
DPDK documentation
Release 16.04.0

April 12, 2016

Contents

1 Getting Started Guide for Linux 1

2 Getting Started Guide for FreeBSD 27

3 Xen Guide 38

4 Programmer’s Guide 46

5 Network Interface Controller Drivers 221

6 Crypto Device Drivers 297

7 Sample Applications User Guide 308

8 Testpmd Application User Guide 527

9 FAQ 565

10 Release Notes 570

11 Contributor’s Guidelines 617

i

CHAPTER 1

Getting Started Guide for Linux

1.1 Introduction

This document contains instructions for installing and configuring the Data Plane Development
Kit (DPDK) software. It is designed to get customers up and running quickly. The document
describes how to compile and run a DPDK application in a Linux application (linuxapp) envi-
ronment, without going deeply into detail.

1.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes: Provides release-specific information, including supported features, lim-
itations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guide (this document): Describes how to install and configure the DPDK;
designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux application (linuxapp) environment

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference: Provides detailed information about DPDK functions, data structures and
other programming constructs.

• Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

1

DPDK documentation, Release 16.04.0

1.2 System Requirements

This chapter describes the packages required to compile the DPDK.

Note: If the DPDK is being used on an Intel® Communications Chipset 89xx Series platform,
please consult the Intel® Communications Chipset 89xx Series Software for Linux Getting
Started Guide.

1.2.1 BIOS Setting Prerequisite on x86

For the majority of platforms, no special BIOS settings are needed to use basic DPDK func-
tionality. However, for additional HPET timer and power management functionality, and high
performance of small packets on 40G NIC, BIOS setting changes may be needed. Consult the
section on Enabling Additional Functionality for more information on the required changes.

1.2.2 Compilation of the DPDK

Required Tools:

Note: Testing has been performed using Fedora 18. The setup commands and installed
packages needed on other systems may be different. For details on other Linux distributions
and the versions tested, please consult the DPDK Release Notes.

• GNU make.

• coreutils: cmp, sed, grep, arch, etc.

• gcc: versions 4.5.x or later is recommended for i686/x86_64. Versions 4.8.x or
later is recommended for ppc_64 and x86_x32 ABI. On some distributions, some
specific compiler flags and linker flags are enabled by default and affect performance
(-fstack-protector, for example). Please refer to the documentation of your distri-
bution and to gcc -dumpspecs.

• libc headers, often packaged as gcc-multilib (glibc-devel.i686 /
libc6-dev-i386; glibc-devel.x86_64 / libc6-dev for 64-bit compilation
on Intel architecture; glibc-devel.ppc64 for 64 bit IBM Power architecture;)

• Linux kernel headers or sources required to build kernel modules. (kernel - devel.x86_64;
kernel - devel.ppc64)

• Additional packages required for 32-bit compilation on 64-bit systems are:

– glibc.i686, libgcc.i686, libstdc++.i686 and glibc-devel.i686 for Intel i686/x86_64;

– glibc.ppc64, libgcc.ppc64, libstdc++.ppc64 and glibc-devel.ppc64 for IBM ppc_64;

Note: x86_x32 ABI is currently supported with distribution packages only on Ubuntu higher
than 13.10 or recent Debian distribution. The only supported compiler is gcc 4.8+.

1.2. System Requirements 2

DPDK documentation, Release 16.04.0

Note: Python, version 2.6 or 2.7, to use various helper scripts included in the DPDK package.

Optional Tools:

• Intel® C++ Compiler (icc). For installation, additional libraries may be required. See the
icc Installation Guide found in the Documentation directory under the compiler installa-
tion.

• IBM® Advance ToolChain for Powerlinux. This is a set of open source development
tools and runtime libraries which allows users to take leading edge advantage of IBM’s
latest POWER hardware features on Linux. To install it, see the IBM official installation
document.

• libpcap headers and libraries (libpcap-devel) to compile and use the libpcap-based
poll-mode driver. This driver is disabled by default and can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y in the build time config file.

