means that HW crypto device/s must be bound to a DPDK driver or
a SW crypto device/s (virtual crypto PMD) must be created (using –vdev).

To run the application in linuxapp environment with 2 lcores, 2 ports and 2 crypto devices, issue the command:

$./build/l2fwd -c 0x3 -n 4 --vdev "cryptodev_aesni_mb_pmd" \
--vdev "cryptodev_aesni_mb_pmd" -- -p 0x3 --chain CIPHER_HASH \
--cipher_op ENCRYPT --cipher_algo AES_CBC \
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
--auth_op GENERATE --auth_algo SHA1_HMAC \
--auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1e:1f

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

13.4. Explanation

The L2 forward with Crypto application demonstrates the performance of a crypto operation
on a packet received on a RX PORT before forwarding it to a TX PORT.

The following figure illustrates a sample flow of a packet in the application,
from reception until transmission.

Fig. 13.2 Encryption flow Through the L2 Forwarding with Crypto Application

The following sections provide some explanation of the application.

13.4.1. Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s
(ciphering and/or authentication).
The crypto operation to be performed on the packet is parsed from the command line
(go to “Running the Application section for all the options).

If no parameter is passed, the default crypto operation is:

	Encryption with AES-CBC with 128 bit key.

	Authentication with SHA1-HMAC (generation).

	Keys, IV and AAD are generated randomly.

There are two methods to pass keys, IV and ADD from the command line:

	Passing the full key, separated bytes by ”:”:

--cipher_key 00:11:22:33:44

	Passing the size, so key is generated randomly:

--cipher_key_random_size 16

	Note:

	If full key is passed (first method) and the size is passed as well (second method),
the latter will be ignored.

Size of these keys are checked (regardless the method), before starting the app,
to make sure that it is supported by the crypto devices.

13.4.2. Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized.
The crypto devices must be either bound to a DPDK driver (if they are physical devices)
or created using the EAL option –vdev (if they are virtual devices),
when running the application.

The initialize_cryptodevs() function performs the device initialization.
It iterates through the list of the available crypto devices and
check which ones are capable of performing the operation.
Each device has a set of capabilities associated with it,
which are stored in the device info structure, so the function checks if the operation
is within the structure of each device.

The following code checks if the device supports the specified cipher algorithm
(similar for the authentication algorithm):

/* Check if device supports cipher algo */
i = 0;
opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
 cap_cipher_algo = cap->sym.cipher.algo;
 if (cap->sym.xform_type ==
 RTE_CRYPTO_SYM_XFORM_CIPHER) {
 if (cap_cipher_algo == opt_cipher_algo) {
 if (check_type(options, &dev_info) == 0)
 break;
 }
 }
 cap = &dev_info.capabilities[++i];
}

If a capable crypto device is found, key sizes are checked to see if they are supported
(cipher key and IV for the ciphering):

/*
 * Check if length of provided cipher key is supported
 * by the algorithm chosen.
 */
if (options->ckey_param) {
 if (check_supported_size(
 options->cipher_xform.cipher.key.length,
 cap->sym.cipher.key_size.min,
 cap->sym.cipher.key_size.max,
 cap->sym.cipher.key_size.increment)
 != 0) {
 printf("Unsupported cipher key length\n");
 return -1;
 }
/*
 * Check if length of the cipher key to be randomly generated
 * is supported by the algorithm chosen.
 */
} else if (options->ckey_random_size != -1) {
 if (check_supported_size(options->ckey_random_size,
 cap->sym.cipher.key_size.min,
 cap->sym.cipher.key_size.max,
 cap->sym.cipher.key_size.increment)
 != 0) {
 printf("Unsupported cipher key length\n");
 return -1;
 }
 options->cipher_xform.cipher.key.length =
 options->ckey_random_size;
/* No size provided, use minimum size. */
} else
 options->cipher_xform.cipher.key.length =
 cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the
crypto device list.

	Note:

	The number of crypto devices that supports the specified crypto operation
must be at least the number of ports to be used.

13.4.3. Session creation

The crypto operation has a crypto session associated to it, which contains
information such as the transform chain to perform (e.g. ciphering then hashing),
pointers to the keys, lengths... etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session *
initialize_crypto_session(struct l2fwd_crypto_options *options,
 uint8_t cdev_id)
{
 struct rte_crypto_sym_xform *first_xform;

 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
 first_xform = &options->cipher_xform;
 first_xform->next = &options->auth_xform;
 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
 first_xform = &options->auth_xform;
 first_xform->next = &options->cipher_xform;
 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
 first_xform = &options->cipher_xform;
 } else {
 first_xform = &options->auth_xform;
 }

 /* Setup Cipher Parameters */
 return rte_cryptodev_sym_session_create(cdev_id, first_xform);
}

...

port_cparams[i].session = initialize_crypto_session(options,
 port_cparams[i].dev_id);

13.4.4. Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated
and filled:

if (nb_rx) {
/*
 * If we can't allocate a crypto_ops, then drop
 * the rest of the burst and dequeue and
 * process the packets to free offload structs
 */
if (rte_crypto_op_bulk_alloc(
 l2fwd_crypto_op_pool,
 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 ops_burst, nb_rx) !=
 nb_rx) {
 for (j = 0; j < nb_rx; j++)
 rte_pktmbuf_free(pkts_burst[i]);

 nb_rx = 0;
}

After filling the crypto operation (including session attachment),
the mbuf which will be transformed is attached to it:

op->sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten
after the operation is done (in-place).

13.4.5. Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices.
Before doing so, for performance reasons, the operation stays in a buffer.
When the buffer has enough operations (MAX_PKT_BURST), they are enqueued in the device,
which will perform the operation at that moment:

static int
l2fwd_crypto_enqueue(struct rte_crypto_op *op,
 struct l2fwd_crypto_params *cparams)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();

 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->op_buf[cparams->dev_id].len;
 qconf->op_buf[cparams->dev_id].buffer[len] = op;
 len++;

 /* enough ops to be sent */
 if (len == MAX_PKT_BURST) {
 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
 len = 0;
 }

 qconf->op_buf[cparams->dev_id].len = len;
 return 0;
}

...

static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
 struct l2fwd_crypto_params *cparams)
{
 struct rte_crypto_op **op_buffer;
 unsigned ret;

 op_buffer = (struct rte_crypto_op **)
 qconf->op_buf[cparams->dev_id].buffer;

 ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
 cparams->qp_id, op_buffer, (uint16_t) n);

 crypto_statistics[cparams->dev_id].enqueued += ret;
 if (unlikely(ret < n)) {
 crypto_statistics[cparams->dev_id].errors += (n - ret);
 do {
 rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
 rte_crypto_op_free(op_buffer[ret]);
 } while (++ret < n);
 }

 return 0;
}

After this, the operations are dequeued from the device, and the transformed mbuf
is extracted from the operation. Then, the operation is freed and the mbuf is
forwarded as it is done in the L2 forwarding application.

/* Dequeue packets from Crypto device */
do {
 nb_rx = rte_cryptodev_dequeue_burst(
 cparams->dev_id, cparams->qp_id,
 ops_burst, MAX_PKT_BURST);

 crypto_statistics[cparams->dev_id].dequeued +=
 nb_rx;

 /* Forward crypto'd packets */
 for (j = 0; j < nb_rx; j++) {
 m = ops_burst[j]->sym->m_src;

 rte_crypto_op_free(ops_burst[j]);
 l2fwd_simple_forward(m, portid);
 }
} while (nb_rx == MAX_PKT_BURST);

 Created using Sphinx 1.3.5.

 14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.

The L2 Forwarding sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) which
also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note

This application is a variation of L2 Forwarding sample application. It demonstrate possible
scheme of job stats library usage therefore some parts of this document is identical with original
L2 forwarding application.

14.1. Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
Also, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX port MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 14.2.

The application can also be used in a virtualized environment as shown in Fig. 14.3.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.

Fig. 14.2 Performance Benchmark Setup (Basic Environment)

[image: ../_images/l2_fwd_virtenv_benchmark_setup.png]
Fig. 14.3 Performance Benchmark Setup (Virtualized Environment)

14.1.1. Virtual Function Setup Instructions

This application can use the virtual function available in the system and
therefore can be used in a virtual machine without passing through
the whole Network Device into a guest machine in a virtualized scenario.
The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC,
with two physical ports in the PCI configuration space.
It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
and Virtual Function 1 and 3 would belong to Physical Function 1,
in this case enabling a total of four Virtual Functions.

14.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-jobstats

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

14.3. Running the Application

The application requires a number of command line options:

./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	l: Use locale thousands separator when formatting big numbers.

To run the application in linuxapp environment with 4 lcores, 16 ports, 8 RX queues per lcore and
thousands separator printing, issue the command:

$./build/l2fwd-jobstats -c f -n 4 -- -q 8 -p ffff -l

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

14.4. Explanation

The following sections provide some explanation of the code.

14.4.1. Command Line Arguments

The L2 Forwarding sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments
(see Running the Application).
The preferred way to parse parameters is to use the getopt() function,
since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function.
The method of argument parsing is not described here.
Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments.
This is done at the beginning of the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

14.4.2. Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created.
The mbuf pool contains a set of mbuf objects that will be used by the driver
and the application to store network packet data:

/* create the mbuf pool */
l2fwd_pktmbuf_pool =
 rte_mempool_create("mbuf_pool", NB_MBUF,
 MBUF_SIZE, 32,
 sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL,
 rte_socket_id(), 0);

if (l2fwd_pktmbuf_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver,
which expects to have some reserved space in the mempool structure,
sizeof(struct rte_pktmbuf_pool_private) bytes.
The number of allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each.
A per-lcore cache of 32 mbufs is kept.
The memory is allocated in rte_socket_id() socket,
but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

	The first callback pointer is to rte_pktmbuf_pool_init() and is used
to initialize the private data of the mempool, which is needed by the driver.
This function is provided by the mbuf API, but can be copied and extended by the developer.

	The second callback pointer given to rte_mempool_create() is the mbuf initializer.
The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library.
If a more complex application wants to extend the rte_pktmbuf structure for its own needs,
a new function derived from rte_pktmbuf_init() can be created.

14.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
in the DPDK Programmer’s Guide and the DPDK API Reference.

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
 rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
 nb_ports = RTE_MAX_ETHPORTS;

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
 l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */
for (portid = 0; portid < nb_ports; portid++) {
 /* skip ports that are not enabled */
 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 if (nb_ports_in_mask % 2) {
 l2fwd_dst_ports[portid] = last_port;
 l2fwd_dst_ports[last_port] = portid;
 }
 else
 last_port = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: "
 "err=%d, port=%u\n",
 ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 .header_split = 0, /**< Header Split disabled */
 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
 .hw_strip_crc= 0, /**< CRC stripped by hardware */
 },

 .txmode = {
 .mq_mode = ETH_DCB_NONE
 },
};

14.4.4. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
 rte_eth_dev_socket_id(portid),
 NULL,
 l2fwd_pktmbuf_pool);

if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",
 ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
 truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

 struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
 struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

 struct rte_timer flush_timer;
 struct rte_jobstats flush_job;
 struct rte_jobstats idle_job;
 struct rte_jobstats_context jobs_context;

 rte_atomic16_t stats_read_pending;
 rte_spinlock_t lock;
} __rte_cache_aligned;

Values of struct lcore_queue_conf:

	n_rx_port and rx_port_list[] are used in the main packet processing loop
(see Section Receive, Process and Transmit Packets later in this chapter).

	rx_timers and flush_timer are used to ensure forced TX on low packet rate.

	flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd jobs.

	stats_read_pending and lock are used during job stats read phase.

14.4.5. TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
 rte_eth_dev_socket_id(portid),
 NULL);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",
 ret, (unsigned) portid);

14.4.6. Jobs statistics initialization

There are several statistics objects available:

	Flush job statistics

rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc,
 drain_tsc, 0);

rte_timer_init(&qconf->flush_timer);
ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL,
 lcore_id, &l2fwd_flush_job, NULL);

if (ret < 0) {
 rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",
 lcore_id, rte_strerror(-ret));
}

	Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);

rte_timer_init(&qconf->rx_timers[i]);
ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id,
 l2fwd_fwd_job, (void *)(uintptr_t)i);

if (ret < 0) {
 rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",
 lcore_id, qconf->rx_port_list[i], rte_strerror(-ret));
}

Following parameters are passed to rte_jobstats_init():

	0 as minimal poll period

	drain_tsc as maximum poll period

	MAX_PKT_BURST as desired target value (RX burst size)

14.4.7. Main loop

The forwarding path is reworked comparing to original L2 Forwarding application.
In the l2fwd_main_loop() function three loops are placed.

for (;;) {
 rte_spinlock_lock(&qconf->lock);

 do {
 rte_jobstats_context_start(&qconf->jobs_context);

 /* Do the Idle job:
 * - Read stats_read_pending flag
 * - check if some real job need to be executed
 */
 rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);

 do {
 uint8_t i;
 uint64_t now = rte_get_timer_cycles();

 need_manage = qconf->flush_timer.expire < now;
 /* Check if we was esked to give a stats. */
 stats_read_pending =
 rte_atomic16_read(&qconf->stats_read_pending);
 need_manage |= stats_read_pending;

 for (i = 0; i < qconf->n_rx_port && !need_manage; i++)
 need_manage = qconf->rx_timers[i].expire < now;

 } while (!need_manage);
 rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target);

 rte_timer_manage();
 rte_jobstats_context_finish(&qconf->jobs_context);
 } while (likely(stats_read_pending == 0));

 rte_spinlock_unlock(&qconf->lock);
 rte_pause();
}

First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. When any job is ready, the use rte_timer_manage() is used to call the job handler.
In this place functions l2fwd_fwd_job() and l2fwd_flush_job() are called when needed.
Then rte_jobstats_context_finish() is called to mark loop end - no other jobs are ready to execute. By this time stats are ready to be read
and if stats_read_pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready or stats job read is pending
for this lcore. Statistics from this part of code is considered as the headroom available for additional processing.

14.4.8. Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of particular port and forward it.
This is done using the following code:

total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
 MAX_PKT_BURST);

for (j = 0; j < total_nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 l2fwd_simple_forward(m, portid);
}

Packets are read in a burst of size MAX_PKT_BURST.
Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

After first read second try is issued.

if (total_nb_rx == MAX_PKT_BURST) {
 const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
 MAX_PKT_BURST);

 total_nb_rx += nb_rx;
 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 l2fwd_simple_forward(m, portid);
 }
}

This second read is important to give job stats library a feedback how many packets was processed.

/* Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {
 rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL,
 lcore_id, l2fwd_fwd_job, arg);
}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each l2fwd_fwd_job() call.
If total_nb_rx is smaller than target value job->period will be increased. If it is greater the period will be decreased.

Note

In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
a destination port is assigned that is either the next or previous enabled port from the portmask.
Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct ether_hdr *eth;
 void *tmp;
 unsigned dst_port;

 dst_port = l2fwd_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

 /* src addr */

 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

 l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
to send all the received packets on the same TX port,
using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }

 qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job()
is called periodically to for each lcore draining TX queue of each port.
This technique introduces some latency when there are not many packets to send,
however it improves performance:

static void
l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg)
{
 uint64_t now;
 unsigned lcore_id;
 struct lcore_queue_conf *qconf;
 struct mbuf_table *m_table;
 uint8_t portid;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];

 rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job);

 now = rte_get_timer_cycles();
 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 m_table = &qconf->tx_mbufs[portid];
 if (m_table->len == 0 || m_table->next_flush_time <= now)
 continue;

 l2fwd_send_burst(qconf, portid);
 }

 /* Pass target to indicate that this job is happy of time interval
 * in which it was called. */
 rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);
}

 Created using Sphinx 1.3.5.

 15. L2 Forwarding Sample Application (in Real and Virtualized Environments)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

15. L2 Forwarding Sample Application (in Real and Virtualized Environments)

The L2 Forwarding sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) which
also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note

Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
however, in later DPDK versions these sample applications have been merged.

15.1. Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received on an RX_PORT.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
Also, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 15.6.

The application can also be used in a virtualized environment as shown in Fig. 15.7.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.

Fig. 15.6 Performance Benchmark Setup (Basic Environment)

[image: ../_images/l2_fwd_virtenv_benchmark_setup.png]
Fig. 15.7 Performance Benchmark Setup (Virtualized Environment)

15.1.1. Virtual Function Setup Instructions

This application can use the virtual function available in the system and
therefore can be used in a virtual machine without passing through
the whole Network Device into a guest machine in a virtualized scenario.
The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC,
with two physical ports in the PCI configuration space.
It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
and Virtual Function 1 and 3 would belong to Physical Function 1,
in this case enabling a total of four Virtual Functions.

15.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

15.3. Running the Application

The application requires a number of command line options:

./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore, issue the command:

$./build/l2fwd -c f -n 4 -- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

15.4. Explanation

The following sections provide some explanation of the code.

15.4.1. Command Line Arguments

The L2 Forwarding sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments.
The preferred way to parse parameters is to use the getopt() function,
since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function.
The method of argument parsing is not described here.
Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments.
This is done at the beginning of the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

15.4.2. Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created.
The mbuf pool contains a set of mbuf objects that will be used by the driver
and the application to store network packet data:

/* create the mbuf pool */

l2fwd_pktmbuf_pool = rte_mempool_create("mbuf_pool", NB_MBUF, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, SOCKET0, 0);

if (l2fwd_pktmbuf_pool == NULL)
 rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver,
which expects to have some reserved space in the mempool structure,
sizeof(struct rte_pktmbuf_pool_private) bytes.
The number of allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each.
A per-lcore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0,
but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

	The first callback pointer is to rte_pktmbuf_pool_init() and is used
to initialize the private data of the mempool, which is needed by the driver.
This function is provided by the mbuf API, but can be copied and extended by the developer.

	The second callback pointer given to rte_mempool_create() is the mbuf initializer.
The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library.
If a more complex application wants to extend the rte_pktmbuf structure for its own needs,
a new function derived from rte_pktmbuf_init() can be created.

15.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
in the DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)
 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
 rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
 nb_ports = RTE_MAX_ETHPORTS;

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
 l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */

for (portid = 0; portid < nb_ports; portid++) {
 /* skip ports that are not enabled */

 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 if (nb_ports_in_mask % 2) {
 l2fwd_dst_ports[portid] = last_port;
 l2fwd_dst_ports[last_port] = portid;
 }
 else
 last_port = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

Observe that:

	rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.

	rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: "
 "err=%d, port=%u\n",
 ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 .header_split = 0, /**< Header Split disabled */
 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
 .hw_strip_crc= 0, /**< CRC stripped by hardware */
 },

 .txmode = {
 .mq_mode = ETH_DCB_NONE
 },
};

15.4.4. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
 "err=%d, port=%u\n",
 ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing loop
(see Receive, Process and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
 .rx_thresh = {
 .pthresh = RX_PTHRESH,
 .hthresh = RX_HTHRESH,
 .wthresh = RX_WTHRESH,
 },
};

15.4.5. TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
 .tx_thresh = {
 .pthresh = TX_PTHRESH,
 .hthresh = TX_HTHRESH,
 .wthresh = TX_WTHRESH,
 },
 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};

15.4.6. Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
 * Read packet from RX queues
 */

for (i = 0; i < qconf->n_rx_port; i++) {
 portid = qconf->rx_port_list[i];
 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
 }
}

Packets are read in a burst of size MAX_PKT_BURST.
The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses.

Note

In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
a destination port is assigned that is either the next or previous enabled port from the portmask.
Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct ether_hdr *eth;
 void *tmp;
 unsigned dst_port;

 dst_port = l2fwd_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

 /* src addr */

 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

 l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
to send all the received packets on the same TX port,
using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }

 qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
This technique introduces some latency when there are not many packets to send,
however it improves performance:

cur_tsc = rte_rdtsc();

/*
 * TX burst queue drain
 */

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 if (qconf->tx_mbufs[portid].len == 0)
 continue;

 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);

 qconf->tx_mbufs[portid].len = 0;
 }

 /* if timer is enabled */

 if (timer_period > 0) {
 /* advance the timer */

 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */

 if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
 /* do this only on master core */

 if (lcore_id == rte_get_master_lcore()) {
 print_stats();

 /* reset the timer */
 timer_tsc = 0;
 }
 }
 }

 prev_tsc = cur_tsc;
}

 Created using Sphinx 1.3.5.

 16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT)

Basic Forwarding sample application is a simple skeleton example of
a forwarding application. It has been extended to make use of CAT via extended
command line options and linking against the libpqos library.

It is intended as a demonstration of the basic components of a DPDK forwarding
application and use of the libpqos library to program CAT.
For more detailed implementations see the L2 and L3 forwarding
sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s
last level cache. CAT introduces classes of service (COS) that are essentially
bitmasks. In current CAT implementations, a bit in a COS bitmask corresponds to
one cache way in last level cache.
A CPU core is always assigned to one of the CAT classes.
By programming CPU core assignment and COS bitmasks, applications can be given
exclusive, shared, or mixed access to the CPU’s last level cache.
CDP extends CAT so that there are two bitmasks per COS,
one for data and one for code.
The number of classes and number of valid bits in a COS bitmask is CPU model
specific and COS bitmasks need to be contiguous. Sample code calls this bitmask
cbm or capacity bitmask.
By default, after reset, all CPU cores are assigned to COS 0 and all classes
are programmed to allow fill into all cache ways.
CDP is off by default.

For more information about CAT please see:

	https://github.com/01org/intel-cmt-cat

White paper demonstrating example use case:

	Increasing Platform Determinism with Platform Quality of Service for the Data Plane Development Kit [http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html]

16.1. Compiling the Application

Requires libpqos from Intel’s
intel-cmt-cat software package [https://github.com/01org/intel-cmt-cat]
hosted on GitHub repository. For installation notes, please see README file.

GIT:

	https://github.com/01org/intel-cmt-cat

To compile the application export the path to PQoS lib
and the DPDK source tree and go to the example directory:

export PQOS_INSTALL_PATH=/path/to/libpqos
export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/l2fwd-cat

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

16.2. Running the Application

To run the example in a linuxapp environment and enable CAT on cpus 0-2:

./build/l2fwd-cat -c 2 -n 4 -- --l3ca="0x3@(0-2)"

or to enable CAT and CDP on cpus 1,3:

./build/l2fwd-cat -c 2 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not valid!
PQOS: Shutting down PQoS library...
EAL: Error - exiting with code: 1
 Cause: PQOS: L3CA init failed!

The option to enable CAT is:

	--l3ca='<common_cbm@cpus>[,<(code_cbm,data_cbm)@cpus>...]':

where cbm stands for capacity bitmask and must be expressed in
hexadecimal form.

common_cbm is a single mask, for a CDP enabled system, a group of two
masks (code_cbm and data_cbm) is used.

(and) are necessary if it’s a group.

cpus could be a single digit/range or a group and must be expressed in
decimal form.

(and) are necessary if it’s a group.

e.g. --l3ca='0x00F00@(1,3),0x0FF00@(4-6),0xF0000@7'

	cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;

	cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;

	cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;

	cpu 7 has exclusive access to all of its 4 ways;

e.g. --l3ca='(0x00C00,0x00300)@(1,3)' for CDP enabled system

	cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and
data ways are not overlapping.

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pqos tool
from Intel’s
intel-cmt-cat software package [https://github.com/01org/intel-cmt-cat].

To enabled or disable CDP:

sudo ./pqos -S cdp-on

sudo ./pqos -S cdp-off

to reset CAT configuration:

sudo ./pqos -R

to list CAT config:

sudo ./pqos -s

For more info about pqos tool please see its man page or
intel-cmt-cat wiki [https://github.com/01org/intel-cmt-cat/wiki].

16.3. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

16.3.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The
argc and argv arguments are provided to the cat_init()
function. The value returned is the number of parsed arguments:

int ret = cat_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init() is a wrapper function which parses the command, validates
the requested parameters and configures CAT accordingly.