1.2.3 Running DPDK Applications

To run an DPDK application, some customization may be required on the target machine.

System Software

Required:

• Kernel version >= 2.6.34

The kernel version in use can be checked using the command:

uname -r

• glibc >= 2.7 (for features related to cpuset)

The version can be checked using the ldd --version command.

• Kernel configuration

In the Fedora OS and other common distributions, such as Ubuntu, or Red Hat Enter-
prise Linux, the vendor supplied kernel configurations can be used to run most DPDK
applications.

For other kernel builds, options which should be enabled for DPDK include:

– UIO support

– HUGETLBFS

– PROC_PAGE_MONITOR support

– HPET and HPET_MMAP configuration options should also be enabled if HPET sup-
port is required. See the section on High Precision Event Timer (HPET) Functional-
ity for more details.

1.2. System Requirements 3

DPDK documentation, Release 16.04.0

Use of Hugepages in the Linux Environment

Hugepage support is required for the large memory pool allocation used for packet buffers (the
HUGETLBFS option must be enabled in the running kernel as indicated the previous section).
By using hugepage allocations, performance is increased since fewer pages are needed, and
therefore less Translation Lookaside Buffers (TLBs, high speed translation caches), which re-
duce the time it takes to translate a virtual page address to a physical page address. Without
hugepages, high TLB miss rates would occur with the standard 4k page size, slowing perfor-
mance.

Reserving Hugepages for DPDK Use

The allocation of hugepages should be done at boot time or as soon as possible after system
boot to prevent memory from being fragmented in physical memory. To reserve hugepages at
boot time, a parameter is passed to the Linux kernel on the kernel command line.

For 2 MB pages, just pass the hugepages option to the kernel. For example, to reserve 1024
pages of 2 MB, use:

hugepages=1024

For other hugepage sizes, for example 1G pages, the size must be specified explicitly and can
also be optionally set as the default hugepage size for the system. For example, to reserve 4G
of hugepage memory in the form of four 1G pages, the following options should be passed to
the kernel:

default_hugepagesz=1G hugepagesz=1G hugepages=4

Note: The hugepage sizes that a CPU supports can be determined from the CPU flags on Intel
architecture. If pse exists, 2M hugepages are supported; if pdpe1gb exists, 1G hugepages are
supported. On IBM Power architecture, the supported hugepage sizes are 16MB and 16GB.

Note: For 64-bit applications, it is recommended to use 1 GB hugepages if the platform
supports them.

In the case of a dual-socket NUMA system, the number of hugepages reserved at boot time is
generally divided equally between the two sockets (on the assumption that sufficient memory
is present on both sockets).

See the Documentation/kernel-parameters.txt file in your Linux source tree for further details
of these and other kernel options.

Alternative:

For 2 MB pages, there is also the option of allocating hugepages after the system has booted.
This is done by echoing the number of hugepages required to a nr_hugepages file in the
/sys/devices/ directory. For a single-node system, the command to use is as follows (as-
suming that 1024 pages are required):

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

On a NUMA machine, pages should be allocated explicitly on separate nodes:

1.2. System Requirements 4

DPDK documentation, Release 16.04.0

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages

Note: For 1G pages, it is not possible to reserve the hugepage memory after the system has
booted.

Using Hugepages with the DPDK

Once the hugepage memory is reserved, to make the memory available for DPDK use, perform
the following steps:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

The mount point can be made permanent across reboots, by adding the following line to the
/etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

For 1GB pages, the page size must be specified as a mount option:

nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

Xen Domain0 Support in the Linux Environment

The existing memory management implementation is based on the Linux kernel hugepage
mechanism. On the Xen hypervisor, hugepage support for DomainU (DomU) Guests means
that DPDK applications work as normal for guests.

However, Domain0 (Dom0) does not support hugepages. To work around this limitation, a new
kernel module rte_dom0_mm is added to facilitate the allocation and mapping of memory via
IOCTL (allocation) and MMAP (mapping).

Enabling Xen Dom0 Mode in the DPDK

By default, Xen Dom0 mode is disabled in the DPDK build configuration files. To support
Xen Dom0, the CONFIG_RTE_LIBRTE_XEN_DOM0 setting should be changed to “y”, which
enables the Xen Dom0 mode at compile time.

Furthermore, the CONFIG_RTE_EAL_ALLOW_INV_SOCKET_ID setting should also be
changed to “y” in the case of the wrong socket ID being received.

Loading the DPDK rte_dom0_mm Module

To run any DPDK application on Xen Dom0, the rte_dom0_mm module must be loaded into
the running kernel with rsv_memsize option. The module is found in the kmod sub-directory
of the DPDK target directory. This module should be loaded using the insmod command as
shown below (assuming that the current directory is the DPDK target directory):

sudo insmod kmod/rte_dom0_mm.ko rsv_memsize=X

The value X cannot be greater than 4096(MB).

1.2. System Requirements 5

DPDK documentation, Release 16.04.0

Configuring Memory for DPDK Use

After the rte_dom0_mm.ko kernel module has been loaded, the user must configure the mem-
ory size for DPDK usage. This is done by echoing the memory size to a memsize file in the
/sys/devices/ directory. Use the following command (assuming that 2048 MB is required):

echo 2048 > /sys/kernel/mm/dom0-mm/memsize-mB/memsize

The user can also check how much memory has already been used:

cat /sys/kernel/mm/dom0-mm/memsize-mB/memsize_rsvd

Xen Domain0 does not support NUMA configuration, as a result the --socket-mem command
line option is invalid for Xen Domain0.

Note: The memsize value cannot be greater than the rsv_memsize value.

Running the DPDK Application on Xen Domain0

To run the DPDK application on Xen Domain0, an extra command line option --xen-dom0 is
required.

1.3 Compiling the DPDK Target from Source

Note: Parts of this process can also be done using the setup script described in the Quick
Start Setup Script section of this document.

1.3.1 Install the DPDK and Browse Sources

First, uncompress the archive and move to the uncompressed DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile
mk/ scripts/ tools/

The DPDK is composed of several directories:

• lib: Source code of DPDK libraries

• drivers: Source code of DPDK poll-mode drivers

• app: Source code of DPDK applications (automatic tests)

• examples: Source code of DPDK application examples

• config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

1.3. Compiling the DPDK Target from Source 6

DPDK documentation, Release 16.04.0

1.3.2 Installation of DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

where:

• ARCH can be: i686, x86_64, ppc_64

• MACHINE can be: native, ivshmem, power8

• EXECENV can be: linuxapp, bsdapp

• TOOLCHAIN can be: gcc, icc

The targets to be installed depend on the 32-bit and/or 64-bit packages and compilers installed
on the host. Available targets can be found in the DPDK/config directory. The defconfig_ prefix
should not be used.

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within
the configuration files, the RTE_MACHINE configuration value is set to native, which means that
the compiled software is tuned for the platform on which it is built. For more information on this
setting, and its possible values, see the DPDK Programmers Guide.

When using the Intel® C++ Compiler (icc), one of the following commands should be invoked
for 64-bit or 32-bit use respectively. Notice that the shell scripts update the $PATH variable and
therefore should not be performed in the same session. Also, verify the compiler’s installation
directory since the path may be different:

source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh ia32

To install and make targets, use the make install T=<target> command in the top-level
DPDK directory.

For example, to compile a 64-bit target using icc, run:

make install T=x86_64-native-linuxapp-icc

To compile a 32-bit build using gcc, the make command should be:

make install T=i686-native-linuxapp-gcc

To prepare a target without building it, for example, if the configuration changes need to be
made before compilation, use the make config T=<target> command:

make config T=x86_64-native-linuxapp-gcc

Warning: Any kernel modules to be used, e.g. igb_uio, kni, must be compiled with
the same kernel as the one running on the target. If the DPDK is not being built on the
target machine, the RTE_KERNELDIR environment variable should be used to point the
compilation at a copy of the kernel version to be used on the target machine.