Parsing of command line arguments is done in parse_args(...).
libpqos is then initialized with the pqos_init(...) call. Next, libpqos is
queried for system CPU information and L3CA capabilities via
pqos_cap_get(...) and pqos_cap_get_type(..., PQOS_CAP_TYPE_L3CA, ...)
calls. When all capability and topology information is collected, the requested
CAT configuration is validated. A check is then performed (on per socket basis)
for a sufficient number of un-associated COS. COS are selected and
configured via the pqos_l3ca_set(...) call. Finally, COS are associated to
relevant CPUs via pqos_l3ca_assoc_set(...) calls.

atexit(...) is used to register cat_exit(...) to be called on
a clean exit. cat_exit(...) performs a simple CAT clean-up, by associating
COS 0 to all involved CPUs via pqos_l3ca_assoc_set(...) calls.

 Created using Sphinx 1.3.5.

 17. L3 Forwarding Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

17. L3 Forwarding Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK.
The application performs L3 forwarding.

17.1. Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The main difference from the L2 Forwarding sample application is that the forwarding decision
is made based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When the selected lookup method is hash-based,
a hash object is used to emulate the flow classification stage.
The hash object is used in correlation with a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet:
Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
The ID of the output interface for the input packet is read from the identified flow table entry.
The set of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets.
The LPM object is used as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup.
The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.

17.2. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

17.3. Running the Application

The application has a number of command line options:

./build/l3fwd [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa][--hash-entry-num][--ipv6] [--parse-ptype]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	–config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores

	–enable-jumbo: optional, enables jumbo frames

	–max-pkt-len: optional, maximum packet length in decimal (64-9600)

	–no-numa: optional, disables numa awareness

	–hash-entry-num: optional, specifies the hash entry number in hexadecimal to be setup

	–ipv6: optional, set it if running ipv6 packets

	–parse-ptype: optional, set it if use software way to analyze packet type

For example, consider a dual processor socket platform where cores 0-7 and 16-23 appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.
Let’s say that the programmer wants to use memory from both NUMA nodes, the platform has only two ports, one connected to each NUMA node,
and the programmer wants to use two cores from each processor socket to do the packet processing.

To enable L3 forwarding between two ports, using two cores, cores 1 and 2, from each processor,
while also taking advantage of local memory access by optimizing around NUMA, the programmer must enable two queues from each port,
pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is achieved using the following command:

./build/l3fwd -c 606 -n 4 -- -p 0x3 --config="(0,0,1),(0,1,2),(1,0,9),(1,1,10)"

In this command:

	The -c option enables cores 0, 1, 2, 3

	The -p option enables ports 0 and 1

	The –config option enables two queues on each port and maps each (port,queue) pair to a specific core.
Logic to enable multiple RX queues using RSS and to allocate memory from the correct NUMA nodes
is included in the application and is done transparently.
The following table shows the mapping in this example:

	Port
	Queue
	lcore
	Description

	0
	0
	0
	Map queue 0 from port 0 to lcore 0.

	0
	1
	2
	Map queue 1 from port 0 to lcore 2.

	1
	0
	1
	Map queue 0 from port 1 to lcore 1.

	1
	1
	3
	Map queue 1 from port 1 to lcore 3.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

17.4. Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The following sections describe aspects that are specific to the L3 Forwarding sample application.

17.4.1. Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array,
and then generate the expected 5-tuple as key to keep consistence with those of real flow
for the convenience to execute hash performance test on 4M/8M/16M flows.

Note

The Hash initialization will setup both ipv4 and ipv6 hash table,
and populate the either table depending on the value of variable ipv6.
To support the hash performance test with up to 8M single direction flows/16M bi-direction flows,
populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry number(default 4M).

Note

Value of global variable ipv6 can be specified with –ipv6 in the command line.
Value of global variable hash_entry_number,
which is used to specify the total hash entry number for all used ports in hash performance test,
can be specified with –hash-entry-num VALUE in command line, being its default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

 static void
 setup_hash(int socketid)
 {
 // ...

 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
 if (ipv6 == 0) {
 /* populate the ipv4 hash */
 populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
 } else {
 /* populate the ipv6 hash */
 populate_ipv6_many_flow_into_table(ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
 }
 } else
 if (ipv6 == 0) {
 /* populate the ipv4 hash */
 populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
 } else {
 /* populate the ipv6 hash */
 populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
 }
 }
 }
#endif

17.4.2. LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm(int socketid)
{
 unsigned i;
 int ret;
 char s[64];

 /* create the LPM table */

 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);

 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);

 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
 " on socket %d\n", socketid);

 /* populate the LPM table */

 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
 /* skip unused ports */

 if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
 continue;

 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
 ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

 if (ret < 0) {
 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
 "l3fwd LPM table on socket %d\n", i, socketid);
 }

 printf("LPM: Adding route 0x%08x / %d (%d)\n",
 (unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
 }
}
#endif

17.4.3. Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets.
The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding
for any number of burst packets received,
and the packet forwarding decision (that is, the identification of the output interface for the packet)
for hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function.
The get_ipv4_dst_port() function is shown below:

static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
 int ret = 0;
 union ipv4_5tuple_host key;

 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);

 m128i data = _mm_loadu_si128((m128i*)(ipv4_hdr));

 /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */

 key.xmm = _mm_and_si128(data, mask0);

 /* Find destination port */

 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);

 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and ipv6 packets,
they leverage the multiple buffer optimization to boost the performance of forwarding packets with the exact match on hash table.
The key code snippet of simple_ipv4_fwd_4pkts() is shown below:

static inline void
simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
{
 // ...

 data[0] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 data[1] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 data[2] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 data[3] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));

 key[0].xmm = _mm_and_si128(data[0], mask0);
 key[1].xmm = _mm_and_si128(data[1], mask0);
 key[2].xmm = _mm_and_si128(data[2], mask0);
 key[3].xmm = _mm_and_si128(data[3], mask0);

 const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};

 rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);

 dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
 dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
 dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
 dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];

 // ...
}

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this mode.

17.4.4. Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function,
but the packet forwarding decision (that is, the identification of the output interface for the packet)
for LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uint8_t
get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
 uint8_t next_hop;

 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
}

 Created using Sphinx 1.3.5.

 18. L3 Forwarding with Power Management Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

18. L3 Forwarding with Power Management Sample Application

18.1. Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet processing using the DPDK.
The application is based on existing L3 Forwarding sample application,
with the power management algorithms to control the P-states and
C-states of the Intel processor via a power management library.

18.2. Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet forwarding.
The initialization and run-time paths are very similar to those of the L3 Forwarding Sample Application.
The main difference from the L3 Forwarding sample application is that this application introduces power-aware optimization algorithms
by leveraging the Power library to control P-state and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit (Tx) queues.
The design principle of this PMD is to access the Rx and Tx descriptors directly without any interrupts to quickly receive,
process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the following steps:

	Retrieve input packets through the PMD to poll Rx queue

	Process each received packet or provide received packets to other processing cores through software queues

	Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver,
at the cost of keeping cores active and running at the highest frequency,
hence consuming the maximum power all the time.
However, during the period of processing light network traffic,
which happens regularly in communication infrastructure systems due to well-known “tidal effect”,
the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor
to switch between different supported operating frequencies and voltages.
If configured correctly, according to system workload, this feature provides power savings.
CPUFreq is the infrastructure provided by the Linux* kernel to control the processor performance state capability.
CPUFreq supports a user space governor that enables setting frequency via manipulating the virtual file device from a user space application.
The Power library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space application
to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent to CPUFreq.
The algorithm uses the number of received and available Rx packets on recent polls to make a heuristic decision to scale frequency up/down.
Specifically, some thresholds are checked to see whether a specific core running an DPDK polling thread needs to increase frequency
a step up based on the near to full trend of polled Rx queues.
Also, it decreases frequency a step if packet processed per loop is far less than the expected threshold
or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states.
They allow software to put an Intel core into a low power idle state from which it is possible to exit via an event, such as an interrupt.
However, there is a tradeoff between the power consumed in the idle state and the time required to wake up from the idle state (exit latency).
Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is increased. Each C-state has a target residency.
It is essential that when entering into a C-state, the core remains in this C-state for at least as long as the target residency in order
to fully realize the benefits of entering the C-state.
CPUIdle is the infrastructure provide by the Linux kernel to control the processor C-state capability.
Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-state.
It actually has its own heuristic algorithms in kernel space to select target C-state to enter by executing privileged instructions like HLT and MWAIT,
based on the speculative sleep duration of the core.
In this application, we introduce a heuristic algorithm that allows packet processing cores to sleep for a short period
if there is no Rx packet received on recent polls.
In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states
instead of always running to the C0 state waiting for packets.

Note

To fully demonstrate the power saving capability of using C-states,
it is recommended to enable deeper C3 and C6 states in the BIOS during system boot up.

18.3. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-power

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

18.4. Running the Application

The application has a number of command line options:

./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	–config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores.

	–enable-jumbo: optional, enables jumbo frames

	–max-pkt-len: optional, maximum packet length in decimal (64-9600)

	–no-numa: optional, disables numa awareness

See L3 Forwarding Sample Application for details.
The L3fwd-power example reuses the L3fwd command line options.

18.5. Explanation

The following sections provide some explanation of the sample application code.
As mentioned in the overview section,
the initialization and run-time paths are identical to those of the L3 forwarding application.
The following sections describe aspects that are specific to the L3 Forwarding with Power Management sample application.

18.5.1. Power Library Initialization

The Power library is initialized in the main routine.
It changes the P-state governor to userspace for specific cores that are under control.
The Timer library is also initialized and several timers are created later on,
responsible for checking if it needs to scale down frequency at run time by checking CPU utilization statistics.

Note

Only the power management related initialization is shown.

int main(int argc, char **argv)
{
 struct lcore_conf *qconf;
 int ret;
 unsigned nb_ports;
 uint16_t queueid;
 unsigned lcore_id;
 uint64_t hz;
 uint32_t n_tx_queue, nb_lcores;
 uint8_t portid, nb_rx_queue, queue, socketid;

 // ...

 /* init RTE timer library to be used to initialize per-core timers */

 rte_timer_subsystem_init();

 // ...

 /* per-core initialization */

 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
 if (rte_lcore_is_enabled(lcore_id) == 0)
 continue;

 /* init power management library for a specified core */

 ret = rte_power_init(lcore_id);
 if (ret)
 rte_exit(EXIT_FAILURE, "Power management library "
 "initialization failed on core%d\n", lcore_id);

 /* init timer structures for each enabled lcore */

 rte_timer_init(&power_timers[lcore_id]);

 hz = rte_get_hpet_hz();

 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);

 // ...
 }

 // ...
}

18.5.2. Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing
if the network load is actually heavy or light.
In this sample, sampling network load work is done by monitoring received and
available descriptors on NIC Rx queues in recent polls.
Based on the number of returned and available Rx descriptors,
this example implements algorithms to generate frequency scaling hints and speculative sleep duration,
and use them to control P-state and C-state of processors via the power management library.
Frequency (P-state) control and sleep state (C-state) control work individually for each logical core,
and the combination of them contributes to a power efficient packet processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the endless packet processing loop
to return the number of received and available Rx descriptors.
And those numbers of specific queue are passed to P-state and C-state heuristic algorithms
to generate hints based on recent network load trends.

Note

Only power control related code is shown.

static
attribute ((noreturn)) int main_loop(attribute ((unused)) void *dummy)
{
 // ...

 while (1) {
 // ...

 /**
 * Read packet from RX queues
 */

 lcore_scaleup_hint = FREQ_CURRENT;
 lcore_rx_idle_count = 0;

 for (i = 0; i < qconf->n_rx_queue; ++i)
 {
 rx_queue = &(qconf->rx_queue_list[i]);
 rx_queue->idle_hint = 0;
 portid = rx_queue->port_id;
 queueid = rx_queue->queue_id;

 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
 stats[lcore_id].nb_rx_processed += nb_rx;

 if (unlikely(nb_rx == 0)) {
 /**
 * no packet received from rx queue, try to
 * sleep for a while forcing CPU enter deeper
 * C states.
 */

 rx_queue->zero_rx_packet_count++;

 if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
 continue;

 rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
 lcore_rx_idle_count++;
 } else {
 rx_ring_length = rte_eth_rx_queue_count(portid, queueid);

 rx_queue->zero_rx_packet_count = 0;

 /**
 * do not scale up frequency immediately as
 * user to kernel space communication is costly
 * which might impact packet I/O for received
 * packets.
 */

 rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);
 }

 /* Prefetch and forward packets */

 // ...
 }

 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
 for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {
 x_queue = &(qconf->rx_queue_list[i]);

 if (rx_queue->freq_up_hint > lcore_scaleup_hint)

 lcore_scaleup_hint = rx_queue->freq_up_hint;
 }

 if (lcore_scaleup_hint == FREQ_HIGHEST)

 rte_power_freq_max(lcore_id);

 else if (lcore_scaleup_hint == FREQ_HIGHER)
 rte_power_freq_up(lcore_id);
 } else {
 /**
 * All Rx queues empty in recent consecutive polls,
 * sleep in a conservative manner, meaning sleep as
 * less as possible.
 */

 for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {
 rx_queue = &(qconf->rx_queue_list[i]);
 if (rx_queue->idle_hint < lcore_idle_hint)
 lcore_idle_hint = rx_queue->idle_hint;
 }

 if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
 /**
 * execute "pause" instruction to avoid context
 * switch for short sleep.
 */
 rte_delay_us(lcore_idle_hint);
 else
 /* long sleep force ruining thread to suspend */
 usleep(lcore_idle_hint);

 stats[lcore_id].sleep_time += lcore_idle_hint;
 }
 }
}

18.5.3. P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the specified logical core
according to available descriptor number returned from rte_eth_rx_queue_count().
On every poll for new packets, the length of available descriptor on an Rx queue is evaluated,
and the algorithm used for frequency hinting is as follows:

	If the size of available descriptors exceeds 96, the maximum frequency is hinted.

	If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

	If the length of the ring exceeds 32, the trend counter is incremented by 1.

	When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note

The assumption is that the Rx queue size is 128 and the thresholds specified above
must be adjusted accordingly based on actual hardware Rx queue size,
which are configured via the rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues.
Most likely, different queue have different load, so they would return different frequency hints.
The algorithm evaluates all the hints and then scales up frequency in an aggressive manner
by scaling up to highest frequency as long as one Rx queue requires.
In this way, we can minimize any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function.
Specifically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period,
or if the average packet per iteration is less than expectation, the frequency is decreased by one step.

18.5.4. C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets,
an idle counter begins incrementing for each successive zero poll.
At the same time, the function power_idle_heuristic() is called to generate speculative sleep duration
in order to force logical to enter deeper sleeping C-state.
There is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough
to select C-state to enter based on actual sleep period time of giving logical core.
The algorithm has the following sleeping behavior depending on the idle counter:

	If idle count less than 100, the counter value is used as a microsecond sleep value through rte_delay_us()
which execute pause instructions to avoid costly context switch but saving power at the same time.

	If idle count is between 100 and 999, a fixed sleep interval of 100 μs is used.
A 100 μs sleep interval allows the core to enter the C1 state while keeping a fast response time in case new traffic arrives.

	If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration is used.
This allows the core to enter the C3/C6 states.

Note

The thresholds specified above need to be adjusted for different Intel processors and traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values,
the algorithm controls the sleep time in a conservative manner by sleeping for the least possible time
in order to avoid a potential performance impact.

 Created using Sphinx 1.3.5.

 19. L3 Forwarding with Access Control Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

19. L3 Forwarding with Access Control Sample Application

The L3 Forwarding with Access Control application is a simple example of packet processing using the DPDK.
The application performs a security check on received packets.
Packets that are in the Access Control List (ACL), which is loaded during initialization, are dropped.
Others are forwarded to the correct port.

19.1. Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control
and packet L3 forwarding.
The application loads two types of rules at initialization:

	Route information rules, which are used for L3 forwarding

	Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port,
the application extracts the necessary information from the TCP/IP header of the received packet and
performs a lookup in the rule database to figure out whether the packets should be dropped (in the ACL range)
or forwarded to desired ports.
The initialization and run-time paths are similar to those of the L3 Forwarding Sample Application.
However, there are significant differences in the two applications.
For example, the original L3 forwarding application uses either LPM or
an exact match algorithm to perform forwarding port lookup,
while this application uses the ACL library to perform both ACL and route entry lookup.
The following sections provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application.
The application also assumes that all the packets it processes are TCP/UDP packets and
always extracts source/destination port information from the packets.

19.1.1. Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically.
The 5-tuple syntax consist of a source IP address, a destination IP address,
a source port, a destination port and a protocol identifier.
The fields in the 5-tuple syntax have the following formats:

	Source IP address and destination IP address
: Each is either a 32-bit field (for IPv4), or a set of 4 32-bit fields (for IPv6) represented by a value and a mask length.
For example, an IPv4 range of 192.168.1.0 to 192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask length = 24.

	Source port and destination port
: Each is a 16-bit field, represented by a lower start and a higher end.
For example, a range of ports 0 to 8192 could be represented by lower = 0 and higher = 8192.

	Protocol identifier
: An 8-bit field, represented by a value and a mask, that covers a range of values.
To verify that a value is in the range, use the following expression: “(VAL & mask) == value”

The trick in how to represent a range with a mask and value is as follows.
A range can be enumerated in binary numbers with some bits that are never changed and some bits that are dynamically changed.
Set those bits that dynamically changed in mask and value with 0.
Set those bits that never changed in the mask with 1, in value with number expected.
For example, a range of 6 to 7 is enumerated as 0b110 and 0b111.
Bit 1-7 are bits never changed and bit 0 is the bit dynamically changed.
Therefore, set bit 0 in mask and value with 0, set bits 1-7 in mask with 1, and bits 1-7 in value with number 0b11.
So, mask is 0xfe, value is 0x6.

Note

The library assumes that each field in the rule is in LSB or Little Endian order when creating the database.
It internally converts them to MSB or Big Endian order.
When performing a lookup, the library assumes the input is in MSB or Big Endian order.

19.1.2. Access Rule Syntax

In this sample application, each rule is a combination of the following:

	5-tuple field: This field has a format described in Section.

	priority field: A weight to measure the priority of the rules.
The rule with the higher priority will ALWAYS be returned if the specific input has multiple matches in the rule database.
Rules with lower priority will NEVER be returned in any cases.

	userdata field: A user-defined field that could be any value.
It can be the forwarding port number if the rule is a route table entry or it can be a pointer to a mapping address
if the rule is used for address mapping in the NAT application.
The key point is that it is a useful reserved field for user convenience.

19.1.3. ACL and Route Rules

The application needs to acquire ACL and route rules before it runs.
Route rules are mandatory, while ACL rules are optional.
To simplify the complexity of the priority field for each rule, all ACL and route entries are assumed to be in the same file.
To read data from the specified file successfully, the application assumes the following:

	Each rule occupies a single line.

	Only the following four rule line types are valid in this application:

	ACL rule line, which starts with a leading character ‘@’

	Route rule line, which starts with a leading character ‘R’

	Comment line, which starts with a leading character ‘#’

	Empty line, which consists of a space, form-feed (‘f’), newline (‘n’),
carriage return (‘r’), horizontal tab (‘t’), or vertical tab (‘v’).

Other lines types are considered invalid.

	Rules are organized in descending order of priority,
which means rules at the head of the file always have a higher priority than those further down in the file.

	A typical IPv4 ACL rule line should have a format as shown below:

[image: ../_images/ipv4_acl_rule.png]
Fig. 19.5 A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632.
They consist of the dot notation for the address and a prefix length separated by ‘/’.
For example, 192.168.0.34/32, where the address is 192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX,
where MIN and MAX are the inclusive minimum and maximum values of the range.
The range 0:65535 represents all possible ports in a range.
When MIN and MAX are the same value, a single port is represented, for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’.
For example: 6/0xfe matches protocol values 6 and 7.

	Route rules start with a leading character ‘R’ and have the same format as ACL rules except an extra field at the tail
that indicates the forwarding port number.

19.1.4. Rules File Example

[image: ../_images/example_rules.png]
Fig. 19.6 Rules example

Each rule is explained as follows:

	Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.*],
destination IP address = [192.168.0.36], protocol = [6]/[7]

	Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored.
It tells the application to forward packets with destination IP address = [192.168.0.36],
protocol = [6]/[7], destined to port 1.

	Rule 3 (the third line) tells the application to forward all packets to port 0.
This is something like a default route entry.

As described earlier, the application assume rules are listed in descending order of priority,
therefore Rule 1 has the highest priority, then Rule 2, and finally,
Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

	Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [6]

	Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol = [6]

	Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [8]

Observe that:

	Packet 1 matches all of the rules

	Packet 2 matches Rule 2 and Rule 3

	Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped.
Packet 2 matches Rule 2 and is forwarded to port 1.
Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format,
please refer to rule_ipv4.db and rule_ipv6.db files (inside <RTE_SDK>/examples/l3fwd-acl/).

19.1.5. Application Phases

Once the application starts, it transitions through three phases:

	Initialization Phase
- Perform the following tasks:

	Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores, receive and transmit queues.
Bind ports, queues and logical cores. Check ACL search options, and so on.

	Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize the environment and detect possible NICs.
The EAL creates several threads and sets affinity to a specific hardware thread CPU based on the configuration specified
by the command line arguments.

	Read the rule files and format the rules into the representation that the ACL library can recognize.
Call the ACL library function to add the rules into the database and compile them as a trie of pattern sets.
Note that application maintains a separate AC contexts for IPv4 and IPv6 rules.

	Runtime Phase
- Process the incoming packets from a port. Packets are processed in three steps:

	Retrieval: Gets a packet from the receive queue. Each logical core may process several queues for different ports.
This depends on the configuration specified by command line arguments.

	Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup over corresponding AC context.
If an ACL rule is matched, the packets will be dropped and return back to step 1.
If a route rule is matched, it indicates the packet is not in the ACL list and should be forwarded.
If there is no matches for the packet, then the packet is dropped.

	Forwarding: Forwards the packet to the corresponding port.

	Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

19.2. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-acl

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK IPL Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

19.3. Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] --rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	–config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores

	–rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

	–rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

	–scalar: Use a scalar function to perform rule lookup

	–enable-jumbo: optional, enables jumbo frames

	–max-pkt-len: optional, maximum packet length in decimal (64-9600)

	–no-numa: optional, disables numa awareness

As an example, consider a dual processor socket platform where cores 0, 2, 4, 6, 8 and 10 appear on socket 0,
while cores 1, 3, 5, 7, 9 and 11 appear on socket 1.
Let’s say that the user wants to use memory from both NUMA nodes,
the platform has only two ports and the user wants to use two cores from each processor socket to do the packet processing.

To enable L3 forwarding between two ports, using two cores from each processor,
while also taking advantage of local memory access by optimizing around NUMA,
the user must enable two queues from each port,
pin to the appropriate cores and allocate memory from the appropriate NUMA node.
This is achieved using the following command:

./build/l3fwd-acl -c f -n 4 -- -p 0x3 --config="(0,0,0),(0,1,2),(1,0,1),(1,1,3)" --rule_ipv4="./rule_ipv4.db" -- rule_ipv6="./rule_ipv6.db" --scalar

In this command:

	The -c option enables cores 0, 1, 2, 3

	The -p option enables ports 0 and 1

	The –config option enables two queues on each port and maps each (port,queue) pair to a specific core.
Logic to enable multiple RX queues using RSS and to allocate memory from the correct NUMA nodes is included in the application
and is done transparently.
The following table shows the mapping in this example:

	Port
	Queue
	lcore
	Description

	0
	0
	0
	Map queue 0 from port 0 to lcore 0.

	0
	1
	2
	Map queue 1 from port 0 to lcore 2.

	1
	0
	1
	Map queue 0 from port 1 to lcore 1.

	1
	1
	3
	Map queue 1 from port 1 to lcore 3.

	The –rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

	The –rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

	The –scalar option specifies the performing of rule lookup with a scalar function.