Once the target environment is created, the user may move to the target environment directory
and continue to make code changes and re-compile. The user may also make modifications to
the compile-time DPDK configuration by editing the .config file in the build directory. (This is a
build-local copy of the defconfig file from the top- level config directory).

1.3. Compiling the DPDK Target from Source 7

DPDK documentation, Release 16.04.0

cd x86_64-native-linuxapp-gcc
vi .config
make

In addition, the make clean command can be used to remove any existing compiled files for a
subsequent full, clean rebuild of the code.

1.3.3 Browsing the Installed DPDK Environment Target

Once a target is created it contains all libraries, including poll-mode drivers, and header files
for the DPDK environment that are required to build customer applications. In addition, the test
and testpmd applications are built under the build/app directory, which may be used for testing.
A kmod directory is also present that contains kernel modules which may be loaded if needed.

ls x86_64-native-linuxapp-gcc

app build hostapp include kmod lib Makefile

1.3.4 Loading Modules to Enable Userspace IO for DPDK

To run any DPDK application, a suitable uio module can be loaded into the running kernel.
In many cases, the standard uio_pci_generic module included in the Linux kernel can
provide the uio capability. This module can be loaded using the command

sudo modprobe uio_pci_generic

As an alternative to the uio_pci_generic, the DPDK also includes the igb_uio module which
can be found in the kmod subdirectory referred to above. It can be loaded as shown below:

sudo modprobe uio
sudo insmod kmod/igb_uio.ko

Note: For some devices which lack support for legacy interrupts, e.g. virtual function (VF)
devices, the igb_uio module may be needed in place of uio_pci_generic.

Since DPDK release 1.7 onward provides VFIO support, use of UIO is optional for platforms
that support using VFIO.

1.3.5 Loading VFIO Module

To run an DPDK application and make use of VFIO, the vfio-pci module must be loaded:

sudo modprobe vfio-pci

Note that in order to use VFIO, your kernel must support it. VFIO kernel modules have been
included in the Linux kernel since version 3.6.0 and are usually present by default, however
please consult your distributions documentation to make sure that is the case.

Also, to use VFIO, both kernel and BIOS must support and be configured to use IO virtualiza-
tion (such as Intel® VT-d).

For proper operation of VFIO when running DPDK applications as a non-privileged user, cor-
rect permissions should also be set up. This can be done by using the DPDK setup script
(called setup.sh and located in the tools directory).

1.3. Compiling the DPDK Target from Source 8

DPDK documentation, Release 16.04.0

1.3.6 Binding and Unbinding Network Ports to/from the Kernel Modules

As of release 1.4, DPDK applications no longer automatically unbind all supported network
ports from the kernel driver in use. Instead, all ports that are to be used by an DPDK ap-
plication must be bound to the uio_pci_generic, igb_uio or vfio-pci module before
the application is run. Any network ports under Linux* control will be ignored by the DPDK
poll-mode drivers and cannot be used by the application.

Warning: The DPDK will, by default, no longer automatically unbind network ports from
the kernel driver at startup. Any ports to be used by an DPDK application must be unbound
from Linux* control and bound to the uio_pci_generic, igb_uio or vfio-pci module
before the application is run.

To bind ports to the uio_pci_generic, igb_uio or vfio-pci module for DPDK use, and
then subsequently return ports to Linux* control, a utility script called dpdk_nic _bind.py is
provided in the tools subdirectory. This utility can be used to provide a view of the current
state of the network ports on the system, and to bind and unbind those ports from the different
kernel modules, including the uio and vfio modules. The following are some examples of how
the script can be used. A full description of the script and its parameters can be obtained by
calling the script with the --help or --usage options. Note that the uio or vfio kernel modules
to be used, should be loaded into the kernel before running the dpdk_nic_bind.py script.

Warning: Due to the way VFIO works, there are certain limitations to which devices can
be used with VFIO. Mainly it comes down to how IOMMU groups work. Any Virtual Function
device can be used with VFIO on its own, but physical devices will require either all ports
bound to VFIO, or some of them bound to VFIO while others not being bound to anything at
all.
If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU
group in which your device is in. Therefore, the bridge driver should also be unbound from
the bridge PCI device for VFIO to work with devices behind the bridge.