19.4. Explanation

The following sections provide some explanation of the sample application code.
The aspects of port, device and CPU configuration are similar to those of the L3 Forwarding Sample Application.
The following sections describe aspects that are specific to L3 forwarding with access control.

19.4.1. Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file.
The application parses the rules from the file and adds them to the database by calling the ACL library function.
It ignores empty and comment lines, and parses and validates the rules it reads.
If errors are detected, the application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields.
The ACL rules save the index to the specific rules in the userdata field,
while route rules save the forwarding port number.
In order to differentiate the two types of rules, ACL rules add a signature in the userdata field.
As for the priority field, the application assumes rules are organized in descending order of priority.
Therefore, the code only decreases the priority number with each rule it parses.

19.4.2. Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context handler
from the ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type,
application needs to calculate the expected offset of the fields from the start of the packet.
That’s why only packets with fixed IPv4/ IPv6 header are supported.
That allows to perform ACL classify straight over incoming packet buffer -
no extra protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled.
If it is, the application records the socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library,
adds rules parsed from the file into the database and build an ACL trie.
It is important to note that the application creates an independent copy of each database for each socket CPU
involved in the task to reduce the time for remote memory access.

 Created using Sphinx 1.3.5.

 20. L3 Forwarding in a Virtualization Environment Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

20. L3 Forwarding in a Virtualization Environment Sample Application

The L3 Forwarding in a Virtualization Environment sample application is a simple example of packet processing using the DPDK.
The application performs L3 forwarding that takes advantage of Single Root I/O Virtualization (SR-IOV) features
in a virtualized environment.

20.1. Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding.
The initialization and run-time paths are very similar to those of the L3 Forwarding Sample Application.
The forwarding decision is taken based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time.
When the selected lookup method is hash-based, a hash object is used to emulate the flow classification stage.
The hash object is used in correlation with the flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields read from the input packet:
Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
The ID of the output interface for the input packet is read from the identified flow table entry.
The set of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets.
The LPM object is used as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup.
The set of LPM rules used by the application is statically configured and loaded into the LPM object at the initialization time.

Note

Please refer to Virtual Function Setup Instructions for virtualized test case setup.

20.2. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-vf

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

Note

The compiled application is written to the build subdirectory.
To have the application written to a different location,
the O=/path/to/build/directory option may be specified in the make command.

20.3. Running the Application

The application has a number of command line options:

./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)] [--no-numa]

where,

	–p PORTMASK: Hexadecimal bitmask of ports to configure

	–config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which ports are mapped to which cores

	–no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform where cores 0,2,4,6, 8, and 10 appear on socket 0,
while cores 1,3,5,7,9, and 11 appear on socket 1.
Let’s say that the programmer wants to use memory from both NUMA nodes,
the platform has only two ports and the programmer wants to use one core from each processor socket to do the packet processing
since only one Rx/Tx queue pair can be used in virtualization mode.

To enable L3 forwarding between two ports, using one core from each processor,
while also taking advantage of local memory accesses by optimizing around NUMA,
the programmer can pin to the appropriate cores and allocate memory from the appropriate NUMA node.
This is achieved using the following command:

./build/l3fwd-vf -c 0x03 -n 3 -- -p 0x3 --config="(0,0,0),(1,0,1)"

In this command:

	The -c option enables cores 0 and 1

	The -p option enables ports 0 and 1

	The –config option enables one queue on each port and maps each (port,queue) pair to a specific core.
Logic to enable multiple RX queues using RSS and to allocate memory from the correct NUMA nodes
is included in the application and is done transparently.
The following table shows the mapping in this example:

	Port
	Queue
	lcore
	Description

	0
	0
	0
	Map queue 0 from port 0 to lcore 0

	1
	1
	1
	Map queue 0 from port 1 to lcore 1

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

20.4. Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Application.
See Explanation for more information.

 Created using Sphinx 1.3.5.

 21. Link Status Interrupt Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

21. Link Status Interrupt Sample Application

The Link Status Interrupt sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) that
demonstrates how network link status changes for a network port can be captured and
used by a DPDK application.

21.1. Overview

The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
and performs L2 forwarding for each packet that is received on an RX_PORT.
The following operations are performed:

	RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
and the behavior of L2 forwarding each time the link status changes.

21.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/link_status_interrupt

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

Note

The compiled application is written to the build subdirectory.
To have the application written to a different location,
the O=/path/to/build/directory option may be specified on the make command line.

21.3. Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]

where,

	-p PORTMASK: A hexadecimal bitmask of the ports to configure

	-q NQ: A number of queues (=ports) per lcore (default is 1)

	-T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
issue the command:

$./build/link_status_interrupt -c f -n 4-- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

21.4. Explanation

The following sections provide some explanation of the code.

21.4.1. Command Line Arguments

The Link Status Interrupt sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
See Command Line Arguments for more information.

21.4.2. Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See Mbuf Pool Initialization for more information.

21.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)
 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)
 rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
 nb_ports = RTE_MAX_ETHPORTS;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */

for (portid = 0; portid < nb_ports; portid++) {
 /* skip ports that are not enabled */

 if ((lsi_enabled_port_mask & (1 << portid)) == 0)
 continue;

 /* save the destination port id */

 if (nb_ports_in_mask % 2) {
 lsi_dst_ports[portid] = portid_last;
 lsi_dst_ports[portid_last] = portid;
 }
 else
 portid_last = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

Observe that:

	rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 .header_split = 0, /**< Header Split disabled */
 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
 .hw_strip_crc= 0, /**< CRC stripped by hardware */
 },
 .txmode = {},
 .intr_conf = {
 .lsc = 1, /**< link status interrupt feature enabled */
 },
};

Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
and no user space interrupt event is received.
The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
when a link status change is present and calls the user space callbacks registered by the application.
The public interface rte_eth_link_get() just reads the link status in a global structure
that would be updated in the interrupt host thread only.

21.4.4. Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event.
An example callback function that has been written as indicated below.

static void
lsi_event_callback(uint8_t port_id, enum rte_eth_event_type type, void *param)
{
 struct rte_eth_link link;

 RTE_SET_USED(param);

 printf("\n\nIn registered callback...\n");

 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");

 rte_eth_link_get_nowait(port_id, &link);

 if (link.link_status) {
 printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
 } else
 printf("Port %d Link Down\n\n", port_id);
}

This function is called when a link status interrupt is present for the right port.
The port_id indicates which port the interrupt applies to.
The type parameter identifies the interrupt event type,
which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
The param parameter is the address of the parameter for the callback.
This function should be implemented with care since it will be called in the interrupt host thread,
which is different from the main thread of its caller.

The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:

rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.

21.4.5. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
 struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
(see Receive, Process and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
 .rx_thresh = {
 .pthresh = RX_PTHRESH,
 .hthresh = RX_HTHRESH,
 .wthresh = RX_WTHRESH,
 },
};

21.4.6. TX Queue Initialization

Each lcore should be able to transmit on any port.
For every port, a single TX queue is initialized.

/* init one TX queue logical core on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
 .tx_thresh = {
 .pthresh = TX_PTHRESH,
 .hthresh = TX_HTHRESH,
 .wthresh = TX_WTHRESH,
 },
 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};

21.4.7. Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
 * Read packet from RX queues
 */

for (i = 0; i < qconf->n_rx_port; i++) {
 portid = qconf->rx_port_list[i];
 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
 port_statistics[portid].rx += nb_rx;

 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 lsi_simple_forward(m, portid);
 }
}

Packets are read in a burst of size MAX_PKT_BURST.
The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function.
The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.

Note

In the following code, the two lines for calculating the output port require some explanation.
If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
If portId is odd, the first line subtracts one and the second line does nothing.
Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct ether_hdr *eth;
 void *tmp;
 unsigned dst_port = lsi_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);

 /* src addr */
 ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);

 lsi_send_packet(m, dst_port);
}

Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
to send all the received packets on the same TX port using
the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that so the same approach can be reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:

/* Send the packet on an output interface */

static int
lsi_send_packet(struct rte_mbuf *m, uint8_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 lsi_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }
 qconf->tx_mbufs[port].len = len;

 return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
This technique introduces some latency when there are not many packets to send.
However, it improves performance:

 cur_tsc = rte_rdtsc();

 /*
 * TX burst queue drain
 */

 diff_tsc = cur_tsc - prev_tsc;

 if (unlikely(diff_tsc > drain_tsc)) {
 /* this could be optimized (use queueid instead of * portid), but it is not called so often */

 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 if (qconf->tx_mbufs[portid].len == 0)
 continue;

 lsi_send_burst(&lcore_queue_conf[lcore_id],
 qconf->tx_mbufs[portid].len, (uint8_t) portid);
 qconf->tx_mbufs[portid].len = 0;
 }

 /* if timer is enabled */

 if (timer_period > 0) {
 /* advance the timer */

 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */

 if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
 /* do this only on master core */

 if (lcore_id == rte_get_master_lcore()) {
 print_stats();

 /* reset the timer */
 timer_tsc = 0;
 }
 }
 }
 prev_tsc = cur_tsc;
}

 Created using Sphinx 1.3.5.

 22. Load Balancer Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

22. Load Balancer Sample Application

The Load Balancer sample application demonstrates the concept of isolating the packet I/O task
from the application-specific workload.
Depending on the performance target,
a number of logical cores (lcores) are dedicated to handle the interaction with the NIC ports (I/O lcores),
while the rest of the lcores are dedicated to performing the application processing (worker lcores).
The worker lcores are totally oblivious to the intricacies of the packet I/O activity and
use the NIC-agnostic interface provided by software rings to exchange packets with the I/O cores.

22.1. Overview

The architecture of the Load Balance application is presented in the following figure.

[image: ../_images/load_bal_app_arch.png]
Fig. 22.1 Load Balancer Application Architecture

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX lcores off loading the packet I/O
overhead incurred by four NIC ports from four worker cores, with each I/O lcore handling RX/TX for two NIC ports.

22.1.1. I/O RX Logical Cores

Each I/O RX lcore performs packet RX from its assigned NIC RX rings and then distributes the received packets to the worker threads.
The application allows each I/O RX lcore to communicate with any of the worker threads,
therefore each (I/O RX lcore, worker lcore) pair is connected through a dedicated single producer - single consumer software ring.

The worker lcore to handle the current packet is determined by reading a predefined 1-byte field from the input packet:

worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the same value for the load balancing field,
this scheme also ensures that all the packets that are part of the same traffic flow are directed to the same worker lcore (flow affinity)
in the same order they enter the system (packet ordering).

22.1.2. I/O TX Logical Cores

Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each worker thread to send packets to any NIC TX port,
the application creates a software ring for each (worker lcore, NIC TX port) pair,
with each I/O TX core handling those software rings that are associated with NIC ports that it handles.

22.1.3. Worker Logical Cores

Each worker lcore reads packets from its set of input software rings and
routes them to the NIC ports for transmission by dispatching them to output software rings.
The routing logic is LPM based, with all the worker threads sharing the same LPM rules.

22.2. Compiling the Application

The sequence of steps used to build the application is:

	Export the required environment variables:

export RTE_SDK=<Path to the DPDK installation folder>
export RTE_TARGET=x86_64-native-linuxapp-gcc

	Build the application executable file:

cd ${RTE_SDK}/examples/load_balancer
make

For more details on how to build the DPDK libraries and sample applications,
please refer to the DPDK Getting Started Guide.

22.3. Running the Application

To successfully run the application,
the command line used to start the application has to be in sync with the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test Report.
For more details on how to set up and run the sample applications provided with DPDK package,
please refer to the DPDK Getting Started Guide.

22.4. Explanation

22.4.1. Application Configuration

The application run-time configuration is done through the application command line parameters.
Any parameter that is not specified as mandatory is optional,
with the default value hard-coded in the main.h header file from the application folder.

The list of application command line parameters is listed below:

	–rx “(PORT, QUEUE, LCORE), ...”: The list of NIC RX ports and queues handled by the I/O RX lcores.
This parameter also implicitly defines the list of I/O RX lcores. This is a mandatory parameter.

	–tx “(PORT, LCORE), ... ”: The list of NIC TX ports handled by the I/O TX lcores.
This parameter also implicitly defines the list of I/O TX lcores.
This is a mandatory parameter.

	–w “LCORE, ...”: The list of the worker lcores. This is a mandatory parameter.

	–lpm “IP / PREFIX => PORT; ...”: The list of LPM rules used by the worker lcores for packet forwarding.
This is a mandatory parameter.

	–rsz “A, B, C, D”: Ring sizes:
	A = The size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX lcores.

	B = The size (in number of elements) of each of the software rings used by the I/O RX lcores to send packets to worker lcores.

	C = The size (in number of elements) of each of the software rings used by the worker lcores to send packets to I/O TX lcores.

	D = The size (in number of buffer descriptors) of each of the NIC TX rings written by I/O TX lcores.

	–bsz “(A, B), (C, D), (E, F)”: Burst sizes:
	A = The I/O RX lcore read burst size from NIC RX.

	B = The I/O RX lcore write burst size to the output software rings.

	C = The worker lcore read burst size from the input software rings.

	D = The worker lcore write burst size to the output software rings.

	E = The I/O TX lcore read burst size from the input software rings.

	F = The I/O TX lcore write burst size to the NIC TX.

	–pos-lb POS: The position of the 1-byte field within the input packet used by the I/O RX lcores
to identify the worker lcore for the current packet.
This field needs to be within the first 64 bytes of the input packet.

The infrastructure of software rings connecting I/O lcores and worker lcores is built by the application
as a result of the application configuration provided by the user through the application command line parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the I/O TX role
for the same or a different set of NIC ports.
A specific lcore cannot perform both the I/O role (either RX or TX) and the worker role during the same session.

Example:

./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29

There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1) that
handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that
are assigned worker IDs 0 to 3 (worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2 and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP address of the current packet is A.B.C.D,
the worker lcore for the current packet is determined by byte D (which is byte 29).
There are two LPM rules that are used by each worker lcore to route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible traffic flows:

	Flow #
	Source
IP Address
	Destination
IP Address
	Worker ID (Worker lcore)
	Output
NIC Port

	1
	0.0.0.0
	1.0.0.1
	0 (4)
	0

	2
	0.0.0.1
	1.0.1.2
	1 (5)
	1

	3
	0.0.0.14
	1.0.0.3
	2 (6)
	0

	4
	0.0.0.15
	1.0.1.4
	3 (7)
	1

22.4.2. NUMA Support

The application has built-in performance enhancements for the NUMA case:

	One buffer pool per each CPU socket.

	One LPM table per each CPU socket.

	Memory for the NIC RX or TX rings is allocated on the same socket with the lcore handling the respective ring.

In the case where multiple CPU sockets are used in the system,
it is recommended to enable at least one lcore to fulfill the I/O role for the NIC ports that
are directly attached to that CPU socket through the PCI Express* bus.
It is always recommended to handle the packet I/O with lcores from the same CPU socket as the NICs.

Depending on whether the I/O RX lcore (same CPU socket as NIC RX),
the worker lcore and the I/O TX lcore (same CPU socket as NIC TX) handling a specific input packet,
are on the same or different CPU sockets, the following run-time scenarios are possible:

	AAA: The packet is received, processed and transmitted without going across CPU sockets.

	AAB: The packet is received and processed on socket A,
but as it has to be transmitted on a NIC port connected to socket B,
the packet is sent to socket B through software rings.

	ABB: The packet is received on socket A, but as it has to be processed by a worker lcore on socket B,
the packet is sent to socket B through software rings.
The packet is transmitted by a NIC port connected to the same CPU socket as the worker lcore that processed it.

	ABC: The packet is received on socket A, it is processed by an lcore on socket B,
then it has to be transmitted out by a NIC connected to socket C.
The performance price for crossing the CPU socket boundary is paid twice for this packet.

 Created using Sphinx 1.3.5.

 23. Multi-process Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

23. Multi-process Sample Application

This chapter describes the example applications for multi-processing that are included in the DPDK.

23.1. Example Applications

23.1.1. Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications,
and as documented in the DPDK Getting Started Guide.
To build all the example applications:

	Set RTE_SDK and go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/multi_process

	Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the applications:

make

Note

If just a specific multi-process application needs to be built,
the final make command can be run just in that application’s directory,
rather than at the top-level multi-process directory.

23.1.2. Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to demonstrate how
two DPDK processes can work together using queues and memory pools to share information.

23.1.2.1. Running the Application

To run the application, start one copy of the simple_mp binary in one terminal,
passing at least two cores in the coremask, as follows:

./build/simple_mp -c 3 -n 4 --proc-type=primary

For the first DPDK process run, the proc-type flag can be omitted or set to auto,
since all DPDK processes will default to being a primary instance,
meaning they have control over the hugepage shared memory regions.
The process should start successfully and display a command prompt as follows:

$./build/simple_mp -c 3 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 0
...

EAL: Requesting 2 pages of size 1073741824
EAL: Requesting 768 pages of size 2097152
EAL: Ask a virtual area of 0x40000000 bytes
EAL: Virtual area found at 0x7ff200000000 (size = 0x40000000)
...

EAL: check igb_uio module
EAL: check module finished
EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)

Starting core 1

simple_mp >

To run the secondary process to communicate with the primary process,
again run the same binary setting at least two cores in the coremask:

./build/simple_mp -c C -n 4 --proc-type=secondary

When running a secondary process such as that shown above, the proc-type parameter can again be specified as auto.
However, omitting the parameter altogether will cause the process to try and start as a primary rather than secondary process.

Once the process type is specified correctly,
the process starts up, displaying largely similar status messages to the primary instance as it initializes.
Once again, you will be presented with a command prompt.

Once both processes are running, messages can be sent between them using the send command.
At any stage, either process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5f89820) EAL: Master core 8 is ready (tid=864a3820)
EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready (tid=85995700)
Starting core 11 Starting core 9
simple_mp > send hello_secondary simple_mp > core 9: Received 'hello_secondary'
simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primary
simple_mp > quit simple_mp > quit

Note

If the primary instance is terminated, the secondary instance must also be shut-down and restarted after the primary.
This is necessary because the primary instance will clear and reset the shared memory regions on startup,
invalidating the secondary process’s pointers.
The secondary process can be stopped and restarted without affecting the primary process.

23.1.2.2. How the Application Works

The core of this example application is based on using two queues and a single memory pool in shared memory.
These three objects are created at startup by the primary process,
since the secondary process cannot create objects in memory as it cannot reserve memory zones,
and the secondary process then uses lookup functions to attach to these objects as it starts up.

if (rte_eal_process_type() == RTE_PROC_PRIMARY){
 send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);
 recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);
 message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data_sz, NULL, NULL, NULL, NULL, SOCKET0, flags);
} else {
 recv_ring = rte_ring_lookup(_PRI_2_SEC);
 send_ring = rte_ring_lookup(_SEC_2_PRI);
 message_pool = rte_mempool_lookup(_MSG_POOL);
}

Note, however, that the named ring structure used as send_ring in the primary process is the recv_ring in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary processes,
the application simply dedicates two threads to sending and receiving messages respectively.
The receive thread simply dequeues any messages on the receive ring, prints them,
and frees the buffer space used by the messages back to the memory pool.
The send thread makes use of the command-prompt library to interactively request user input for messages to send.
Once a send command is issued by the user, a buffer is allocated from the memory pool, filled in with the message contents,
then enqueued on the appropriate rte_ring.

23.1.3. Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can run in parallel,
with each process performing the same set of packet- processing operations.
(Since each process is identical in functionality to the others,
we refer to this as symmetric multi-processing, to differentiate it from asymmetric multi- processing -
such as a client-server mode of operation seen in the next example,
where different processes perform different tasks, yet co-operate to form a packet-processing system.)
The following diagram shows the data-flow through the application, using two processes.

[image: ../_images/sym_multi_proc_app.png]
Fig. 23.1 Example Data Flow in a Symmetric Multi-process Application

As the diagram shows, each process reads packets from each of the network ports in use.
RSS is used to distribute incoming packets on each port to different hardware RX queues.
Each process reads a different RX queue on each port and so does not contend with any other process for that queue access.
Similarly, each process writes outgoing packets to a different TX queue on each port.

23.1.3.1. Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run as the primary instance,
though with a number of other application- specific parameters also provided after the EAL arguments.
These additional parameters are:

	-p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system are to be used.
For example: -p 3 to use ports 0 and 1 only.

	–num-procs <N>, where N is the total number of symmetric_mp instances that will be run side-by-side to perform packet processing.
This parameter is used to configure the appropriate number of receive queues on each network port.

	–proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes, specified above).
This identifies which symmetric_mp instance is being run, so that each process can read a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified,
and the first two must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4,
all performing level-2 forwarding of packets between ports 0 and 1,
the following commands can be used (assuming run as root):

./build/symmetric_mp -c 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
./build/symmetric_mp -c 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
./build/symmetric_mp -c 8 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
./build/symmetric_mp -c 10 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3

Note

In the above example, the process type can be explicitly specified as primary or secondary, rather than auto.
When using auto, the first process run creates all the memory structures needed for all processes -
irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note

For the symmetric multi-process example, since all processes work in the same manner,
once the hugepage shared memory and the network ports are initialized,
it is not necessary to restart all processes if the primary instance dies.
Instead, that process can be restarted as a secondary,
by explicitly setting the proc-type to secondary on the command line.
(All subsequent instances launched will also need this explicitly specified,
as auto-detection will detect no primary processes running and therefore attempt to re-initialize shared memory.)

23.1.3.2. How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most part,
calling the rte_eal_init(), 1 G and 10 G driver initialization and then rte_eal_pci_probe() functions.
Thereafter, the initialization done depends on whether the process is configured as a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports to be used are initialized -
the number of RX and TX queues per port being determined by the num-procs parameter passed on the command-line.
The structures for the initialized network ports are stored in shared memory and
therefore will be accessible by the secondary process as it initializes.

if (num_ports & 1)
 rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i < num_ports; i++){
 if(proc_type == RTE_PROC_PRIMARY)
 if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)
 rte_exit(EXIT_FAILURE, "Error initializing ports\n");
}

In the secondary instance, rather than initializing the network ports, the port information exported by the primary process is used,
giving the secondary process access to the hardware and software rings for each network port.
Similarly, the memory pool of mbufs is accessed by doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_create(_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)

Once this initialization is complete, the main loop of each process, both primary and secondary,
is exactly the same - each process reads from each port using the queue corresponding to its proc-id parameter,
and writes to the corresponding transmit queue on the output port.

23.1.4. Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can
use a client-server type multi-process design to do packet processing.
In this example, a single server process performs the packet reception from the ports being used and
distributes these packets using round-robin ordering among a set of client processes,
which perform the actual packet processing.
In this case, the client applications just perform level-2 forwarding of packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

[image: ../_images/client_svr_sym_multi_proc_app.png]
Fig. 23.2 Example Data Flow in a Client-Server Symmetric Multi-process Application

23.1.4.1. Running the Application

The server process must be run initially as the primary process to set up all memory structures for use by the clients.
In addition to the EAL parameters, the application- specific parameters are:

	-p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system are to be used.
For example: -p 3 to use ports 0 and 1 only.

	-n <num-clients>, where the num-clients parameter is the number of client processes that will process the packets received
by the server application.

Note

In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the coremask, performs all packet I/O.
If a coremask is specified with more than a single lcore bit set in it,
an additional lcore will be used for a thread to periodically print packet count statistics.

Since the server application stores configuration data in shared memory, including the network ports to be used,
the only application parameter needed by a client process is its client instance ID.
Therefore, to run a server application on lcore 1 (with lcore 2 printing statistics) along with two client processes running on lcores 3 and 4,
the following commands could be used:

./mp_server/build/mp_server -c 6 -n 4 -- -p 3 -n 2
./mp_client/build/mp_client -c 8 -n 4 --proc-type=auto -- -n 0
./mp_client/build/mp_client -c 10 -n 4 --proc-type=auto -- -n 1

Note

If the server application dies and needs to be restarted, all client applications also need to be restarted,
as there is no support in the server application for it to run as a secondary process.
Any client processes that need restarting can be restarted without affecting the server process.