Warning: While any user can run the dpdk_nic_bind.py script to view the status of the
network ports, binding or unbinding network ports requires root privileges.

To see the status of all network ports on the system:

./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
0000:82:00.0 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe
0000:82:00.1 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe

Network devices using kernel driver
===================================
0000:04:00.0 'I350 1-GbE NIC' if=em0 drv=igb unused=uio_pci_generic *Active*
0000:04:00.1 'I350 1-GbE NIC' if=eth1 drv=igb unused=uio_pci_generic
0000:04:00.2 'I350 1-GbE NIC' if=eth2 drv=igb unused=uio_pci_generic
0000:04:00.3 'I350 1-GbE NIC' if=eth3 drv=igb unused=uio_pci_generic

Other network devices
=====================
<none>

To bind device eth1,‘‘04:00.1‘‘, to the uio_pci_generic driver:

1.3. Compiling the DPDK Target from Source 9

DPDK documentation, Release 16.04.0

./tools/dpdk_nic_bind.py --bind=uio_pci_generic 04:00.1

or, alternatively,

./tools/dpdk_nic_bind.py --bind=uio_pci_generic eth1

To restore device 82:00.0 to its original kernel binding:

./tools/dpdk_nic_bind.py --bind=ixgbe 82:00.0

1.4 Compiling and Running Sample Applications

The chapter describes how to compile and run applications in an DPDK environment. It also
provides a pointer to where sample applications are stored.

Note: Parts of this process can also be done using the setup script described the Quick Start
Setup Script section of this document.

1.4.1 Compiling a Sample Application

Once an DPDK target environment directory has been created (such as
x86_64-native-linuxapp-gcc), it contains all libraries and header files required to
build an application.

When compiling an application in the Linux* environment on the DPDK, the following variables
must be exported:

• RTE_SDK - Points to the DPDK installation directory.

• RTE_TARGET - Points to the DPDK target environment directory.

The following is an example of creating the helloworld application, which runs in the DPDK
Linux environment. This example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the
DPDK target environment, calls the various functions to initialize the DPDK environment, then
launches an entry point (dispatch application) for each core to be utilized. By default, the binary
is generated in the build directory.

cd examples/helloworld/
export RTE_SDK=$HOME/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

ls build/app
helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. How-
ever, it could have been located outside the directory structure to keep the DPDK structure

1.4. Compiling and Running Sample Applications 10

DPDK documentation, Release 16.04.0

intact. In the following case, the helloworld application is copied to a new directory as a
new starting point.

export RTE_SDK=/home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

1.4.2 Running a Sample Application

Warning: The UIO drivers and hugepages must be setup prior to running an application.

Warning: Any ports to be used by the application must be already bound to an appropriate
kernel module, as described in Binding and Unbinding Network Ports to/from the Kernel
Modules, prior to running the application.

The application is linked with the DPDK target environment’s Environmental Abstraction Layer
(EAL) library, which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
[--socket-mem=MB,...] [-m MB] [-r NUM] [-v] [--file-prefix] \
[--proc-type <primary|secondary|auto>] [-- xen-dom0]

The EAL options are as follows:

• -c COREMASK: An hexadecimal bit mask of the cores to run on. Note that core number-
ing can change between platforms and should be determined beforehand.

• -n NUM: Number of memory channels per processor socket.

• -b <domain:bus:devid.func>: Blacklisting of ports; prevent EAL from using speci-
fied PCI device (multiple -b options are allowed).

• --use-device: use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

• --socket-mem: Memory to allocate from hugepages on specific sockets.

• -m MB: Memory to allocate from hugepages, regardless of processor socket. It is rec-
ommended that --socket-mem be used instead of this option.

• -r NUM: Number of memory ranks.

• -v: Display version information on startup.

• --huge-dir: The directory where hugetlbfs is mounted.