23.1.4.2. How the Application Works

The server process performs the network port and data structure initialization much as the symmetric multi-process application does when run as primary.
One additional enhancement in this sample application is that the server process stores its port configuration data in a memory zone in hugepage shared memory.
This eliminates the need for the client processes to have the portmask parameter passed into them on the command line,
as is done for the symmetric multi-process application, and therefore eliminates mismatched parameters as a potential source of errors.

In the same way that the server process is designed to be run as a primary process instance only,
the client processes are designed to be run as secondary instances only.
They have no code to attempt to create shared memory objects.
Instead, handles to all needed rings and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup().
The network ports for use by the processes are obtained by loading the network port drivers and probing the PCI bus,
which will, as in the symmetric multi-process example,
automatically get access to the network ports using the settings already configured by the primary/server process.

Once all applications are initialized, the server operates by reading packets from each network port in turn and
distributing those packets to the client queues (software rings, one for each client process) in round-robin order.
On the client side, the packets are read from the rings in as big of bursts as possible, then routed out to a different network port.
The routing used is very simple. All packets received on the first NIC port are transmitted back out on the second port and vice versa.
Similarly, packets are routed between the 3rd and 4th network ports and so on.
The sending of packets is done by writing the packets directly to the network ports; they are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent,
so as to allow the sending of multiple packets in a single burst to improve efficiency.
For example, the client process will buffer packets to send,
until either the buffer is full or until we receive no further packets from the server.

23.1.5. Master-slave Multi-process Example

The fourth example of DPDK multi-process support demonstrates a master-slave model that
provide the capability of application recovery if a slave process crashes or meets unexpected conditions.
In addition, it also demonstrates the floating process,
which can run among different cores in contrast to the traditional way of binding a process/thread to a specific CPU core,
using the local cache mechanism of mempool structures.

This application performs the same functionality as the L2 Forwarding sample application,
therefore this chapter does not cover that part but describes functionality that is introduced in this multi-process example only.
Please refer to L2 Forwarding Sample Application (in Real and Virtualized Environments) for more information.

Unlike previous examples where all processes are started from the command line with input arguments, in this example,
only one process is spawned from the command line and that process creates other processes.
The following section describes this in more detail.

23.1.5.1. Master-slave Process Models

The process spawned from the command line is called the master process in this document.
A process created by the master is called a slave process.
The application has only one master process, but could have multiple slave processes.

Once the master process begins to run, it tries to initialize all the resources such as
memory, CPU cores, driver, ports, and so on, as the other examples do.
Thereafter, it creates slave processes, as shown in the following figure.

[image: ../_images/master_slave_proc.png]
Fig. 23.3 Master-slave Process Workflow

The master process calls the rte_eal_mp_remote_launch() EAL function to launch an application function for each pinned thread through the pipe.
Then, it waits to check if any slave processes have exited.
If so, the process tries to re-initialize the resources that belong to that slave and launch them in the pinned thread entry again.
The following section describes the recovery procedures in more detail.

For each pinned thread in EAL, after reading any data from the pipe, it tries to call the function that the application specified.
In this master specified function, a fork() call creates a slave process that performs the L2 forwarding task.
Then, the function waits until the slave exits, is killed or crashes. Thereafter, it notifies the master of this event and returns.
Finally, the EAL pinned thread waits until the new function is launched.

After discussing the master-slave model, it is necessary to mention another issue, global and static variables.

For multiple-thread cases, all global and static variables have only one copy and they can be accessed by any thread if applicable.
So, they can be used to sync or share data among threads.

In the previous examples, each process has separate global and static variables in memory and are independent of each other.
If it is necessary to share the knowledge, some communication mechanism should be deployed, such as, memzone, ring, shared memory, and so on.
The global or static variables are not a valid approach to share data among processes.
For variables in this example, on the one hand, the slave process inherits all the knowledge of these variables after being created by the master.
On the other hand, other processes cannot know if one or more processes modifies them after slave creation since that
is the nature of a multiple process address space.
But this does not mean that these variables cannot be used to share or sync data; it depends on the use case.
The following are the possible use cases:

	The master process starts and initializes a variable and it will never be changed after slave processes created. This case is OK.

	After the slave processes are created, the master or slave cores need to change a variable, but other processes do not need to know the change.
This case is also OK.

	After the slave processes are created, the master or a slave needs to change a variable.
In the meantime, one or more other process needs to be aware of the change.
In this case, global and static variables cannot be used to share knowledge. Another communication mechanism is needed.
A simple approach without lock protection can be a heap buffer allocated by rte_malloc or mem zone.

23.1.5.2. Slave Process Recovery Mechanism

Before talking about the recovery mechanism, it is necessary to know what is needed before a new slave instance can run if a previous one exited.

When a slave process exits, the system returns all the resources allocated for this process automatically.
However, this does not include the resources that were allocated by the DPDK. All the hardware resources are shared among the processes,
which include memzone, mempool, ring, a heap buffer allocated by the rte_malloc library, and so on.
If the new instance runs and the allocated resource is not returned, either resource allocation failed or the hardware resource is lost forever.

When a slave process runs, it may have dependencies on other processes.
They could have execution sequence orders; they could share the ring to communicate; they could share the same port for reception and forwarding;
they could use lock structures to do exclusive access in some critical path.
What happens to the dependent process(es) if the peer leaves?
The consequence are varied since the dependency cases are complex.
It depends on what the processed had shared.
However, it is necessary to notify the peer(s) if one slave exited.
Then, the peer(s) will be aware of that and wait until the new instance begins to run.

Therefore, to provide the capability to resume the new slave instance if the previous one exited, it is necessary to provide several mechanisms:

	Keep a resource list for each slave process.
Before a slave process run, the master should prepare a resource list.
After it exits, the master could either delete the allocated resources and create new ones,
or re-initialize those for use by the new instance.

	Set up a notification mechanism for slave process exit cases. After the specific slave leaves,
the master should be notified and then help to create a new instance.
This mechanism is provided in Section Master-slave Process Models.

	Use a synchronization mechanism among dependent processes.
The master should have the capability to stop or kill slave processes that have a dependency on the one that has exited.
Then, after the new instance of exited slave process begins to run, the dependency ones could resume or run from the start.
The example sends a STOP command to slave processes dependent on the exited one, then they will exit.
Thereafter, the master creates new instances for the exited slave processes.

The following diagram describes slave process recovery.

[image: ../_images/slave_proc_recov.png]
Fig. 23.4 Slave Process Recovery Process Flow

23.1.5.3. Floating Process Support

When the DPDK application runs, there is always a -c option passed in to indicate the cores that are enabled.
Then, the DPDK creates a thread for each enabled core.
By doing so, it creates a 1:1 mapping between the enabled core and each thread.
The enabled core always has an ID, therefore, each thread has a unique core ID in the DPDK execution environment.
With the ID, each thread can easily access the structures or resources exclusively belonging to it without using function parameter passing.
It can easily use the rte_lcore_id() function to get the value in every function that is called.

For threads/processes not created in that way, either pinned to a core or not, they will not own a unique ID and the
rte_lcore_id() function will not work in the correct way.
However, sometimes these threads/processes still need the unique ID mechanism to do easy access on structures or resources.
For example, the DPDK mempool library provides a local cache mechanism
(refer to Local Cache)
for fast element allocation and freeing.
If using a non-unique ID or a fake one,
a race condition occurs if two or more threads/ processes with the same core ID try to use the local cache.

Therefore, unused core IDs from the passing of parameters with the -c option are used to organize the core ID allocation array.
Once the floating process is spawned, it tries to allocate a unique core ID from the array and release it on exit.

A natural way to spawn a floating process is to use the fork() function and allocate a unique core ID from the unused core ID array.
However, it is necessary to write new code to provide a notification mechanism for slave exit
and make sure the process recovery mechanism can work with it.

To avoid producing redundant code, the Master-Slave process model is still used to spawn floating processes,
then cancel the affinity to specific cores.
Besides that, clear the core ID assigned to the DPDK spawning a thread that has a 1:1 mapping with the core mask.
Thereafter, get a new core ID from the unused core ID allocation array.

23.1.5.4. Run the Application

This example has a command line similar to the L2 Forwarding sample application with a few differences.

To run the application, start one copy of the l2fwd_fork binary in one terminal.
Unlike the L2 Forwarding example,
this example requires at least three cores since the master process will wait and be accountable for slave process recovery.
The command is as follows:

#./build/l2fwd_fork -c 1c -n 4 -- -p 3 -f

This example provides another -f option to specify the use of floating process.
If not specified, the example will use a pinned process to perform the L2 forwarding task.

To verify the recovery mechanism, proceed as follows: First, check the PID of the slave processes:

#ps -fe | grep l2fwd_fork
root 5136 4843 29 11:11 pts/1 00:00:05 ./build/l2fwd_fork
root 5145 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork
root 5146 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork

Then, kill one of the slaves:

#kill -9 5145

After 1 or 2 seconds, check whether the slave has resumed:

#ps -fe | grep l2fwd_fork
root 5136 4843 3 11:11 pts/1 00:00:06 ./build/l2fwd_fork
root 5247 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork
root 5248 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork

It can also monitor the traffic generator statics to see whether slave processes have resumed.

23.1.5.5. Explanation

As described in previous sections,
not all global and static variables need to change to be accessible in multiple processes;
it depends on how they are used.
In this example,
the statics info on packets dropped/forwarded/received count needs to be updated by the slave process,
and the master needs to see the update and print them out.
So, it needs to allocate a heap buffer using rte_zmalloc.
In addition, if the -f option is specified,
an array is needed to store the allocated core ID for the floating process so that the master can return it
after a slave has exited accidentally.

static int
l2fwd_malloc_shared_struct(void)
{
 port_statistics = rte_zmalloc("port_stat", sizeof(struct l2fwd_port_statistics) * RTE_MAX_ETHPORTS, 0);

 if (port_statistics == NULL)
 return -1;

 /* allocate mapping_id array */

 if (float_proc) {
 int i;

 mapping_id = rte_malloc("mapping_id", sizeof(unsigned) * RTE_MAX_LCORE, 0);
 if (mapping_id == NULL)
 return -1;

 for (i = 0 ;i < RTE_MAX_LCORE; i++)
 mapping_id[i] = INVALID_MAPPING_ID;

 }
 return 0;
}

For each slave process, packets are received from one port and forwarded to another port that another slave is operating on.
If the other slave exits accidentally, the port it is operating on may not work normally,
so the first slave cannot forward packets to that port.
There is a dependency on the port in this case. So, the master should recognize the dependency.
The following is the code to detect this dependency:

for (portid = 0; portid < nb_ports; portid++) {
 /* skip ports that are not enabled */

 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 /* Find pair ports' lcores */

 find_lcore = find_pair_lcore = 0;
 pair_port = l2fwd_dst_ports[portid];

 for (i = 0; i < RTE_MAX_LCORE; i++) {
 if (!rte_lcore_is_enabled(i))
 continue;

 for (j = 0; j < lcore_queue_conf[i].n_rx_port;j++) {
 if (lcore_queue_conf[i].rx_port_list[j] == portid) {
 lcore = i;
 find_lcore = 1;
 break;
 }

 if (lcore_queue_conf[i].rx_port_list[j] == pair_port) {
 pair_lcore = i;
 find_pair_lcore = 1;
 break;
 }
 }

 if (find_lcore && find_pair_lcore)
 break;
 }

 if (!find_lcore || !find_pair_lcore)
 rte_exit(EXIT_FAILURE, "Not find port=%d pair\\n", portid);

 printf("lcore %u and %u paired\\n", lcore, pair_lcore);

 lcore_resource[lcore].pair_id = pair_lcore;
 lcore_resource[pair_lcore].pair_id = lcore;
}

Before launching the slave process,
it is necessary to set up the communication channel between the master and slave so that
the master can notify the slave if its peer process with the dependency exited.
In addition, the master needs to register a callback function in the case where a specific slave exited.

for (i = 0; i < RTE_MAX_LCORE; i++) {
 if (lcore_resource[i].enabled) {
 /* Create ring for master and slave communication */

 ret = create_ms_ring(i);
 if (ret != 0)
 rte_exit(EXIT_FAILURE, "Create ring for lcore=%u failed",i);

 if (flib_register_slave_exit_notify(i,slave_exit_cb) != 0)
 rte_exit(EXIT_FAILURE, "Register master_trace_slave_exit failed");
 }
}

After launching the slave process, the master waits and prints out the port statics periodically.
If an event indicating that a slave process exited is detected,
it sends the STOP command to the peer and waits until it has also exited.
Then, it tries to clean up the execution environment and prepare new resources.
Finally, the new slave instance is launched.

while (1) {
 sleep(1);
 cur_tsc = rte_rdtsc();
 diff_tsc = cur_tsc - prev_tsc;

 /* if timer is enabled */

 if (timer_period > 0) {
 /* advance the timer */
 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */
 if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
 print_stats();

 /* reset the timer */
 timer_tsc = 0;
 }
 }

 prev_tsc = cur_tsc;

 /* Check any slave need restart or recreate */

 rte_spinlock_lock(&res_lock);

 for (i = 0; i < RTE_MAX_LCORE; i++) {
 struct lcore_resource_struct *res = &lcore_resource[i];
 struct lcore_resource_struct *pair = &lcore_resource[res->pair_id];

 /* If find slave exited, try to reset pair */

 if (res->enabled && res->flags && pair->enabled) {
 if (!pair->flags) {
 master_sendcmd_with_ack(pair->lcore_id, CMD_STOP);
 rte_spinlock_unlock(&res_lock);
 sleep(1);
 rte_spinlock_lock(&res_lock);
 if (pair->flags)
 continue;
 }

 if (reset_pair(res->lcore_id, pair->lcore_id) != 0)
 rte_exit(EXIT_FAILURE, "failed to reset slave");

 res->flags = 0;
 pair->flags = 0;
 }
 }
 rte_spinlock_unlock(&res_lock);
}

When the slave process is spawned and starts to run, it checks whether the floating process option is applied.
If so, it clears the affinity to a specific core and also sets the unique core ID to 0.
Then, it tries to allocate a new core ID.
Since the core ID has changed, the resource allocated by the master cannot work,
so it remaps the resource to the new core ID slot.

static int
l2fwd_launch_one_lcore(attribute ((unused)) void *dummy)
{
 unsigned lcore_id = rte_lcore_id();

 if (float_proc) {
 unsigned flcore_id;

 /* Change it to floating process, also change it's lcore_id */

 clear_cpu_affinity();

 RTE_PER_LCORE(_lcore_id) = 0;

 /* Get a lcore_id */

 if (flib_assign_lcore_id() < 0) {
 printf("flib_assign_lcore_id failed\n");
 return -1;
 }

 flcore_id = rte_lcore_id();

 /* Set mapping id, so master can return it after slave exited */

 mapping_id[lcore_id] = flcore_id;
 printf("Org lcore_id = %u, cur lcore_id = %u\n",lcore_id, flcore_id);
 remapping_slave_resource(lcore_id, flcore_id);
 }

 l2fwd_main_loop();

 /* return lcore_id before return */
 if (float_proc) {
 flib_free_lcore_id(rte_lcore_id());
 mapping_id[lcore_id] = INVALID_MAPPING_ID;
 }
 return 0;
}

 Created using Sphinx 1.3.5.

 24. QoS Metering Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

24. QoS Metering Sample Application

The QoS meter sample application is an example that demonstrates the use of DPDK to provide QoS marking and metering,
as defined by RFC2697 for Single Rate Three Color Marker (srTCM) and RFC 2698 for Two Rate Three Color Marker (trTCM) algorithm.

24.1. Overview

The application uses a single thread for reading the packets from the RX port,
metering, marking them with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or
changing the color of the packet in a static manner depending on both the input and output colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:

	Simple forwarding

	srTCM color blind

	srTCM color aware

	srTCM color blind

	srTCM color aware

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable parameters
(CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when
all the incoming packets are colored as green.

24.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/qos_meter

	Set the target
(a default target is used if not specified):

Note

This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

	Build the application:

make

24.3. Running the Application

The application execution command line is as below:

./qos_meter [EAL options] -- -p PORTMASK

The application is constrained to use a single core in the EAL core mask and 2 ports only in the application port mask
(first port from the port mask is used for RX and the other port in the core mask is used for TX).

Refer to DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

24.4. Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0
#define APP_MODE_SRTCM_COLOR_BLIND 1
#define APP_MODE_SRTCM_COLOR_AWARE 2
#define APP_MODE_TRTCM_COLOR_BLIND 3
#define APP_MODE_TRTCM_COLOR_AWARE 4

#define APP_MODE APP_MODE_SRTCM_COLOR_BLIND

To simplify debugging (for example, by using the traffic generator RX side MAC address based packet filtering feature),
the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default values:

struct rte_meter_srtcm_params app_srtcm_params[] = {

 {.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},

};

struct rte_meter_trtcm_params app_trtcm_params[] = {

 {.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},

};

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames (IPv4 packet size of 46 bytes)
and green, the expected output traffic should be marked as shown in the following table:

Table 24.18 Output Traffic Marking

 25. QoS Scheduler Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

25. QoS Scheduler Sample Application

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

25.1. Overview

The architecture of the QoS scheduler application is shown in the following figure.

[image: ../_images/qos_sched_app_arch.png]
Fig. 25.1 QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application,
with two or three threads per each packet flow configuration being used.
The RX thread reads packets from the RX port,
classifies the packets based on the double VLAN (outer and inner) and
the lower two bytes of the IP destination address and puts them into the ring queue.
The worker thread dequeues the packets from the ring and calls the QoS scheduler enqueue/dequeue functions.
If a separate TX core is used, these are sent to the TX ring.
Otherwise, they are sent directly to the TX port.
The TX thread, if present, reads from the TX ring and write the packets to the TX port.

25.2. Compiling the Application

To compile the application:

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/qos_sched

	Set the target (a default target is used if not specified). For example:

Note

This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

	Build the application:

make

Note

To get statistics on the sample app using the command line interface as described in the next section,
DPDK must be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS,
which can be done by changing the configuration file for the specific target to be compiled.

25.3. Running the Application

Note

In order to run the application, a total of at least 4
G of huge pages must be set up for each of the used sockets (depending on the cores in use).

The application has a number of command line options:

./qos_sched [EAL options] -- <APP PARAMS>

Mandatory application parameters include:

	–pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configuration.
Multiple pfc entities can be configured in the command line,
having 4 or 5 items (if TX core defined or not).

Optional application parameters include:

	-i: It makes the application to start in the interactive mode.
In this mode, the application shows a command line that can be used for obtaining statistics while
scheduling is taking place (see interactive mode below for more information).

	–mst n: Master core index (the default value is 1).

	–rsz “A, B, C”: Ring sizes:

	A = Size (in number of buffer descriptors) of each of the NIC RX rings read
by the I/O RX lcores (the default value is 128).

	B = Size (in number of elements) of each of the software rings used
by the I/O RX lcores to send packets to worker lcores (the default value is 8192).

	C = Size (in number of buffer descriptors) of each of the NIC TX rings written
by worker lcores (the default value is 256)

	–bsz “A, B, C, D”: Burst sizes

	A = I/O RX lcore read burst size from the NIC RX (the default value is 64)

	B = I/O RX lcore write burst size to the output software rings,
worker lcore read burst size from input software rings,QoS enqueue size (the default value is 64)

	C = QoS dequeue size (the default value is 32)

	D = Worker lcore write burst size to the NIC TX (the default value is 64)

	–msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)

	–rth “A, B, C”: The RX queue threshold parameters

	A = RX prefetch threshold (the default value is 8)

	B = RX host threshold (the default value is 8)

	C = RX write-back threshold (the default value is 4)

	–tth “A, B, C”: TX queue threshold parameters

	A = TX prefetch threshold (the default value is 36)

	B = TX host threshold (the default value is 0)

	C = TX write-back threshold (the default value is 0)

	–cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters
needed for the QoS scheduler configuration.

The profile file has the following format:

; port configuration [port]

frame overhead = 24
number of subports per port = 1
number of pipes per subport = 4096
queue sizes = 64 64 64 64

; Subport configuration

[subport 0]
tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 1250000000; Bytes per second
tc 1 rate = 1250000000; Bytes per second
tc 2 rate = 1250000000; Bytes per second
tc 3 rate = 1250000000; Bytes per second
tc period = 10; Milliseconds
tc oversubscription period = 10; Milliseconds

pipe 0-4095 = 0; These pipes are configured with pipe profile 0

; Pipe configuration

[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc period = 40; Milliseconds

tc 0 oversubscription weight = 1
tc 1 oversubscription weight = 1
tc 2 oversubscription weight = 1
tc 3 oversubscription weight = 1

tc 0 wrr weights = 1 1 1 1
tc 1 wrr weights = 1 1 1 1
tc 2 wrr weights = 1 1 1 1
tc 3 wrr weights = 1 1 1 1

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 48 40 32
tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 48 40 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

25.3.1. Interactive mode

These are the commands that are currently working under the command line interface:

	Control Commands

	–quit: Quits the application.

	General Statistics
	stats app: Shows a table with in-app calculated statistics.

	stats port X subport Y: For a specific subport, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes.
The information is displayed in a table separating it in different traffic classes.

	stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes.
This information is displayed in a table separating it in individual queues.

	Average queue size

All of these commands work the same way, averaging the number of packets throughout a specific subset of queues.

Two parameters can be configured for this prior to calling any of these commands:

	qavg n X: n is the number of times that the calculation will take place.
Bigger numbers provide higher accuracy. The default value is 10.

	qavg period X: period is the number of microseconds that will be allowed between each calculation.
The default value is 100.

The commands that can be used for measuring average queue size are:

	qavg port X subport Y: Show average queue size per subport.

	qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic class.

	qavg port X subport Y pipe Z: Show average queue size per pipe.

	qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic class.

	qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

25.3.2. Example

The following is an example command with a single packet flow configuration:

./qos_sched -c a2 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg

This example uses a single packet flow configuration which creates one RX thread on lcore 5 reading
from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same core for QoS scheduler is given below:

./qos_sched -c c6 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg

Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread are also supported,
providing flexibility to balance the work.

The EAL coremask is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.

25.4. Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS application:

	A subport represents a predefined group of users.

	A pipe represents an individual user/subscriber.

	A traffic class is the representation of a different traffic type with a specific loss rate,
delay and jitter requirements; such as data voice, video or data transfers.

	A queue hosts packets from one or multiple connections of the same type belonging to the same user.

The traffic flows that need to be configured are application dependent.
This application classifies based on the QinQ double VLAN tags and the IP destination address as indicated in the following table.

Table 25.1 Entity Types

 26. Intel® QuickAssist Technology Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

26. Intel® QuickAssist Technology Sample Application

This sample application demonstrates the use of the cryptographic operations provided
by the Intel® QuickAssist Technology from within the DPDK environment.
Therefore, building and running this application requires having both the DPDK and
the QuickAssist Technology Software Library installed, as well as at least one
Intel® QuickAssist Technology hardware device present in the system.

For this sample application, there is a dependency on either of:

	Intel® Communications Chipset 8900 to 8920 Series Software for Linux* package

	Intel® Communications Chipset 8925 to 8955 Series Software for Linux* package

26.1. Overview

An overview of the application is provided in Fig. 26.1.
For simplicity, only two NIC ports and one Intel® QuickAssist Technology device are shown in this diagram,
although the number of NIC ports and Intel® QuickAssist Technology devices can be different.

[image: ../_images/quickassist_block_diagram.png]
Fig. 26.1 Intel® QuickAssist Technology Application Block Diagram

The application allows the configuration of the following items:

	Number of NIC ports

	Number of logical cores (lcores)

	Mapping of NIC RX queues to logical cores

Each lcore communicates with every cryptographic acceleration engine in the system through a pair of dedicated input - output queues.
Each lcore has a dedicated NIC TX queue with every NIC port in the system.
Therefore, each lcore reads packets from its NIC RX queues and cryptographic accelerator output queues and
writes packets to its NIC TX queues and cryptographic accelerator input queues.

Each incoming packet that is read from a NIC RX queue is either directly forwarded to its destination NIC TX port (forwarding path)
or first sent to one of the Intel® QuickAssist Technology devices for either encryption or decryption
before being sent out on its destination NIC TX port (cryptographic path).

The application supports IPv4 input packets only.
For each input packet, the decision between the forwarding path and
the cryptographic path is taken at the classification stage based on the value of the IP source address field read from the input packet.
Assuming that the IP source address is A.B.C.D, then if:

	D = 0: the forwarding path is selected (the packet is forwarded out directly)

	D = 1: the cryptographic path for encryption is selected (the packet is first encrypted and then forwarded out)

	D = 2: the cryptographic path for decryption is selected (the packet is first decrypted and then forwarded out)

For the cryptographic path cases (D = 1 or D = 2), byte C specifies the cipher algorithm and
byte B the cryptographic hash algorithm to be used for the current packet.
Byte A is not used and can be any value.
The cipher and cryptographic hash algorithms supported by this application are listed in the crypto.h header file.

For each input packet, the destination NIC TX port is decided at the forwarding stage (executed after the cryptographic stage,
if enabled for the packet) by looking at the RX port index of the dst_ports[] array,
which was initialized at startup, being the outport the adjacent enabled port.
For example, if ports 1,3,5 and 6 are enabled, for input port 1, outport port will be 3 and vice versa,
and for input port 5, output port will be 6 and vice versa.

For the cryptographic path, it is the payload of the IPv4 packet that is encrypted or decrypted.

26.1.1. Setup

Building and running this application requires having both the DPDK package and
the QuickAssist Technology Software Library installed,
as well as at least one Intel® QuickAssist Technology hardware device present in the system.

For more details on how to build and run DPDK and Intel® QuickAssist Technology applications,
please refer to the following documents:

	DPDK Getting Started Guide

	Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started Guide (440005)

	Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started Guide (523128)

For more details on the actual platforms used to validate this application, as well as performance numbers,
please refer to the Test Report, which is accessible by contacting your Intel representative.

26.2. Building the Application

Steps to build the application:

	Set up the following environment variables:

export RTE_SDK=<Absolute path to the DPDK installation folder>
export ICP_ROOT=<Absolute path to the Intel QAT installation folder>

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

cd ${RTE_SDK}/examples/dpdk_qat
make

26.3. Running the Application

26.3.1. Intel® QuickAssist Technology Configuration Files

The Intel® QuickAssist Technology configuration files used by the application are located in the config_files folder in the application folder.
There following sets of configuration files are included in the DPDK package:

	Stargo CRB (single CPU socket): located in the stargo folder
	dh89xxcc_qa_dev0.conf

	Shumway CRB (dual CPU socket): located in the shumway folder
	dh89xxcc_qa_dev0.conf

	dh89xxcc_qa_dev1.conf

	Coleto Creek: located in the coleto folder
	dh895xcc_qa_dev0.conf

The relevant configuration file(s) must be copied to the /etc/ directory.

Please note that any change to these configuration files requires restarting the Intel®
QuickAssist Technology driver using the following command:

service qat_service restart

Refer to the following documents for information on the Intel® QuickAssist Technology configuration files:

	Intel® Communications Chipset 8900 to 8920 Series Software Programmer’s Guide

	Intel® Communications Chipset 8925 to 8955 Series Software Programmer’s Guide

	Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started Guide.

	Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started Guide.

26.3.2. Traffic Generator Setup and Application Startup

The application has a number of command line options:

dpdk_qat [EAL options] – -p PORTMASK [–no-promisc] [–config ‘(port,queue,lcore)[,(port,queue,lcore)]’]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	–no-promisc: Disables promiscuous mode for all ports,
so that only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
By default promiscuous mode is enabled so that packets are accepted regardless of the packet’s Ethernet MAC destination address.

	–config’(port,queue,lcore)[,(port,queue,lcore)]’: determines which queues from which ports are mapped to which cores.

Refer to the L3 Forwarding Sample Application for more detailed descriptions of the –config command line option.

As an example, to run the application with two ports and two cores,
which are using different Intel® QuickAssist Technology execution engines,
performing AES-CBC-128 encryption with AES-XCBC-MAC-96 hash, the following settings can be used:

	Traffic generator source IP address: 0.9.6.1

	Command line:

./build/dpdk_qat -c 0xff -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'

Refer to the DPDK Test Report for more examples of traffic generator setup and the application startup command lines.
If no errors are generated in response to the startup commands, the application is running correctly.

 Created using Sphinx 1.3.5.

 27. Quota and Watermark Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

27. Quota and Watermark Sample Application

The Quota and Watermark sample application is a simple example of packet processing using Data Plane Development Kit (DPDK) that
showcases the use of a quota as the maximum number of packets enqueue/dequeue at a time and low and high watermarks
to signal low and high ring usage respectively.

Additionally, it shows how ring watermarks can be used to feedback congestion notifications to data producers by
temporarily stopping processing overloaded rings and sending Ethernet flow control frames.

This sample application is split in two parts:

	qw - The core quota and watermark sample application

	qwctl - A command line tool to alter quota and watermarks while qw is running

27.1. Overview

The Quota and Watermark sample application performs forwarding for each packet that is received on a given port.
The destination port is the adjacent port from the enabled port mask, that is,
if the first four ports are enabled (port mask 0xf), ports 0 and 1 forward into each other,
and ports 2 and 3 forward into each other.
The MAC addresses of the forwarded Ethernet frames are not affected.

Internally, packets are pulled from the ports by the master logical core and put on a variable length processing pipeline,
each stage of which being connected by rings, as shown in Fig. 27.1.

[image: ../_images/pipeline_overview.png]
Fig. 27.1 Pipeline Overview

An adjustable quota value controls how many packets are being moved through the pipeline per enqueue and dequeue.
Adjustable watermark values associated with the rings control a back-off mechanism that
tries to prevent the pipeline from being overloaded by:

	Stopping enqueuing on rings for which the usage has crossed the high watermark threshold

	Sending Ethernet pause frames

	Only resuming enqueuing on a ring once its usage goes below a global low watermark threshold

This mechanism allows congestion notifications to go up the ring pipeline and
eventually lead to an Ethernet flow control frame being send to the source.

On top of serving as an example of quota and watermark usage,
this application can be used to benchmark ring based processing pipelines performance using a traffic- generator,
as shown in Fig. 27.2.

[image: ../_images/ring_pipeline_perf_setup.png]
Fig. 27.2 Ring-based Processing Pipeline Performance Setup

27.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/quota_watermark

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

27.3. Running the Application

The core application, qw, has to be started first.

Once it is up and running, one can alter quota and watermarks while it runs using the control application, qwctl.

27.3.1. Running the Core Application

The application requires a single command line option:

./qw/build/qw [EAL options] -- -p PORTMASK

where,

-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linuxapp environment with four logical cores and ports 0 and 2,
issue the following command:

./qw/build/qw -c f -n 4 -- -p 5

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

27.3.2. Running the Control Application

The control application requires a number of command line options:

./qwctl/build/qwctl [EAL options] --proc-type=secondary

The –proc-type=secondary option is necessary for the EAL to properly initialize the control application to
use the same huge pages as the core application and thus be able to access its rings.

To run the application in a linuxapp environment on logical core 0, issue the following command:

./qwctl/build/qwctl -c 1 -n 4 --proc-type=secondary

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

qwctl is an interactive command line that let the user change variables in a running instance of qw.
The help command gives a list of available commands:

$ qwctl > help

27.4. Code Overview

The following sections provide a quick guide to the application’s source code.

27.4.1. Core Application - qw

27.4.1.1. EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot initialize EAL\n");

argc -= ret;
argv += ret;

Then, a call to init_dpdk(), defined in init.c, is made to initialize the poll mode drivers:

void
init_dpdk(void)
{
 int ret;

 /* Bind the drivers to usable devices */

 ret = rte_eal_pci_probe();
 if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eal_pci_probe(): error %d\n", ret);

 if (rte_eth_dev_count() < 2)
 rte_exit(EXIT_FAILURE, "Not enough Ethernet port available\n");
}

To fully understand this code, it is recommended to study the chapters that relate to the Poll Mode Driver
in the DPDK Getting Started Guide and the DPDK API Reference.

27.4.1.2. Shared Variables Setup

The quota and low_watermark shared variables are put into an rte_memzone using a call to setup_shared_variables():

 void
 setup_shared_variables(void)
 {
 const struct rte_memzone *qw_memzone;

 qw_memzone = rte_memzone_reserve(QUOTA_WATERMARK_MEMZONE_NAME, 2 * sizeof(int), rte_socket_id(), RTE_MEMZONE_2MB);

 if (qw_memzone == NULL)
 rte_exit(EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));

 quota = qw_memzone->addr;
 low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);
}

These two variables are initialized to a default value in main() and
can be changed while qw is running using the qwctl control program.

27.4.1.3. Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be used by the application.
At least two ports are needed to run the application and there should be an even number of ports given in the port mask.

The port mask parsing is done in parse_qw_args(), defined in args.c.

27.4.1.4. Mbuf Pool Initialization

Once the application’s arguments are parsed, an mbuf pool is created.
It contains a set of mbuf objects that are used by the driver and the application to store network packets:

/* Create a pool of mbuf to store packets */

mbuf_pool = rte_mempool_create("mbuf_pool", MBUF_PER_POOL, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

if (mbuf_pool == NULL)
 rte_panic("%s\n", rte_strerror(rte_errno));

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver,
which expects to have some reserved space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a size of MBUF_SIZE each.
A per-lcore cache of 32 mbufs is kept.
The memory is allocated in on the master lcore’s socket, but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

	The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private data of the mempool,
which is needed by the driver.
This function is provided by the mbuf API, but can be copied and extended by the developer.

	The second callback pointer given to rte_mempool_create() is the mbuf initializer.

The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library.
If a more complex application wants to extend the rte_pktmbuf structure for its own needs,
a new function derived from rte_pktmbuf_init() can be created.

27.4.1.5. Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master lcore’s array of rings.
This ring is the first in the pipeline and will hold the packets directly coming from the port.

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
 if (is_bit_set(port_id, portmask)) {
 configure_eth_port(port_id);
 init_ring(master_lcore_id, port_id);
 }

pair_ports();

The configure_eth_port() and init_ring() functions are used to configure a port and a ring respectively and are defined in init.c.
They make use of the DPDK APIs defined in rte_eth.h and rte_ring.h.

pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between reception and transmission ports.
It is defined in init.c.

27.4.1.6. Logical Cores Assignment

The application uses the master logical core to poll all the ports for new packets and enqueue them on a ring associated with the port.

Each logical core except the last runs pipeline_stage() after a ring for each used port is initialized on that core.
pipeline_stage() on core X dequeues packets from core X-1’s rings and enqueue them on its own rings. See Fig. 27.3.

/* Start pipeline_stage() on all the available slave lcore but the last */

for (lcore_id = 0 ; lcore_id < last_lcore_id; lcore_id++) {
 if (rte_lcore_is_enabled(lcore_id) && lcore_id != master_lcore_id) {
 for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
 if (is_bit_set(port_id, portmask))
 init_ring(lcore_id, port_id);

 rte_eal_remote_launch(pipeline_stage, NULL, lcore_id);
 }
}

The last available logical core runs send_stage(),
which is the last stage of the pipeline dequeuing packets from the last ring in the pipeline and
sending them out on the destination port setup by pair_ports().

/* Start send_stage() on the last slave core */

rte_eal_remote_launch(send_stage, NULL, last_lcore_id);

27.4.1.7. Receive, Process and Transmit Packets

[image: ../_images/threads_pipelines.png]
Fig. 27.3 Threads and Pipelines

In the receive_stage() function running on the master logical core,
the main task is to read ingress packets from the RX ports and enqueue them
on the port’s corresponding first ring in the pipeline.
This is done using the following code:

lcore_id = rte_lcore_id();

/* Process each port round robin style */

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
 if (!is_bit_set(port_id, portmask))
 continue;

 ring = rings[lcore_id][port_id];

 if (ring_state[port_id] != RING_READY) {
 if (rte_ring_count(ring) > *low_watermark)
 continue;
 else
 ring_state[port_id] = RING_READY;
 }

 /* Enqueue received packets on the RX ring */

 nb_rx_pkts = rte_eth_rx_burst(port_id, 0, pkts, *quota);

 ret = rte_ring_enqueue_bulk(ring, (void *) pkts, nb_rx_pkts);
 if (ret == -EDQUOT) {
 ring_state[port_id] = RING_OVERLOADED;
 send_pause_frame(port_id, 1337);
 }
}

For each port in the port mask, the corresponding ring’s pointer is fetched into ring and that ring’s state is checked:

	If it is in the RING_READY state, *quota packets are grabbed from the port and put on the ring.
Should this operation make the ring’s usage cross its high watermark,
the ring is marked as overloaded and an Ethernet flow control frame is sent to the source.

	If it is not in the RING_READY state, this port is ignored until the ring’s usage crosses the *low_watermark value.

The pipeline_stage() function’s task is to process and move packets from the preceding pipeline stage.
This thread is running on most of the logical cores to create and arbitrarily long pipeline.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
 if (!is_bit_set(port_id, portmask))
 continue;

 tx = rings[lcore_id][port_id];
 rx = rings[previous_lcore_id][port_id];
 if (ring_state[port_id] != RING_READY) {
 if (rte_ring_count(tx) > *low_watermark)
 continue;
 else
 ring_state[port_id] = RING_READY;
 }

 /* Dequeue up to quota mbuf from rx */

 nb_dq_pkts = rte_ring_dequeue_burst(rx, pkts, *quota);

 if (unlikely(nb_dq_pkts < 0))
 continue;

 /* Enqueue them on tx */

 ret = rte_ring_enqueue_bulk(tx, pkts, nb_dq_pkts);
 if (ret == -EDQUOT)
 ring_state[port_id] = RING_OVERLOADED;
}

The thread’s logic works mostly like receive_stage(),
except that packets are moved from ring to ring instead of port to ring.

In this example, no actual processing is done on the packets,
but pipeline_stage() is an ideal place to perform any processing required by the application.

Finally, the send_stage() function’s task is to read packets from the last ring in a pipeline and
send them on the destination port defined in the port_pairs[] array.
It is running on the last available logical core only.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
 if (!is_bit_set(port_id, portmask)) continue;

 dest_port_id = port_pairs[port_id];
 tx = rings[previous_lcore_id][port_id];

 if (rte_ring_empty(tx)) continue;

 /* Dequeue packets from tx and send them */

 nb_dq_pkts = rte_ring_dequeue_burst(tx, (void *) tx_pkts, *quota);
 nb_tx_pkts = rte_eth_tx_burst(dest_port_id, 0, tx_pkts, nb_dq_pkts);
}

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline and
sent on the destination port paired with the current port.

27.4.2. Control Application - qwctl

The qwctl application uses the rte_cmdline library to provide the user with an interactive command line that
can be used to modify and inspect parameters in a running qw application.
Those parameters are the global quota and low_watermark value as well as each ring’s built-in high watermark.

27.4.2.1. Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything related to the rte_cmdline library.

27.4.2.2. Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and
low_watermark from the rte_memzone previously created by qw.

static void
setup_shared_variables(void)
{
 const struct rte_memzone *qw_memzone;

 qw_memzone = rte_memzone_lookup(QUOTA_WATERMARK_MEMZONE_NAME);
 if (qw_memzone == NULL)
 rte_exit(EXIT_FAILURE, "Couldn't find memzone\n");

 quota = qw_memzone->addr;

 low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);
}

 Created using Sphinx 1.3.5.

 28. Timer Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

28. Timer Sample Application

The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK application.
This application prints some messages from different lcores regularly, demonstrating the use of timers.

28.1. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/timer

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

28.2. Running the Application

To run the example in linuxapp environment:

$./build/timer -c f -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

28.3. Explanation

The following sections provide some explanation of the code.

28.3.1. Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte_timer_subsystem_init() function.

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_panic("Cannot init EAL\n");

/* init RTE timer library */

rte_timer_subsystem_init();

After timer creation (see the next paragraph),
the main loop is executed on each slave lcore using the well-known rte_eal_remote_launch() and also on the master.

/* call lcore_mainloop() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
 rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);
}

/* call it on master lcore too */

(void) lcore_mainloop(NULL);

The main loop is very simple in this example:

while (1) {
 /*
 * Call the timer handler on each core: as we don't
 * need a very precise timer, so only call
 * rte_timer_manage() every ~10ms (at 2 GHz). In a real
 * application, this will enhance performances as
 * reading the HPET timer is not efficient.
 */

 cur_tsc = rte_rdtsc();

 diff_tsc = cur_tsc - prev_tsc;

 if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
 rte_timer_manage();
 prev_tsc = cur_tsc;
 }
}

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the
rte_timer_manage() function must be called or not.
In this example, the resolution of the timer is 10 milliseconds.

28.3.2. Managing Timers

In the main() function, the two timers are initialized.
This call to rte_timer_init() is necessary before doing any other operation on the timer structure.

/* init timer structures */

rte_timer_init(&timer0);
rte_timer_init(&timer1);

Then, the two timers are configured:

	The first timer (timer0) is loaded on the master lcore and expires every second.
Since the PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem.
The callback function is timer0_cb().

	The second timer (timer1) is loaded on the next available lcore every 333 ms.
The SINGLE flag means that the timer expires only once and must be reloaded manually if required.
The callback function is timer1_cb().

/* load timer0, every second, on master lcore, reloaded automatically */

hz = rte_get_hpet_hz();

lcore_id = rte_lcore_id();

rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);

/* load timer1, every second/3, on next lcore, reloaded manually */

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);

The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after 20 seconds).
In this case, the timer is stopped using the rte_timer_stop() function.

/* timer0 callback */

static void
timer0_cb(attribute ((unused)) struct rte_timer *tim, __attribute ((unused)) void *arg)
{
 static unsigned counter = 0;

 unsigned lcore_id = rte_lcore_id();

 printf("%s() on lcore %u\n", FUNCTION , lcore_id);

 /* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */

 if ((counter ++) == 20)
 rte_timer_stop(tim);
}

The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore, using the
rte_timer_reset() function:

/* timer1 callback */

static void
timer1_cb(attribute ((unused)) struct rte_timer *tim, _attribute ((unused)) void *arg)
{
 unsigned lcore_id = rte_lcore_id();
 uint64_t hz;

 printf("%s() on lcore %u\\n", FUNCTION , lcore_id);

 /* reload it on another lcore */

 hz = rte_get_hpet_hz();

 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

 rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}

 Created using Sphinx 1.3.5.

 29. Packet Ordering Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

29. Packet Ordering Application

The Packet Ordering sample app simply shows the impact of reordering a stream.
It’s meant to stress the library with different configurations for performance.

29.1. Overview

The application uses at least three CPU cores:

	RX core (maser core) receives traffic from the NIC ports and feeds Worker
cores with traffic through SW queues.

	Worker core (slave core) basically do some light work on the packet.
Currently it modifies the output port of the packet for configurations with
more than one port enabled.

	TX Core (slave core) receives traffic from Worker cores through software queues,
inserts out-of-order packets into reorder buffer, extracts ordered packets
from the reorder buffer and sends them to the NIC ports for transmission.

29.2. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

29.3. Running the Application

Refer to DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

29.3.1. Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK [--disable-reorder]

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores.
The first CPU core in the core mask is the master core and would be assigned to
RX core, the last to TX core and the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers.
When setting more than 1 port, traffic would be forwarded in pairs.
For example, if we enable 4 ports, traffic from port 0 to 1 and from 1 to 0,
then the other pair from 2 to 3 and from 3 to 2, having [0,1] and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering
of traffic, which should help evaluate reordering performance impact.

 Created using Sphinx 1.3.5.

 30. VMDQ and DCB Forwarding Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

30. VMDQ and DCB Forwarding Sample Application

The VMDQ and DCB Forwarding sample application is a simple example of packet processing using the DPDK.
The application performs L2 forwarding using VMDQ and DCB to divide the incoming traffic into queues.
The traffic splitting is performed in hardware by the VMDQ and DCB features of the Intel® 82599 and X710/XL710 Ethernet Controllers.

30.1. Overview

This sample application can be used as a starting point for developing a new application that is based on the DPDK and
uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on MAC and VLAN traffic to divide the traffic into input queues on the basis of the Destination MAC
address, VLAN ID and VLAN user priority fields.
VMDQ filters split the traffic into 16 or 32 groups based on the Destination MAC and VLAN ID.
Then, DCB places each packet into one of queues within that group, based upon the VLAN user priority field.

All traffic is read from a single incoming port (port 0) and output on port 1, without any processing being performed.
With Intel® 82599 NIC, for example, the traffic is split into 128 queues on input, where each thread of the application reads from
multiple queues. When run with 8 threads, that is, with the -c FF option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 32 pools with 4 queues each as indicated in Fig. 30.1.
The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the splitting of traffic into 16 pools of 8 queues. While the
Intel® X710 or XL710 Ethernet Controller NICs support many configurations of VMDQ pools of 4 or 8 queues each. For simplicity, only 16
or 32 pools is supported in this sample. And queues numbers for each VMDQ pool can be changed by setting CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM
in config/common_* file.
The nb-pools, nb-tcs and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdq_dcb [EAL options] -- -p PORTMASK --nb-pools NP --nb-tcs TC --enable-rss

where, NP can be 16 or 32, TC can be 4 or 8, rss is disabled by default.

Fig. 30.1 Packet Flow Through the VMDQ and DCB Sample Application

In Linux* user space, the application can display statistics with the number of packets received on each queue.
To have the application display the statistics, send a SIGHUP signal to the running application process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2 Forwarding application
(see L2 Forwarding Sample Application (in Real and Virtualized Environments))
as it performs unidirectional L2 forwarding of packets from one port to a second port.
No command-line options are taken by this application apart from the standard EAL command-line options.

Note

Since VMD queues are being used for VMM, this application works correctly
when VTd is disabled in the BIOS or Linux* kernel (intel_iommu=off).

30.2. Compiling the Application

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vmdq_dcb

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

30.3. Running the Application

To run the example in a linuxapp environment:

user@target:~$./build/vmdq_dcb -c f -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

30.4. Explanation

The following sections provide some explanation of the code.

30.4.1. Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application,
as is the creation of the mbuf pool.
See L2 Forwarding Sample Application (in Real and Virtualized Environments).
Where this example application differs is in the configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the appropriate values in the
rte_eth_conf structure passed to the rte_eth_dev_configure() API.
Initially in the application,
a default structure is provided for VMDQ and DCB configuration to be filled in later by the application.

/* empty vmdq+dcb configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_dcb_conf_default = {
 .rxmode = {
 .mq_mode = ETH_MQ_RX_VMDQ_DCB,
 .split_hdr_size = 0,
 .header_split = 0, /**< Header Split disabled */
 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
 },
 .txmode = {
 .mq_mode = ETH_MQ_TX_VMDQ_DCB,
 },
 /*
 * should be overridden separately in code with
 * appropriate values
 */
 .rx_adv_conf = {
 .vmdq_dcb_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .enable_default_pool = 0,
 .default_pool = 0,
 .nb_pool_maps = 0,
 .pool_map = {{0, 0},},
 .dcb_tc = {0},
 },
 .dcb_rx_conf = {
 .nb_tcs = ETH_4_TCS,
 /** Traffic class each UP mapped to. */
 .dcb_tc = {0},
 },
 .vmdq_rx_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .enable_default_pool = 0,
 .default_pool = 0,
 .nb_pool_maps = 0,
 .pool_map = {{0, 0},},
 },
 },
 .tx_adv_conf = {
 .vmdq_dcb_tx_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .dcb_tc = {0},
 },
 },
};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values,
based on the global vlan_tags array,
and dividing up the possible user priority values equally among the individual queues
(also referred to as traffic classes) within each pool. With Intel® 82599 NIC,
if the number of pools is 32, then the user priority fields are allocated 2 to a queue.
If 16 pools are used, then each of the 8 user priority fields is allocated to its own queue within the pool.
With Intel® X710/XL710 NICs, if number of tcs is 4, and number of queues in pool is 8,
then the user priority fields are allocated 2 to one tc, and a tc has 2 queues mapping to it, then
RSS will determine the destination queue in 2.
For the VLAN IDs, each one can be allocated to possibly multiple pools of queues,
so the pools parameter in the rte_eth_vmdq_dcb_conf structure is specified as a bitmask value.
For destination MAC, each VMDQ pool will be assigned with a MAC address. In this sample, each VMDQ pool
is assigned to the MAC like 52:54:00:12:<port_id>:<pool_id>, that is,
the MAC of VMDQ pool 2 on port 1 is 52:54:00:12:01:02.

const uint16_t vlan_tags[] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31
};

/* pool mac addr template, pool mac addr is like: 52 54 00 12 port# pool# */
static struct ether_addr pool_addr_template = {
 .addr_bytes = {0x52, 0x54, 0x00, 0x12, 0x00, 0x00}
};

/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array
 * given above, and the number of traffic classes available for use. */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf)
{
 struct rte_eth_vmdq_dcb_conf conf;
 struct rte_eth_vmdq_rx_conf vmdq_conf;
 struct rte_eth_dcb_rx_conf dcb_conf;
 struct rte_eth_vmdq_dcb_tx_conf tx_conf;
 uint8_t i;

 conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 vmdq_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 tx_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 conf.nb_pool_maps = num_pools;
 vmdq_conf.nb_pool_maps = num_pools;
 conf.enable_default_pool = 0;
 vmdq_conf.enable_default_pool = 0;
 conf.default_pool = 0; /* set explicit value, even if not used */
 vmdq_conf.default_pool = 0;

 for (i = 0; i < conf.nb_pool_maps; i++) {
 conf.pool_map[i].vlan_id = vlan_tags[i];
 vmdq_conf.pool_map[i].vlan_id = vlan_tags[i];
 conf.pool_map[i].pools = 1UL << i ;
 vmdq_conf.pool_map[i].pools = 1UL << i;
 }
 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){
 conf.dcb_tc[i] = i % num_tcs;
 dcb_conf.dcb_tc[i] = i % num_tcs;
 tx_conf.dcb_tc[i] = i % num_tcs;
 }
 dcb_conf.nb_tcs = (enum rte_eth_nb_tcs)num_tcs;
 (void)(rte_memcpy(eth_conf, &vmdq_dcb_conf_default, sizeof(*eth_conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &conf,
 sizeof(conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.dcb_rx_conf, &dcb_conf,
 sizeof(dcb_conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &vmdq_conf,
 sizeof(vmdq_conf)));
 (void)(rte_memcpy(ð_conf->tx_adv_conf.vmdq_dcb_tx_conf, &tx_conf,
 sizeof(tx_conf)));
 if (rss_enable) {
 eth_conf->rxmode.mq_mode= ETH_MQ_RX_VMDQ_DCB_RSS;
 eth_conf->rx_adv_conf.rss_conf.rss_hf = ETH_RSS_IP |
 ETH_RSS_UDP |
 ETH_RSS_TCP |
 ETH_RSS_SCTP;
 }
 return 0;
}

......

/* Set mac for each pool.*/
for (q = 0; q < num_pools; q++) {
 struct ether_addr mac;
 mac = pool_addr_template;
 mac.addr_bytes[4] = port;
 mac.addr_bytes[5] = q;
 printf("Port %u vmdq pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",
 port, q,
 mac.addr_bytes[0], mac.addr_bytes[1],
 mac.addr_bytes[2], mac.addr_bytes[3],
 mac.addr_bytes[4], mac.addr_bytes[5]);
 retval = rte_eth_dev_mac_addr_add(port, &mac,
 q + vmdq_pool_base);
 if (retval) {
 printf("mac addr add failed at pool %d\n", q);
 return retval;
 }
}

Once the network port has been initialized using the correct VMDQ and DCB values,
the initialization of the port’s RX and TX hardware rings is performed similarly to that
in the L2 Forwarding sample application.
See L2 Forwarding Sample Application (in Real and Virtualized Environments) for more information.

30.4.2. Statistics Display

When run in a linuxapp environment,
the VMDQ and DCB Forwarding sample application can display statistics showing the number of packets read from each RX queue.
This is provided by way of a signal handler for the SIGHUP signal,
which simply prints to standard output the packet counts in grid form.
Each row of the output is a single pool with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_dcb_app

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is running,
rather than the terminal from which the HUP signal was sent.

 Created using Sphinx 1.3.5.

 31. Vhost Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

31. Vhost Sample Application

The vhost sample application demonstrates integration of the Data Plane Development Kit (DPDK)
with the Linux* KVM hypervisor by implementing the vhost-net offload API.
The sample application performs simple packet switching between virtual machines based on Media Access Control
(MAC) address or Virtual Local Area Network (VLAN) tag.
The splitting of Ethernet traffic from an external switch is performed in hardware by the Virtual Machine Device Queues
(VMDQ) and Data Center Bridging (DCB) features of the Intel® 82599 10 Gigabit Ethernet Controller.

31.1. Background

Virtio networking (virtio-net) was developed as the Linux* KVM para-virtualized method for communicating network packets
between host and guest.
It was found that virtio-net performance was poor due to context switching and packet copying between host, guest, and QEMU.
The following figure shows the system architecture for a virtio-based networking (virtio-net).

[image: ../_images/qemu_virtio_net.png]
Fig. 31.1 System Architecture for Virtio-based Networking (virtio-net).

The Linux* Kernel vhost-net module was developed as an offload mechanism for virtio-net.
The vhost-net module enables KVM (QEMU) to offload the servicing of virtio-net devices to the vhost-net kernel module,
reducing the context switching and packet copies in the virtual dataplane.

This is achieved by QEMU sharing the following information with the vhost-net module through the vhost-net API:

	The layout of the guest memory space, to enable the vhost-net module to translate addresses.

	The locations of virtual queues in QEMU virtual address space,
to enable the vhost module to read/write directly to and from the virtqueues.

	An event file descriptor (eventfd) configured in KVM to send interrupts to the virtio- net device driver in the guest.
This enables the vhost-net module to notify (call) the guest.

	An eventfd configured in KVM to be triggered on writes to the virtio-net device’s
Peripheral Component Interconnect (PCI) config space.
This enables the vhost-net module to receive notifications (kicks) from the guest.

The following figure shows the system architecture for virtio-net networking with vhost-net offload.

[image: ../_images/virtio_linux_vhost.png]
Fig. 31.2 Virtio with Linux

31.2. Sample Code Overview

The DPDK vhost-net sample code demonstrates KVM (QEMU) offloading the servicing of a Virtual Machine’s (VM’s)
virtio-net devices to a DPDK-based application in place of the kernel’s vhost-net module.

The DPDK vhost-net sample code is based on vhost library. Vhost library is developed for user space Ethernet switch to
easily integrate with vhost functionality.

The vhost library implements the following features:

	Management of virtio-net device creation/destruction events.

	Mapping of the VM’s physical memory into the DPDK vhost-net’s address space.

	Triggering/receiving notifications to/from VMs via eventfds.

	A virtio-net back-end implementation providing a subset of virtio-net features.

There are two vhost implementations in vhost library, vhost cuse and vhost user. In vhost cuse, a character device driver is implemented to
receive and process vhost requests through ioctl messages. In vhost user, a socket server is created to received vhost requests through
socket messages. Most of the messages share the same handler routine.

Note

Any vhost cuse specific requirement in the following sections will be emphasized.

Two implementations are turned on and off statically through configure file. Only one implementation could be turned on. They don’t co-exist in current implementation.

The vhost sample code application is a simple packet switching application with the following feature:

	Packet switching between virtio-net devices and the network interface card,
including using VMDQs to reduce the switching that needs to be performed in software.

The following figure shows the architecture of the Vhost sample application based on vhost-cuse.

[image: ../_images/vhost_net_arch1.png]
Fig. 31.3 Vhost-net Architectural Overview

The following figure shows the flow of packets through the vhost-net sample application.

[image: ../_images/vhost_net_sample_app.png]
Fig. 31.4 Packet Flow Through the vhost-net Sample Application

31.3. Supported Distributions

The example in this section have been validated with the following distributions:

	Fedora* 18

	Fedora* 19

	Fedora* 20

31.4. Prerequisites

This section lists prerequisite packages that must be installed.

31.4.1. Installing Packages on the Host(vhost cuse required)

The vhost cuse code uses the following packages; fuse, fuse-devel, and kernel-modules-extra.
The vhost user code don’t rely on those modules as eventfds are already installed into vhost process through
Unix domain socket.

	Install Fuse Development Libraries and headers:

yum -y install fuse fuse-devel

	Install the Cuse Kernel Module:

yum -y install kernel-modules-extra

31.4.2. QEMU simulator

For vhost user, qemu 2.2 is required.

31.4.3. Setting up the Execution Environment

The vhost sample code requires that QEMU allocates a VM’s memory on the hugetlbfs file system.
As the vhost sample code requires hugepages,
the best practice is to partition the system into separate hugepage mount points for the VMs and the vhost sample code.

Note

This is best-practice only and is not mandatory.
For systems that only support 2 MB page sizes,
both QEMU and vhost sample code can use the same hugetlbfs mount point without issue.

QEMU

VMs with gigabytes of memory can benefit from having QEMU allocate their memory from 1 GB huge pages.
1 GB huge pages must be allocated at boot time by passing kernel parameters through the grub boot loader.

	Calculate the maximum memory usage of all VMs to be run on the system.
Then, round this value up to the nearest Gigabyte the execution environment will require.

	Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX entry:

GRUB_CMDLINE_LINUX="... hugepagesz=1G hugepages=<Number of hugepages required> default_hugepagesz=1G"

	Update the grub boot loader:

grub2-mkconfig -o /boot/grub2/grub.cfg

	Reboot the system.

	The hugetlbfs mount point (/dev/hugepages) should now default to allocating gigabyte pages.

Note

Making the above modification will change the system default hugepage size to 1 GB for all applications.

Vhost Sample Code

In this section, we create a second hugetlbs mount point to allocate hugepages for the DPDK vhost sample code.

	Allocate sufficient 2 MB pages for the DPDK vhost sample code:

echo 256 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

	Mount hugetlbs at a separate mount point for 2 MB pages:

mount -t hugetlbfs nodev /mnt/huge -o pagesize=2M

The above steps can be automated by doing the following:

	Edit /etc/fstab to add an entry to automatically mount the second hugetlbfs mount point:

hugetlbfs <tab> /mnt/huge <tab> hugetlbfs defaults,pagesize=1G 0 0

	Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX entry:

GRUB_CMDLINE_LINUX="... hugepagesz=2M hugepages=256 ... default_hugepagesz=1G"

	Update the grub bootloader:

grub2-mkconfig -o /boot/grub2/grub.cfg

	Reboot the system.

Note

Ensure that the default hugepage size after this setup is 1 GB.

31.4.4. Setting up the Guest Execution Environment

It is recommended for testing purposes that the DPDK testpmd sample application is used in the guest to forward packets,
the reasons for this are discussed in Running the Virtual Machine (QEMU).

The testpmd application forwards packets between pairs of Ethernet devices,
it requires an even number of Ethernet devices (virtio or otherwise) to execute.
It is therefore recommended to create multiples of two virtio-net devices for each Virtual Machine either through libvirt or
at the command line as follows.

Note

Observe that in the example, “-device” and “-netdev” are repeated for two virtio-net devices.

For vhost cuse:

qemu-system-x86_64 ... \
-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet1,id=net1 \
-netdev tap,id=hostnet2,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet2,id=net1

For vhost user:

qemu-system-x86_64 ... \
-chardev socket,id=char1,path=<sock_path> \
-netdev type=vhost-user,id=hostnet1,chardev=char1 \
-device virtio-net-pci,netdev=hostnet1,id=net1 \
-chardev socket,id=char2,path=<sock_path> \
-netdev type=vhost-user,id=hostnet2,chardev=char2 \
-device virtio-net-pci,netdev=hostnet2,id=net2

sock_path is the path for the socket file created by vhost.

31.5. Compiling the Sample Code

	Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n

vhost user is turned on by default in the configure file config/common_linuxapp.
To enable vhost cuse, disable vhost user.

 CONFIG_RTE_LIBRTE_VHOST_USER=y

After vhost is enabled and the implementation is selected, build the vhost library.

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vhost

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

cd ${RTE_SDK}
make config ${RTE_TARGET}
make install ${RTE_TARGET}
cd ${RTE_SDK}/examples/vhost
make

	Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

	Build the eventfd_link kernel module(vhost cuse required):

make

31.6. Running the Sample Code

	Install the cuse kernel module(vhost cuse required):

modprobe cuse

	Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

	Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vhost/build/app

	Run the vhost-switch sample code:

vhost cuse:

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- -p 0x1 --dev-basename usvhost

vhost user: a socket file named usvhost will be created under current directory. Use its path as the socket path in guest’s qemu commandline.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- -p 0x1 --dev-basename usvhost

Note

Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB page hugetlbfs.

Note

The number used with the –socket-mem parameter may need to be more than 1024.
The number required depends on the number of mbufs allocated by vhost-switch.

31.6.1. Parameters

Basename.
vhost cuse uses a Linux* character device to communicate with QEMU.
The basename is used to generate the character devices name.

/dev/<basename>

For compatibility with the QEMU wrapper script, a base name of “usvhost” should be used:

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- -p 0x1 --dev-basename usvhost

vm2vm.
The vm2vm parameter disable/set mode of packet switching between guests in the host.
Value of “0” means disabling vm2vm implies that on virtual machine packet transmission will always go to the Ethernet port;
Value of “1” means software mode packet forwarding between guests, it needs packets copy in vHOST,
so valid only in one-copy implementation, and invalid for zero copy implementation;
value of “2” means hardware mode packet forwarding between guests, it allows packets go to the Ethernet port,
hardware L2 switch will determine which guest the packet should forward to or need send to external,
which bases on the packet destination MAC address and VLAN tag.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --vm2vm [0,1,2]

Mergeable Buffers.
The mergeable buffers parameter controls how virtio-net descriptors are used for virtio-net headers.
In a disabled state, one virtio-net header is used per packet buffer;
in an enabled state one virtio-net header is used for multiple packets.
The default value is 0 or disabled since recent kernels virtio-net drivers show performance degradation with this feature is enabled.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --mergeable [0,1]

Stats.
The stats parameter controls the printing of virtio-net device statistics.
The parameter specifies an interval second to print statistics, with an interval of 0 seconds disabling statistics.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --stats [0,n]

RX Retry.
The rx-retry option enables/disables enqueue retries when the guests RX queue is full.
This feature resolves a packet loss that is observed at high data-rates,
by allowing it to delay and retry in the receive path.
This option is enabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --rx-retry [0,1]

RX Retry Number.
The rx-retry-num option specifies the number of retries on an RX burst,
it takes effect only when rx retry is enabled.
The default value is 4.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --rx-retry 1 --rx-retry-num 5

RX Retry Delay Time.
The rx-retry-delay option specifies the timeout (in micro seconds) between retries on an RX burst,
it takes effect only when rx retry is enabled.
The default value is 15.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --rx-retry 1 --rx-retry-delay 20

Zero copy.
The zero copy option enables/disables the zero copy mode for RX/TX packet,
in the zero copy mode the packet buffer address from guest translate into host physical address
and then set directly as DMA address.
If the zero copy mode is disabled, then one copy mode is utilized in the sample.
This option is disabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --zero-copy [0,1]

RX descriptor number.
The RX descriptor number option specify the Ethernet RX descriptor number,
Linux legacy virtio-net has different behavior in how to use the vring descriptor from DPDK based virtio-net PMD,
the former likely allocate half for virtio header, another half for frame buffer,
while the latter allocate all for frame buffer,
this lead to different number for available frame buffer in vring,
and then lead to different Ethernet RX descriptor number could be used in zero copy mode.
So it is valid only in zero copy mode is enabled. The value is 32 by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --zero-copy 1 --rx-desc-num [0, n]

TX descriptor number.
The TX descriptor number option specify the Ethernet TX descriptor number, it is valid only in zero copy mode is enabled.
The value is 64 by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --zero-copy 1 --tx-desc-num [0, n]

VLAN strip.
The VLAN strip option enable/disable the VLAN strip on host, if disabled, the guest will receive the packets with VLAN tag.
It is enabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
 -- --vlan-strip [0, 1]

31.7. Running the Virtual Machine (QEMU)

QEMU must be executed with specific parameters to:

	Ensure the guest is configured to use virtio-net network adapters.

qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1, \
id=net1 ...

	Ensure the guest’s virtio-net network adapter is configured with offloads disabled.

qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1, \
id=net1, csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off

	Redirect QEMU to communicate with the DPDK vhost-net sample code in place of the vhost-net kernel module(vhost cuse).

qemu-system-x86_64 ... -netdev tap,id=hostnet1,vhost=on, \
vhostfd=<open fd> ...

	Enable the vhost-net sample code to map the VM’s memory into its own process address space.

qemu-system-x86_64 ... -mem-prealloc -mem-path /dev/hugepages ...

Note

The QEMU wrapper (qemu-wrap.py) is a Python script designed to automate the QEMU configuration described above.
It also facilitates integration with libvirt, although the script may also be used standalone without libvirt.

31.7.1. Redirecting QEMU to vhost-net Sample Code(vhost cuse)

To redirect QEMU to the vhost-net sample code implementation of the vhost-net API,
an open file descriptor must be passed to QEMU running as a child process.

#!/usr/bin/python
fd = os.open("/dev/usvhost-1", os.O_RDWR)
subprocess.call
("qemu-system-x86_64 ... -netdev tap,id=vhostnet0,vhost=on,vhostfd="
 + fd +"...", shell=True)

Note

This process is automated in the QEMU Wrapper Script.

31.7.2. Mapping the Virtual Machine’s Memory

For the DPDK vhost-net sample code to be run correctly, QEMU must allocate the VM’s memory on hugetlbfs.
This is done by specifying mem-prealloc and mem-path when executing QEMU.
The vhost-net sample code accesses the virtio-net device’s virtual rings and packet buffers
by finding and mapping the VM’s physical memory on hugetlbfs.
In this case, the path passed to the guest should be that of the 1 GB page hugetlbfs:

qemu-system-x86_64 ... -mem-prealloc -mem-path /dev/hugepages ...

Note

This process is automated in the QEMU Wrapper Script.
The following two sections only applies to vhost cuse.
For vhost-user, please make corresponding changes to qemu-wrapper script and guest XML file.

31.7.3. QEMU Wrapper Script

The QEMU wrapper script automatically detects and calls QEMU with the necessary parameters required
to integrate with the vhost sample code.
It performs the following actions:

	Automatically detects the location of the hugetlbfs and inserts this into the command line parameters.

	Automatically open file descriptors for each virtio-net device and inserts this into the command line parameters.

	Disables offloads on each virtio-net device.

	Calls Qemu passing both the command line parameters passed to the script itself and those it has auto-detected.

The QEMU wrapper script will automatically configure calls to QEMU:

qemu-wrap.py -machine pc-i440fx-1.4,accel=kvm,usb=off \
-cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1 \
-netdev tap,id=hostnet1,vhost=on \
-device virtio-net-pci,netdev=hostnet1,id=net1 \
-hda <disk img> -m 4096

which will become the following call to QEMU:

qemu-system-x86_64 -machine pc-i440fx-1.4,accel=kvm,usb=off \
-cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1 \
-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci,netdev=hostnet1,id=net1, \
csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off \
-hda <disk img> -m 4096 -mem-path /dev/hugepages -mem-prealloc

31.7.4. Libvirt Integration

The QEMU wrapper script (qemu-wrap.py) “wraps” libvirt calls to QEMU,
such that QEMU is called with the correct parameters described above.
To call the QEMU wrapper automatically from libvirt, the following configuration changes must be made:

	Place the QEMU wrapper script in libvirt’s binary search PATH ($PATH).
A good location is in the directory that contains the QEMU binary.

	Ensure that the script has the same owner/group and file permissions as the QEMU binary.

	Update the VM xml file using virsh edit <vm name>:

	Set the VM to use the launch script

	Set the emulator path contained in the #<emulator><emulator/> tags For example,
replace <emulator>/usr/bin/qemu-kvm<emulator/> with <emulator>/usr/bin/qemu-wrap.py<emulator/>

	Set the VM’s virtio-net device’s to use vhost-net offload:

<interface type="network">
<model type="virtio"/>
<driver name="vhost"/>
<interface/>

	Enable libvirt to access the DPDK Vhost sample code’s character device file by adding it
to controllers cgroup for libvirtd using the following steps:

cgroup_controllers = [... "devices", ...] clear_emulator_capabilities = 0
user = "root" group = "root"
cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
 "/dev/rtc", "/dev/hpet", "/dev/net/tun",
 "/dev/<devbase-name>-<index>",
]

	Disable SELinux or set to permissive mode.

	Mount cgroup device controller:

mkdir /dev/cgroup
mount -t cgroup none /dev/cgroup -o devices

	Restart the libvirtd system process

For example, on Fedora* “systemctl restart libvirtd.service”

	Edit the configuration parameters section of the script:

	Configure the “emul_path” variable to point to the QEMU emulator.

emul_path = "/usr/local/bin/qemu-system-x86_64"

	Configure the “us_vhost_path” variable to point to the DPDK vhost-net sample code’s character devices name.
DPDK vhost-net sample code’s character device will be in the format “/dev/<basename>”.

us_vhost_path = "/dev/usvhost"

31.7.5. Common Issues

	QEMU failing to allocate memory on hugetlbfs, with an error like the following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory

When running QEMU the above error indicates that it has failed to allocate memory for the Virtual Machine on
the hugetlbfs. This is typically due to insufficient hugepages being free to support the allocation request.
The number of free hugepages can be checked as follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU’s allocation request.

	User space VHOST when the guest has 2MB sized huge pages:

The guest may have 2MB or 1GB sized huge pages. The user space VHOST should work properly in both cases.

	User space VHOST will not work with QEMU without the -mem-prealloc option:

The current implementation works properly only when the guest memory is pre-allocated, so it is required to
use a QEMU version (e.g. 1.6) which supports -mem-prealloc. The -mem-prealloc option must be
specified explicitly in the QEMU command line.

	User space VHOST will not work with a QEMU version without shared memory mapping:

As shared memory mapping is mandatory for user space VHOST to work properly with the guest, user space VHOST
needs access to the shared memory from the guest to receive and transmit packets. It is important to make sure
the QEMU version supports shared memory mapping.

	In an Ubuntu environment, QEMU fails to start a new guest normally with user space VHOST due to not being able
to allocate huge pages for the new guest:

The solution for this issue is to add -boot c into the QEMU command line to make sure the huge pages are
allocated properly and then the guest should start normally.

Use cat /proc/meminfo to check if there is any changes in the value of HugePages_Total and HugePages_Free
after the guest startup.

	Log message: eventfd_link: module verification failed: signature and/or required key missing - tainting kernel:

This log message may be ignored. The message occurs due to the kernel module eventfd_link, which is not a standard
Linux module but which is necessary for the user space VHOST current implementation (CUSE-based) to communicate with
the guest.

31.8. Running DPDK in the Virtual Machine

For the DPDK vhost-net sample code to switch packets into the VM,
the sample code must first learn the MAC address of the VM’s virtio-net device.
The sample code detects the address from packets being transmitted from the VM, similar to a learning switch.

This behavior requires no special action or configuration with the Linux* virtio-net driver in the VM
as the Linux* Kernel will automatically transmit packets during device initialization.
However, DPDK-based applications must be modified to automatically transmit packets during initialization
to facilitate the DPDK vhost- net sample code’s MAC learning.

The DPDK testpmd application can be configured to automatically transmit packets during initialization
and to act as an L2 forwarding switch.

31.8.1. Testpmd MAC Forwarding

At high packet rates, a minor packet loss may be observed.
To resolve this issue, a “wait and retry” mode is implemented in the testpmd and vhost sample code.
In the “wait and retry” mode if the virtqueue is found to be full, then testpmd waits for a period of time before retrying to enqueue packets.

The “wait and retry” algorithm is implemented in DPDK testpmd as a forwarding method call “mac_retry”.
The following sequence diagram describes the algorithm in detail.

[image: ../_images/tx_dpdk_testpmd.png]
Fig. 31.5 Packet Flow on TX in DPDK-testpmd

31.8.2. Running Testpmd

The testpmd application is automatically built when DPDK is installed.
Run the testpmd application as follows:

cd ${RTE_SDK}/x86_64-native-linuxapp-gcc/app
./testpmd -c 0x3 -n 4 --socket-mem 512 \
-- --burst=64 --i --disable-hw-vlan-filter

The destination MAC address for packets transmitted on each port can be set at the command line:

./testpmd -c 0x3 -n 4 --socket-mem 512 \
-- --burst=64 --i --disable-hw-vlan-filter \
--eth-peer=0,aa:bb:cc:dd:ee:ff --eth-peer=1,ff:ee:dd:cc:bb:aa

	Packets received on port 1 will be forwarded on port 0 to MAC address

aa:bb:cc:dd:ee:ff

	Packets received on port 0 will be forwarded on port 1 to MAC address

ff:ee:dd:cc:bb:aa

The testpmd application can then be configured to act as an L2 forwarding application:

testpmd> set fwd mac_retry

The testpmd can then be configured to start processing packets,
transmitting packets first so the DPDK vhost sample code on the host can learn the MAC address:

testpmd> start tx_first

Note

Please note “set fwd mac_retry” is used in place of “set fwd mac_fwd” to ensure the retry feature is activated.

31.9. Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic,
the traffic’s Layer 2 header must include both the virtio-net device’s MAC address and VLAN tag.
The DPDK sample code behaves in a similar manner to a learning switch in that
it learns the MAC address of the virtio-net devices from the first transmitted packet.
On learning the MAC address,
the DPDK vhost sample code prints a message with the MAC address and VLAN tag virtio-net device.
For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VLAN_TAG 1000 registered

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and VLAN tag 1000.
Any packets received on the NIC with these values is placed on the devices receive queue.
When a virtio-net device transmits packets, the VLAN tag is added to the packet by the DPDK vhost sample code.

 Created using Sphinx 1.3.5.

 32. Netmap Compatibility Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

32. Netmap Compatibility Sample Application

32.1. Introduction

The Netmap compatibility library provides a minimal set of APIs to give programs written against the Netmap APIs
the ability to be run, with minimal changes to their source code, using the DPDK to perform the actual packet I/O.

Since Netmap applications use regular system calls, like open(), ioctl() and
mmap() to communicate with the Netmap kernel module performing the packet I/O,
the compat_netmap library provides a set of similar APIs to use in place of those system calls,
effectively turning a Netmap application into a DPDK application.

The provided library is currently minimal and doesn’t support all the features that Netmap supports,
but is enough to run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section.
Please refer to the Netmap distribution for details about Netmap.

32.2. Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap applications:

	rte_netmap_close()

	rte_netmap_ioctl()

	rte_netmap_open()

	rte_netmap_mmap()

	rte_netmap_poll()

They use the same signature as their libc counterparts, and can be used as drop-in replacements in most cases.

32.3. Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O,
there are caveats and limitations to be aware of when trying to use the compat_netmap library, the most important of these are listed below.
These may change as the library is updated:

	Any system call that can potentially affect file descriptors cannot be used with a descriptor returned by the rte_netmap_open() function.

Note that:

	The rte_netmap_mmap() function merely returns the address of a DPDK memzone.
The address, length, flags, offset, and other arguments are ignored.

	The rte_netmap_poll() function only supports infinite (negative) or zero time outs.
It effectively turns calls to the poll() system call made in a Netmap application into polling of the DPDK ports,
changing the semantics of the usual POSIX defined poll.

	Not all of Netmap’s features are supported: host rings,
slot flags and so on are not supported or are simply not relevant in the DPDK model.

	The Netmap manual page states that “a device obtained through /dev/netmap also supports the ioctl supported by network devices”.
This is not the case with this compatibility layer.

	The Netmap kernel module exposes a sysfs interface to change some internal parameters, such as the size of the shared memory region.
This interface is not available when using this compatibility layer.

32.4. Porting Netmap Applications

Porting Netmap applications typically involves two major steps:

	Changing the system calls to use their compat_netmap library counterparts.

	Adding further DPDK initialization code.

Since the compat_netmap functions have the same signature as the usual libc calls, the change is trivial in most cases.

The usual DPDK initialization code involving rte_eal_init() and rte_eal_pci_probe()
has to be added to the Netmap application in the same way it is used in all other DPDK sample applications.
Please refer to the DPDK Programmer’s Guide and example source code for details about initialization.

In addition of the regular DPDK initialization code,
the ported application needs to call initialization functions for the compat_netmap library,
namely rte_netmap_init() and rte_netmap_init_port().

These two initialization functions take compat_netmap specific data structures as parameters:
struct rte_netmap_conf and struct rte_netmap_port_conf.
The structures’ fields are Netmap related and are self-explanatory for developers familiar with Netmap.
They are defined in $RTE_SDK/examples/netmap_compat/lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with the Netmap distribution.
It shows how a minimal Netmap application with minimal and straightforward source code changes can be run on top of the DPDK.
Please refer to $RTE_SDK/examples/netmap_compat/bridge/bridge.c for an example of a ported application.

32.5. Compiling the “bridge” Sample Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/netmap_compat

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for Linux for possible RTE_TARGET values.

	Build the application:

make

32.6. Running the “bridge” Sample Application

The application requires a single command line option:

./build/bridge [EAL options] -- -i INTERFACE_A [-i INTERFACE_B]

where,

	-i INTERFACE: Interface (DPDK port number) to use.

If a single -i parameter is given, the interface will send back all the traffic it receives.
If two -i parameters are given, the two interfaces form a bridge,
where traffic received on one interface is replicated and sent to the other interface.

For example, to run the application in a linuxapp environment using port 0 and 2:

./build/bridge [EAL options] -- -i 0 -i 2

Refer to the DPDK Getting Started Guide for Linux for general information on running applications and
the Environment Abstraction Layer (EAL) options.

Note that unlike a traditional bridge or the l2fwd sample application, no MAC address changes are done on the frames.
Do not forget to take this into account when configuring a traffic generators and testing this sample application.

 Created using Sphinx 1.3.5.

 33. Internet Protocol (IP) Pipeline Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

33. Internet Protocol (IP) Pipeline Application

33.1. Application overview

The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development of packet processing
applications running on multi-core CPUs.

The application provides a library of reusable functional blocks called pipelines.
These pipelines can be seen as prefabricated blocks that can be instantiated and inter-connected through packet queues
to create complete applications (super-pipelines).

Pipelines are created and inter-connected through the application configuration file.
By using different configuration files, different applications are effectively created, therefore this application
can be seen as an application generator.
The configuration of each pipeline can be updated at run-time through the application Command Line Interface (CLI).

Main application components are:

A Library of reusable pipelines

	Each pipeline represents a functional block, e.g. flow classification, firewall, routing, master, etc.

	Each pipeline type can be instantiated several times in the same application, which each instance configured
separately and mapped to a single CPU core.
Each CPU core can run one or several pipeline instances, which can be of same or different type.

	Pipeline instances are inter-connected through packet queues (for packet processing) and message queues
(for run-time configuration).

	Pipelines are implemented using DPDK Packet Framework.

	More pipeline types can always be built and added to the existing pipeline types.

The Configuration file

	The configuration file defines the application structure.
By using different configuration files, different applications are created.

	All the application resources are created and configured through the application configuration file:
pipeline instances, buffer pools, links (i.e. network interfaces), hardware device RX/TX queues,
software queues, traffic manager devices, EAL startup arguments, etc.

	The configuration file syntax is “define by reference”, meaning that resources are defined as they are referenced.
First time a resource name is detected, it is registered with default parameters.
Optionally, the resource parameters can be further refined through a configuration file section dedicated to
that resource.

	Command Line Interface (CLI)

Global CLI commands: link configuration, etc.

	Common pipeline CLI commands: ping (keep-alive), statistics, etc.

	Pipeline type specific CLI commands: used to configure instances of specific pipeline type.
These commands are registered with the application when the pipeline type is registered.
For example, the commands for routing pipeline instances include: route add, route delete, route list, etc.

	CLI commands can be grouped into scripts that can be invoked at initialization and at runtime.

33.2. Design goals

33.2.1. Rapid development

This application enables rapid development through quick connectivity of standard components called pipelines.
These components are built using DPDK Packet Framework and encapsulate packet processing features at different levels:
ports, tables, actions, pipelines and complete applications.

Pipeline instances are instantiated, configured and inter-connected through low complexity configuration files loaded
during application initialization.
Each pipeline instance is mapped to a single CPU core, with each CPU core able to run one or multiple pipeline
instances of same or different types. By loading a different configuration file, a different application is
effectively started.

33.2.2. Flexibility

Each packet processing application is typically represented as a chain of functional stages which is often called
the functional pipeline of the application.
These stages are mapped to CPU cores to create chains of CPU cores (pipeline model), clusters of CPU cores
(run-to-completion model) or chains of clusters of CPU cores (hybrid model).

This application allows all the above programming models.
By applying changes to the configuration file, the application provides the flexibility to reshuffle its
building blocks in different ways until the configuration providing the best performance is identified.

33.2.2.1. Move pipelines around

The mapping of pipeline instances to CPU cores can be reshuffled through the configuration file.
One or several pipeline instances can be mapped to the same CPU core.

Fig. 33.1 Example of moving pipeline instances across different CPU cores

33.2.2.2. Move tables around

There is some degree of flexibility for moving tables from one pipeline instance to another.
Based on the configuration arguments passed to each pipeline instance in the configuration file, specific tables
can be enabled or disabled.
This way, a specific table can be “moved” from pipeline instance A to pipeline instance B by simply disabling its
associated functionality for pipeline instance A while enabling it for pipeline instance B.

Due to requirement to have simple syntax for the configuration file, moving tables across different pipeline
instances is not as flexible as the mapping of pipeline instances to CPU cores, or mapping actions to pipeline tables.
Complete flexibility in moving tables from one pipeline to another could be achieved through a complex pipeline
description language that would detail the structural elements of the pipeline (ports, tables and actions) and
their connectivity, resulting in complex syntax for the configuration file, which is not acceptable.
Good configuration file readability through simple syntax is preferred.

Example: the IP routing pipeline can run the routing function only (with ARP function run by a different
pipeline instance), or it can run both the routing and ARP functions as part of the same pipeline instance.

Fig. 33.2 Example of moving tables across different pipeline instances

33.2.2.3. Move actions around

When it makes sense, packet processing actions can be moved from one pipeline instance to another.
Based on the configuration arguments passed to each pipeline instance in the configuration file, specific actions
can be enabled or disabled.
This way, a specific action can be “moved” from pipeline instance A to pipeline instance B by simply disabling its
associated functionality for pipeline instance A while enabling it for pipeline instance B.

Example: The flow actions of accounting, traffic metering, application identification, NAT, etc can be run as part
of the flow classification pipeline instance or split across several flow actions pipeline instances, depending on
the number of flow instances and their compute requirements.

Fig. 33.3 Example of moving actions across different tables and pipeline instances

33.2.3. Performance

Performance of the application is the highest priority requirement.
Flexibility is not provided at the expense of performance.

The purpose of flexibility is to provide an incremental development methodology that allows monitoring the
performance evolution:

	Apply incremental changes in the configuration (e.g. mapping on pipeline instances to CPU cores)
in order to identify the configuration providing the best performance for a given application;

	Add more processing incrementally (e.g. by enabling more actions for specific pipeline instances) until
the application is feature complete while checking the performance impact at each step.

33.2.4. Debug capabilities

The application provides a significant set of debug capabilities:

	Command Line Interface (CLI) support for statistics polling: pipeline instance ping (keep-alive checks),
pipeline instance statistics per input port/output port/table, link statistics, etc;

	Logging: Turn on/off application log messages based on priority level;

33.3. Running the application

The application startup command line is:

ip_pipeline [-f CONFIG_FILE] [-s SCRIPT_FILE] -p PORT_MASK [-l LOG_LEVEL]

The application startup arguments are:

-f CONFIG_FILE

	Optional: Yes

	Default: ./config/ip_pipeline.cfg

	Argument: Path to the configuration file to be loaded by the application.
Please refer to the Configuration file syntax for details on how to write the configuration file.

-s SCRIPT_FILE

	Optional: Yes

	Default: Not present

	Argument: Path to the CLI script file to be run by the master pipeline at application startup.
No CLI script file will be run at startup of this argument is not present.

-p PORT_MASK

	Optional: No

	Default: N/A

	Argument: Hexadecimal mask of NIC port IDs to be used by the application.
First port enabled in this mask will be referenced as LINK0 as part of the application configuration file,
next port as LINK1, etc.

-l LOG_LEVEL

	Optional: Yes

	Default: 1 (High priority)

	Argument: Log level to determine which application messages are to be printed to standard output.
Available log levels are: 0 (None), 1 (High priority), 2 (Low priority).
Only application messages whose priority is higher than or equal to the application log level will be printed.

33.4. Application stages

33.4.1. Configuration

During this stage, the application configuration file is parsed and its content is loaded into the application data
structures.
In case of any configuration file parse error, an error message is displayed and the application is terminated.
Please refer to the Configuration file syntax for a description of the application configuration file format.

33.4.2. Configuration checking

In the absence of any parse errors, the loaded content of application data structures is checked for overall consistency.
In case of any configuration check error, an error message is displayed and the application is terminated.

33.4.3. Initialization

During this stage, the application resources are initialized and the handles to access them are saved into the
application data structures.
In case of any initialization error, an error message is displayed and the application is terminated.

The typical resources to be initialized are: pipeline instances, buffer pools, links (i.e. network interfaces),
hardware device RX/TX queues, software queues, traffic management devices, etc.

33.4.4. Run-time

Each CPU core runs the pipeline instances assigned to it in time sharing mode and in round robin order:

	Packet processing task: The pipeline run-time code is typically a packet processing task built on top of
DPDK Packet Framework rte_pipeline library, which reads bursts of packets from the pipeline input ports,
performs table lookups and executes the identified actions for all tables in the pipeline, with packet
eventually written to pipeline output ports or dropped.

	Message handling task: Each CPU core will also periodically execute the message handling code of each
of the pipelines mapped to it.
The pipeline message handling code is processing the messages that are pending in the pipeline input message
queues, which are typically sent by the master CPU core for the on-the-fly pipeline configuration: check
that pipeline is still alive (ping), add/delete entries in the pipeline tables, get statistics, etc.
The frequency of executing the message handling code is usually much smaller than the frequency of executing
the packet processing work.

Please refer to the PIPELINE section for more details about the application pipeline module encapsulation.

33.5. Configuration file syntax

33.5.1. Syntax overview

The syntax of the configuration file is designed to be simple, which favors readability.
The configuration file is parsed using the DPDK library librte_cfgfile, which supports simple
INI file format [http://en.wikipedia.org/wiki/INI_file] for configuration files.

As result, the configuration file is split into several sections, with each section containing one or more entries.
The scope of each entry is its section, and each entry specifies a variable that is assigned a specific value.
Any text after the ; character is considered a comment and is therefore ignored.

The following are application specific: number of sections, name of each section, number of entries of each section,
name of the variables used for each section entry, the value format (e.g. signed/unsigned integer, string, etc)
and range of each section entry variable.

Generic example of configuration file section:

[<section_name>]

<variable_name_1> = <value_1>

...

<variable_name_N> = <value_N>

33.5.2. Application resources present in the configuration file

Table 33.1 Application resource names in the configuration file

 34. Test Pipeline Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

34. Test Pipeline Application

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite.
Its purpose is to demonstrate the performance of single-table DPDK pipelines.

34.1. Overview

The application uses three CPU cores:

	Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through SW queues.

	Core B (“Pipeline core”) implements a single-table DPDK pipeline
whose type is selectable through specific command line parameter.
Core B receives traffic from core A through software queues,
processes it according to the actions configured in the table entries that
are hit by the input packets and feeds it to core C through another set of software queues.

	Core C (“TX core”) receives traffic from core B through software queues and sends it to the NIC ports for transmission.

[image: ../_images/test_pipeline_app.png]
Fig. 34.1 Test Pipeline Application

34.2. Compiling the Application

	Go to the app/test directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/app/test/test-pipeline

	Set the target (a default target is used if not specified):

export RTE_TARGET=x86_64-native-linuxapp-gcc

	Build the application:

make

34.3. Running the Application

34.3.1. Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE

The -c EAL CPU core mask option has to contain exactly 3 CPU cores.
The first CPU core in the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

34.3.2. Table Types and Behavior

Table 34.1 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys.
For hash tables, the following parameters can be selected:

	Configurable key size implementation or fixed (specialized) key size implementation (e.g. hash-8-ext or hash-spec-8-ext).
The key size specialized implementations are expected to provide better performance for 8-byte and 16-byte key sizes,
while the key-size-non-specialized implementation is expected to provide better performance for larger key sizes;

	Key size (e.g. hash-spec-8-ext or hash-spec-16-ext).
The available options are 8, 16 and 32 bytes;

	Table type (e.g. hash-spec-16-ext or hash-spec-16-lru).
The available options are ext (extendable bucket) or lru (least recently used).

Table 34.1 Table Types

 35. Distributor Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

35. Distributor Sample Application

The distributor sample application is a simple example of packet distribution
to cores using the Data Plane Development Kit (DPDK).

35.1. Overview

The distributor application performs the distribution of packets that are received
on an RX_PORT to different cores. When processed by the cores, the destination
port of a packet is the port from the enabled port mask adjacent to the one on
which the packet was received, that is, if the first four ports are enabled
(port mask 0xf), ports 0 and 1 RX/TX into each other, and ports 2 and 3 RX/TX
into each other.

This application can be used to benchmark performance using the traffic
generator as shown in the figure below.

Fig. 35.1 Performance Benchmarking Setup (Basic Environment)

35.2. Compiling the Application

	Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/distributor

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

35.3. Running the Application

	The application has a number of command line options:

./build/distributor_app [EAL options] -- -p PORTMASK

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	To run the application in linuxapp environment with 10 lcores, 4 ports,
issue the command:

$./build/distributor_app -c 0x4003fe -n 4 -- -p f

	Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

35.4. Explanation

The distributor application consists of three types of threads: a receive
thread (lcore_rx()), a set of worker threads(lcore_worker())
and a transmit thread(lcore_tx()). How these threads work together is shown
in Fig. 35.2 below. The main() function launches threads of these three types.
Each thread has a while loop which will be doing processing and which is
terminated only upon SIGINT or ctrl+C. The receive and transmit threads
communicate using a software ring (rte_ring structure).

The receive thread receives the packets using rte_eth_rx_burst() and gives
them to the distributor (using rte_distributor_process() API) which will
be called in context of the receive thread itself. The distributor distributes
the packets to workers threads based on the tagging of the packet -
indicated by the hash field in the mbuf. For IP traffic, this field is
automatically filled by the NIC with the “usr” hash value for the packet,
which works as a per-flow tag.

More than one worker thread can exist as part of the application, and these
worker threads do simple packet processing by requesting packets from
the distributor, doing a simple XOR operation on the input port mbuf field
(to indicate the output port which will be used later for packet transmission)
and then finally returning the packets back to the distributor in the RX thread.

Meanwhile, the receive thread will call the distributor api
rte_distributor_returned_pkts() to get the packets processed, and will enqueue
them to a ring for transfer to the TX thread for transmission on the output port.
The transmit thread will dequeue the packets from the ring and transmit them on
the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C
(or send SIGINT to the app). Upon this signal, a signal handler provided
in the application will terminate all running threads gracefully and print
final statistics to the user.

Fig. 35.2 Distributor Sample Application Layout

35.5. Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment
the line “#define DEBUG” defined in start of the application in main.c to enable debug logs.

35.6. Statistics

Upon SIGINT (or) ctrl+C, the print_stats() function displays the count of packets
processed at the different stages in the application.

35.7. Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Command Line Arguments.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See Mbuf Pool Initialization.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample
Application. See Driver Initialization.

RX queue initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See RX Queue Initialization.

TX queue initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See TX Queue Initialization.

 Created using Sphinx 1.3.5.

 36. VM Power Management Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

36. VM Power Management Application

36.1. Introduction

Applications running in Virtual Environments have an abstract view of
the underlying hardware on the Host, in particular applications cannot see
the binding of virtual to physical hardware.
When looking at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to
Host Physical CPUs(pCPUS) is not apparent to an application
and this pinning may change over time.
Furthermore, Operating Systems on virtual machines do not have the ability
to govern their own power policy; the Machine Specific Registers (MSRs)
for enabling P-State transitions are not exposed to Operating Systems
running on Virtual Machines(VMs).

The Virtual Machine Power Management solution shows an example of
how a DPDK application can indicate its processing requirements using VM local
only information(vCPU/lcore) to a Host based Monitor which is responsible
for accepting requests for frequency changes for a vCPU, translating the vCPU
to a pCPU via libvirt and affecting the change in frequency.

The solution is comprised of two high-level components:

	Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel management
allows adding channels to the Monitor, setting and querying the vCPU to pCPU pinning,
inspecting and manually changing the frequency for each CPU.
The CLI runs on a single lcore while the thread responsible for managing
VM requests runs on a second lcore.

VM requests arriving on a channel for frequency changes are passed
to the librte_power ACPI cpufreq sysfs based library.
The Host Application relies on both qemu-kvm and libvirt to function.

	librte_power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for
frequency changes are forwarded to the host monitor rather than
the APCI cpufreq sysfs interface used on the host.

The l3fwd-power application will use this implementation when deployed on a VM
(see L3 Forwarding with Power Management Sample Application).

Fig. 36.1 Highlevel Solution

36.2. Overview

VM Power Management employs qemu-kvm to provide communications channels
between the host and VMs in the form of Virtio-Serial which appears as
a paravirtualized serial device on a VM and can be configured to use
various backends on the host. For this example each Virtio-Serial endpoint
on the host is configured as AF_UNIX file socket, supporting poll/select
and epoll for event notification.
In this example each channel endpoint on the host is monitored via
epoll for EPOLLIN events.
Each channel is specified as qemu-kvm arguments or as libvirt XML for each VM,
where each VM can have a number of channels up to a maximum of 64 per VM,
in this example each DPDK lcore on a VM has exclusive access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface
is forwarded via Virtio-Serial to the host, each request contains the vCPU
and power command(scale up/down/min/max).
The API for host and guest librte_power is consistent across environments,
with the selection of VM or Host Implementation determined at automatically
at runtime based on the environment.

Upon receiving a request, the host translates the vCPU to a pCPU via
the libvirt API before forwarding to the host librte_power.

Fig. 36.2 VM request to scale frequency

36.2.1. Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core,
earlier Microarchtectures do not offer such fine grained control.
When deployed on pre-Haswell platforms greater care must be taken in selecting
which cores are assigned to a VM, for instance a core will not scale down
until its sibling is similarly scaled.

36.3. Configuration

36.3.1. BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS
if the power management feature of DPDK is to be used.
Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist,
and the CPU frequency-based power management cannot be used.
Consult the relevant BIOS documentation to determine how these settings
can be accessed.

36.3.2. Host Operating System

The Host OS must also have the apci_cpufreq module installed, in some cases
the intel_pstate driver may be the default Power Management environment.
To enable acpi_cpufreq and disable intel_pstate, add the following
to the grub Linux command line:

intel_pstate=disable

Upon rebooting, load the acpi_cpufreq module:

modprobe acpi_cpufreq

36.3.3. Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

<name>{vm_name}</name>
<controller type='virtio-serial' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</controller>
<channel type='unix'>
 <source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
 <target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}/>
 <address type='virtio-serial' controller='0' bus='0' port='{N}'/>
</channel>

Where a single controller of type virtio-serial is created and up to 32 channels
can be associated with a single controller and multiple controllers can be specified.
The convention is to use the name of the VM in the host path {vm_name} and
to increment {channel_num} for each channel, likewise the port value {N}
must be incremented for each channel.

Each channel on the host will appear in path, the directory /tmp/powermonitor/
must first be created and given qemu permissions

mkdir /tmp/powermonitor/
chown qemu:qemu /tmp/powermonitor

Note that files and directories within /tmp are generally removed upon
rebooting the host and the above steps may need to be carried out after each reboot.

The serial device as it appears on a VM is configured with the target element attribute name
and must be in the form of virtio.serial.port.poweragent.{vm_channel_num},
where vm_channel_num is typically the lcore channel to be used in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}

36.4. Compiling and Running the Host Application

36.4.1. Compiling

	export RTE_SDK=/path/to/rte_sdk

	cd ${RTE_SDK}/examples/vm_power_manager

	make

36.4.2. Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

The application requires exactly two cores to run, one core is dedicated to the CLI,
while the other is dedicated to the channel endpoint monitor, for example to run
on cores 0 & 1 on a system with 4 memory channels:

./build/vm_power_mgr -c 0x3 -n 4

After successful initialization the user is presented with VM Power Manager CLI:

vm_power>

Virtual Machines can now be added to the VM Power Manager:

vm_power> add_vm {vm_name}

When a {vm_name} is specified with the add_vm command a lookup is performed
with libvirt to ensure that the VM exists, {vm_name} is used as an unique identifier
to associate channels with a particular VM and for executing operations on a VM within the CLI.
VMs do not have to be running in order to add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

rm_vm {vm_name}

Add communication channels for the specified VM, the virtio channels must be enabled
in the VM configuration(qemu/libvirt) and the associated VM must be active.
{list} is a comma-separated list of channel numbers to add, using the keyword ‘all’
will attempt to add all channels for the VM:

add_channels {vm_name} {list}|all

Enable or disable the communication channels in {list}(comma-separated)
for the specified VM, alternatively list can be replaced with keyword ‘all’.
Disabled channels will still receive packets on the host, however the commands
they specify will be ignored. Set status to ‘enabled’ to begin processing requests again:

set_channel_status {vm_name} {list}|all enabled|disabled

Print to the CLI the information on the specified VM, the information
lists the number of vCPUS, the pinning to pCPU(s) as a bit mask, along with
any communication channels associated with each VM, along with the status of each channel:

show_vm {vm_name}

Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu}

Set the binding of Virtual CPU on VM to the Physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

show_cpu_freq_mask {mask}

Set the current frequency for the cores specified in {core_mask} by scaling each up/down/min/max:

set_cpu_freq {core_mask} up|down|min|max

Get the current frequency for the specified core:

show_cpu_freq {core_num}

Set the current frequency for the specified core by scaling up/down/min/max:

set_cpu_freq {core_num} up|down|min|max

36.5. Compiling and Running the Guest Applications

For compiling and running l3fwd-power, see L3 Forwarding with Power Management Sample Application.

A guest CLI is also provided for validating the setup.

For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the
host application using the add_channels command on the host.

36.5.1. Compiling

	export RTE_SDK=/path/to/rte_sdk

	cd ${RTE_SDK}/examples/vm_power_manager/guest_cli

	make

36.5.2. Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

The application for example purposes uses a channel for each lcore enabled,
for example to run on cores 0,1,2,3 on a system with 4 memory channels:

./build/guest_vm_power_mgr -c 0xf -n 4

After successful initialization the user is presented with VM Power Manager Guest CLI:

vm_power(guest)>

To change the frequency of a lcore, use the set_cpu_freq command.
Where {core_num} is the lcore and channel to change frequency by scaling up/down/min/max.

set_cpu_freq {core_num} up|down|min|max

 Created using Sphinx 1.3.5.

 37. TEP termination Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

37. TEP termination Sample Application

The TEP (Tunnel End point) termination sample application simulates a VXLAN
Tunnel Endpoint (VTEP) termination in DPDK, which is used to demonstrate
the offload and filtering capabilities of Intel® XL710 10/40 Gigabit Ethernet
Controller for VXLAN packet.
This sample uses the basic virtio devices management mechanism from vhost example,
and also uses the us-vHost interface and tunnel filtering mechanism to direct
a specified traffic to a specific VM.
In addition, this sample is also designed to show how tunneling protocols can be handled.

37.1. Background

With virtualization, overlay networks allow a network structure to be built
or imposed across physical nodes which is abstracted away from the actual
underlining physical network connections.
This allows network isolation, QOS, etc to be provided on a per client basis.

Fig. 37.1 Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point (VEP/TEP).
The TEP is normally located at the physical host level ideally in the software switch.
Due to processing constraints and the inevitable bottleneck that the switch
becomes the ability to offload overlay support features becomes an important requirement.
Intel® XL710 10/40 G Ethernet network card provides hardware filtering
and offload capabilities to support overlay networks implementations such as MAC in UDP and MAC in GRE.

37.2. Sample Code Overview

The DPDK TEP termination sample code demonstrates the offload and filtering
capabilities of Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library.
The vhost library is developed for user space Ethernet switch to easily integrate with vhost functionality.

The sample will support the followings:

	Tunneling packet recognition.

	The port of UDP tunneling is configurable

	Directing incoming traffic to the correct queue based on the tunnel filter type.
The supported filter type are listed below.

	Inner MAC and VLAN and tenant ID

	Inner MAC and tenant ID, and Outer MAC

	Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device ID.
Each device will receive a unique device ID.
The inner MAC will be learned by the first packet transmitted from a device.

	Decapsulation of RX VXLAN traffic. This is a software only operation.

	Encapsulation of TX VXLAN traffic. This is a software only operation.

	Inner IP and inner L4 checksum offload.

	TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample application based on vhost-cuse.

Fig. 37.2 TEP termination Framework Overview

37.3. Supported Distributions

The example in this section have been validated with the following distributions:

	Fedora* 18

	Fedora* 19

	Fedora* 20

37.4. Prerequisites

Refer to Prerequisites.

37.5. Compiling the Sample Code

	Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n

vhost user is turned on by default in the configure file config/common_linuxapp.
To enable vhost cuse, disable vhost user.

 CONFIG_RTE_LIBRTE_VHOST_USER=y

After vhost is enabled and the implementation is selected, build the vhost library.

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

cd ${RTE_SDK}
make config ${RTE_TARGET}
make install ${RTE_TARGET}
cd ${RTE_SDK}/examples/tep_termination
make

	Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

	Build the eventfd_link kernel module(vhost cuse required):

make

37.6. Running the Sample Code

	Install the cuse kernel module(vhost cuse required):

modprobe cuse

	Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

	Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

	Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 -p 0x1 --dev-basename tep-termination --nb-devices 4
 --udp-port 4789 --filter-type 1

Note

Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB page hugetlbfs.

37.6.1. Parameters

The same parameters with the vhost sample.

Refer to Parameters for the meanings of ‘Basename’,
‘Stats’, ‘RX Retry’, ‘RX Retry Number’ and ‘RX Retry Delay Time’.

Number of Devices.

The nb-devices option specifies the number of virtIO device.
The default value is 2.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 2

Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet.
The default value is 4789.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --udp-port 4789

Filter Type.

The filter-type option is used to specify which filter type is used to
filter UDP tunneling packet to a specified queue.
The default value is 1, which means the filter type of inner MAC and tenant ID is used.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --udp-port 4789 --filter-type 1

TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload.
The default value is 0, which means the checksum offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --tx-checksum

TCP segment size.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet.
The default value is 0, which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --tx-checksum --tso-segsz 800

Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN packet.
The default value is 1.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 4 --udp-port 4789 --decap 1

Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet.
The default value is 1.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
 --nb-devices 4 --udp-port 4789 --encap 1

37.7. Running the Virtual Machine (QEMU)

Refer to Running the Virtual Machine (QEMU).

37.8. Running DPDK in the Virtual Machine

Refer to Running DPDK in the Virtual Machine.

37.9. Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include
both the virtio-net device’s MAC address.
The DPDK sample code behaves in a similar manner to a learning switch in that
it learns the MAC address of the virtio-net devices from the first transmitted packet.
On learning the MAC address,
the DPDK vhost sample code prints a message with the MAC address and tenant ID virtio-net device.
For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and VNI 1000.
Any packets received on the NIC with these values are placed on the devices receive queue.

 Created using Sphinx 1.3.5.

 38. dpdk_proc_info Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

38. dpdk_proc_info Application

The dpdk_proc_info application is a Data Plane Development Kit (DPDK) application
that runs as a DPDK secondary process and is capable of retrieving port
statistics, resetting port statistics and printing DPDK memory information.
This application extends the original functionality that was supported by
dump_cfg.

38.1. Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/dpdk_proc_info -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset]

38.1.1. Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats
The stats parameter controls the printing of generic port statistics. If no
port mask is specified stats are printed for all DPDK ports.

–xstats
The stats parameter controls the printing of extended port statistics. If no
port mask is specified xstats are printed for all DPDK ports.

–stats-reset
The stats-reset parameter controls the resetting of generic port statistics. If
no port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset
The xstats-reset parameter controls the resetting of extended port statistics.
If no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

 Created using Sphinx 1.3.5.

 39. PTP Client Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

39. PTP Client Sample Application

The PTP (Precision Time Protocol) client sample application is a simple
example of using the DPDK IEEE1588 API to communicate with a PTP master clock
to synchronize the time on the NIC and, optionally, on the Linux system.

Note, PTP is a time syncing protocol and cannot be used within DPDK as a
time-stamping mechanism. See the following for an explanation of the protocol:
Precision Time Protocol [https://en.wikipedia.org/wiki/Precision_Time_Protocol].

39.1. Limitations

The PTP sample application is intended as a simple reference implementation of
a PTP client using the DPDK IEEE1588 API.
In order to keep the application simple the following assumptions are made:

	The first discovered master is the master for the session.

	Only L2 PTP packets are supported.

	Only the PTP v2 protocol is supported.

	Only the slave clock is implemented.

39.2. How the Application Works

Fig. 39.1 PTP Synchronization Protocol

The PTP synchronization in the sample application works as follows:

	Master sends Sync message - the slave saves it as T2.

	Master sends Follow Up message and sends time of T1.

	Slave sends Delay Request frame to PTP Master and stores T3.

	Master sends Delay Response T4 time which is time of received T3.

The adjustment for slave can be represented as:

adj = -[(T2-T1)-(T4 - T3)]/2

If the command line parameter -T 1 is used the application also
synchronizes the PTP PHC clock with the Linux kernel clock.

39.3. Compiling the Application

To compile the application, export the path to the DPDK source tree and edit
the config/common_linuxapp configuration file to enable IEEE1588:

export RTE_SDK=/path/to/rte_sdk

Edit common_linuxapp and set the following options:
CONFIG_RTE_LIBRTE_IEEE1588=y

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

Recompile DPDK.
make install T=$RTE_TARGET

Compile the application.
cd ${RTE_SDK}/examples/ptpclient
make

39.4. Running the Application

To run the example in a linuxapp environment:

./build/ptpclient -c 2 -n 4 -- -p 0x1 -T 0

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

	-p portmask: Hexadecimal portmask.

	-T 0: Update only the PTP slave clock.

	-T 1: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.

39.5. Code Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

39.5.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

And than we parse application specific arguments

argc -= ret;
argv += ret;

ret = ptp_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

mbuf_pool = rte_mempool_create("MBUF_POOL",
 NUM_MBUFS * nb_ports,
 MBUF_SIZE,
 MBUF_CACHE_SIZE,
 sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL,
 rte_socket_id(),
 0);

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
port_init() function with portmask provided by user:

for (portid = 0; portid < nb_ports; portid++)
 if ((ptp_enabled_port_mask & (1 << portid)) != 0) {

 if (port_init(portid, mbuf_pool) == 0) {
 ptp_enabled_ports[ptp_enabled_port_nb] = portid;
 ptp_enabled_port_nb++;
 } else {
 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
 portid);
 }
 }

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example lcore_main() is called on a single
lcore.

lcore_main();

The lcore_main() function is explained below.

39.5.2. The Lcores Main

As we saw above the main() function calls an application function on the
available lcores.

The main work of the application is done within the loop:

for (portid = 0; portid < ptp_enabled_port_nb; portid++) {

 portid = ptp_enabled_ports[portid];
 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);

 if (likely(nb_rx == 0))
 continue;

 if (m->ol_flags & PKT_RX_IEEE1588_PTP)
 parse_ptp_frames(portid, m);

 rte_pktmbuf_free(m);
}

Packets are received one by one on the RX ports and, if required, PTP response
packets are transmitted on the TX ports.

If the offload flags in the mbuf indicate that the packet is a PTP packet then
the packet is parsed to determine which type:

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
 parse_ptp_frames(portid, m);

All packets are freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using
Ctrl-C.

39.5.3. PTP parsing

The parse_ptp_frames() function processes PTP packets, implementing slave
PTP IEEE1588 L2 functionality.

void
parse_ptp_frames(uint8_t portid, struct rte_mbuf *m) {
 struct ptp_header *ptp_hdr;
 struct ether_hdr *eth_hdr;
 uint16_t eth_type;

 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);

 if (eth_type == PTP_PROTOCOL) {
 ptp_data.m = m;
 ptp_data.portid = portid;
 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
 + sizeof(struct ether_hdr));

 switch (ptp_hdr->msgtype) {
 case SYNC:
 parse_sync(&ptp_data);
 break;
 case FOLLOW_UP:
 parse_fup(&ptp_data);
 break;
 case DELAY_RESP:
 parse_drsp(&ptp_data);
 print_clock_info(&ptp_data);
 break;
 default:
 break;
 }
 }
}

There are 3 types of packets on the RX path which we must parse to create a minimal
implementation of the PTP slave client:

	SYNC packet.

	FOLLOW UP packet

	DELAY RESPONSE packet.

When we parse the FOLLOW UP packet we also create and send a DELAY_REQUEST packet.
Also when we parse the DELAY RESPONSE packet, and all conditions are met we adjust the PTP slave clock.

 Created using Sphinx 1.3.5.

 40. Performance Thread Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Data Plane Development Kit 16.04.0 documentation

 	Sample Applications User Guide

40. Performance Thread Sample Application

The performance thread sample application is a derivative of the standard L3
forwarding application that demonstrates different threading models.

40.1. Overview

For a general description of the L3 forwarding applications capabilities
please refer to the documentation of the standard application in
L3 Forwarding Sample Application.

The performance thread sample application differs from the standard L3
forwarding example in that it divides the TX and RX processing between
different threads, and makes it possible to assign individual threads to
different cores.

Three threading models are considered:

	When there is one EAL thread per physical core.

	When there are multiple EAL threads per physical core.

	When there are multiple lightweight threads per EAL thread.

Since DPDK release 2.0 it is possible to launch applications using the
--lcores EAL parameter, specifying cpu-sets for a physical core. With the
performance thread sample application its is now also possible to assign
individual RX and TX functions to different cores.

As an alternative to dividing the L3 forwarding work between different EAL
threads the performance thread sample introduces the possibility to run the
application threads as lightweight threads (L-threads) within one or
more EAL threads.

In order to facilitate this threading model the example includes a primitive
cooperative scheduler (L-thread) subsystem. More details of the L-thread
subsystem can be found in The L-thread subsystem.

Note: Whilst theoretically possible it is not anticipated that multiple
L-thread schedulers would be run on the same physical core, this mode of
operation should not be expected to yield useful performance and is considered
invalid.

40.2. Compiling the Application

The application is located in the sample application folder in the
performance-thread folder.

	Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/l3fwd-thread

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Linux Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

40.3. Running the Application

The application has a number of command line options:

./build/l3fwd-thread [EAL options] --
 -p PORTMASK [-P]
 --rx(port,queue,lcore,thread)[,(port,queue,lcore,thread)]
 --tx(lcore,thread)[,(lcore,thread)]
 [--enable-jumbo] [--max-pkt-len PKTLEN]] [--no-numa]
 [--hash-entry-num] [--ipv6] [--no-lthreads] [--stat-lcore lcore]

Where:

	-p PORTMASK: Hexadecimal bitmask of ports to configure.

	-P: optional, sets all ports to promiscuous mode so that packets are
accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address
set to the Ethernet address of the port are accepted.

	--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread)]: the list of
NIC RX ports and queues handled by the RX lcores and threads. The parameters
are explained below.

	--tx (lcore,thread)[,(lcore,thread)]: the list of TX threads identifying
the lcore the thread runs on, and the id of RX thread with which it is
associated. The parameters are explained below.

	--enable-jumbo: optional, enables jumbo frames.

	--max-pkt-len: optional, maximum packet length in decimal (64-9600).

	--no-numa: optional, disables numa awareness.

	--hash-entry-num: optional, specifies the hash entry number in hex to be
setup.

	--ipv6: optional, set it if running ipv6 packets.

	--no-lthreads: optional, disables l-thread model and uses EAL threading
model. See below.

	--stat-lcore: optional, run CPU load stats collector on the specified
lcore.

The parameters of the --rx and --tx options are:

	--rx parameters

	port
	RX port

	queue
	RX queue that will be read on the specified RX port

	lcore
	Core to use for the thread

	thread
	Thread id (continuously from 0 to N)

	--tx parameters

	lcore
	Core to use for L3 route match and transmit

	thread
	Id of RX thread to be associated with this TX thread

The l3fwd-thread application allows you to start packet processing in two
threading models: L-Threads (default) and EAL Threads (when the
--no-lthreads parameter is used). For consistency all parameters are used
in the same way for both models.

40.3.1. Running with L-threads

When the L-thread model is used (default option), lcore and thread parameters
in --rx/--tx are used to affinitize threads to the selected scheduler.

For example, the following places every l-thread on different lcores:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)"

The following places RX l-threads on lcore 0 and TX l-threads on lcore 1 and 2
and so on:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(1,0)(2,1)"

40.3.2. Running with EAL threads

When the --no-lthreads parameter is used, the L-threading model is turned
off and EAL threads are used for all processing. EAL threads are enumerated in
the same way as L-threads, but the --lcores EAL parameter is used to
affinitize threads to the selected cpu-set (scheduler). Thus it is possible to
place every RX and TX thread on different lcores.

For example, the following places every EAL thread on different lcores:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

To affinitize two or more EAL threads to one cpu-set, the EAL --lcores
parameter is used.

The following places RX EAL threads on lcore 0 and TX EAL threads on lcore 1
and 2 and so on:

l3fwd-thread -c ff -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

40.3.3. Examples

For selected scenarios the command line configuration of the application for L-threads
and its corresponding EAL threads command line can be realized as follows:

	Start every thread on different scheduler (1:1):

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)"

EAL thread equivalent:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

	Start all threads on one core (N:1).

Start 4 L-threads on lcore 0:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(0,0)(0,1)"

Start 4 EAL threads on cpu-set 0:

l3fwd-thread -c ff -n 2 --lcores="(0-3)@0" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

	Start threads on different cores (N:M).

Start 2 L-threads for RX on lcore 0, and 2 L-threads for TX on lcore 1:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(1,0)(1,1)"

Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on
cpu-set 1:

l3fwd-thread -c ff -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

40.4. Explanation

To a great extent the sample application differs little from the standard L3
forwarding application, and readers are advised to familiarize themselves with
the material covered in the L3 Forwarding Sample Application documentation before proceeding.

The following explanation is focused on the way threading is handled in the
performance thread example.

40.4.1. Mode of operation with EAL threads

The performance thread sample application has split the RX and TX functionality
into two different threads, and the RX and TX threads are
interconnected via software rings. With respect to these rings the RX threads
are producers and the TX threads are consumers.

On initialization the TX and RX threads are started according to the command
line parameters.

The RX threads poll the network interface queues and post received packets to a
TX thread via a corresponding software ring.

The TX threads poll software rings, perform the L3 forwarding hash/LPM match,
and assemble packet bursts before performing burst transmit on the network
interface.

As with the standard L3 forward application, burst draining of residual packets
is performed periodically with the period calculated from elapsed time using
the timestamps counter.

The diagram below illustrates a case with two RX threads and three TX threads.

40.4.2. Mode of operation with L-threads

Like the EAL thread configuration the application has split the RX and TX
functionality into different threads, and the pairs of RX and TX threads are
interconnected via software rings.

On initialization an L-thread scheduler is started on every EAL thread. On all
but the master EAL thread only a a dummy L-thread is initially started.
The L-thread started on the master EAL thread then spawns other L-threads on
different L-thread schedulers according the the command line parameters.

The RX threads poll the network interface queues and post received packets
to a TX thread via the corresponding software ring.

The ring interface is augmented by means of an L-thread condition variable that
enables the TX thread to be suspended when the TX ring is empty. The RX thread
signals the condition whenever it posts to the TX ring, causing the TX thread
to be resumed.

Additionally the TX L-thread spawns a worker L-thread to take care of
polling the software rings, whilst it handles burst draining of the transmit
buffer.

The worker threads poll the software rings, perform L3 route lookup and
assemble packet bursts. If the TX ring is empty the worker thread suspends
itself by waiting on the condition variable associated with the ring.

Burst draining of residual packets, less than the burst size, is performed by
the TX thread which sleeps (using an L-thread sleep function) and resumes
periodically to flush the TX buffer.

This design means that L-threads that have no work, can yield the CPU to other
L-threads and avoid having to constantly poll the software rings.

The diagram below illustrates a case with two RX threads and three TX functions
(each comprising a thread that processes forwarding and a thread that
periodically drains the output buffer of residual packets).

40.4.3. CPU load statistics

It is possible to display statistics showing estimated CPU load on each core.
The statistics indicate the percentage of CPU time spent: processing
received packets (forwarding), polling queues/rings (waiting for work),
and doing any other processing (context switch and other overhead).

When enabled statistics are gathered by having the application threads set and
clear flags when they enter and exit pertinent code sections. The flags are
then sampled in real time by a statistics collector thread running on another
core. This thread displays the data in real time on the console.

This feature is enabled by designating a statistics collector core, using the
--stat-lcore parameter.

40.5. The L-thread subsystem

The L-thread subsystem resides in the examples/performance-thread/common
directory and is built and linked automatically when building the
l3fwd-thread example.

The subsystem provides a simple cooperative scheduler to enable arbitrary
functions to run as cooperative threads within a single EAL thread.
The subsystem provides a pthread like API that is intended to assist in
reuse of legacy code written for POSIX pthreads.

The following sections provide some detail on the features, constraints,
performance and porting considerations when using L-threads.

40.5.1. Comparison between L-threads and POSIX pthreads

The fundamental difference between the L-thread and pthread models is the
way in which threads are scheduled. The simplest way to think about this is to
consider the case of a processor with a single CPU. To run multiple threads
on a single CPU, the scheduler must frequently switch between the threads,
in order that each thread is able to make timely progress.
This is the basis of any multitasking operating system.

This section explores the differences between the pthread model and the
L-thread model as implemented in the provided L-thread subsystem. If needed a
theoretical discussion of preemptive vs cooperative multi-threading can be
found in any good text on operating system design.

40.5.1.1. Scheduling and context switching

The POSIX pthread library provides an application programming interface to
create and synchronize threads. Scheduling policy is determined by the host OS,
and may be configurable. The OS may use sophisticated rules to determine which
thread should be run next, threads may suspend themselves or make other threads
ready, and the scheduler may employ a time slice giving each thread a maximum
time quantum after which it will be preempted in favor of another thread that
is ready to run. To complicate matters further threads may be assigned
different scheduling priorities.

By contrast the L-thread subsystem is considerably simpler. Logically the
L-thread scheduler performs the same multiplexing function for L-threads
within a single pthrea