• --file-prefix: The prefix text used for hugepage filenames.

• --proc-type: The type of process instance.

1.4. Compiling and Running Sample Applications 11

DPDK documentation, Release 16.04.0

• --xen-dom0: Support application running on Xen Domain0 without hugetlbfs.

• --vmware-tsc-map: Use VMware TSC map instead of native RDTSC.

• --base-virtaddr: Specify base virtual address.

• --vfio-intr: Specify interrupt type to be used by VFIO (has no effect if VFIO is not
used).

The -c and option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming
the platform has four memory channels per processor socket, and that cores 0-3 are present
and are to be used for running the application):

./helloworld -c f -n 4

Note: The --proc-type and --file-prefix EAL options are used for running multiple
DPDK processes. See the “Multi-process Sample Application” chapter in the DPDK Sample
Applications User Guide and the DPDK Programmers Guide for more details.

Logical Core Use by Applications

The coremask parameter is always mandatory for DPDK applications. Each bit of the mask
corresponds to the equivalent logical core number as reported by Linux. Since these logical
core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from
platform to platform, it is recommended that the core layout for each platform be considered
when choosing the coremask to use in each case.

On initialization of the EAL layer by an DPDK application, the logical cores to be used and their
socket location are displayed. This information can also be determined for all cores on the
system by examining the /proc/cpuinfo file, for example, by running cat /proc/cpuinfo.
The physical id attribute listed for each processor indicates the CPU socket to which it belongs.
This can be useful when using other processors to understand the mapping of the logical cores
to the sockets.

Note: A more graphical view of the logical core layout may be obtained using the lstopo
Linux utility. On Fedora Linux, this may be installed and run using the following command:

sudo yum install hwloc
./lstopo

Warning: The logical core layout can change between different board layouts and should
be checked before selecting an application coremask.

Hugepage Memory Use by Applications

When running an application, it is recommended to use the same amount of memory as that
allocated for hugepages. This is done automatically by the DPDK application at startup, if no
-m or --socket-mem parameter is passed to it when run.

1.4. Compiling and Running Sample Applications 12

DPDK documentation, Release 16.04.0

If more memory is requested by explicitly passing a -m or --socket-mem value, the applica-
tion fails. However, the application itself can also fail if the user requests less memory than the
reserved amount of hugepage-memory, particularly if using the -m option. The reason is as
follows. Suppose the system has 1024 reserved 2 MB pages in socket 0 and 1024 in socket 1.
If the user requests 128 MB of memory, the 64 pages may not match the constraints:

• The hugepage memory by be given to the application by the kernel in socket 1 only. In
this case, if the application attempts to create an object, such as a ring or memory pool
in socket 0, it fails. To avoid this issue, it is recommended that the --socket-mem option
be used instead of the -m option.

• These pages can be located anywhere in physical memory, and, although the DPDK EAL
will attempt to allocate memory in contiguous blocks, it is possible that the pages will not
be contiguous. In this case, the application is not able to allocate big memory pools.

The socket-mem option can be used to request specific amounts of memory for specific sock-
ets. This is accomplished by supplying the --socket-mem flag followed by amounts of mem-
ory requested on each socket, for example, supply --socket-mem=0,512 to try and reserve
512 MB for socket 1 only. Similarly, on a four socket system, to allocate 1 GB memory on
each of sockets 0 and 2 only, the parameter --socket-mem=1024,0,1024 can be used.
No memory will be reserved on any CPU socket that is not explicitly referenced, for example,
socket 3 in this case. If the DPDK cannot allocate enough memory on each socket, the EAL
initialization fails.

1.4.3 Additional Sample Applications

Additional sample applications are included in the ${RTE_SDK}/examples directory. These
sample applications may be built and run in a manner similar to that described in earlier sec-
tions in this manual. In addition, see the DPDK Sample Applications User Guide for a descrip-
tion of the application, specific instructions on compilation and execution and some explanation
of the code.

1.4.4 Additional Test Applications

In addition, there are two other applications that are built when the libraries are created. The
source files for these are in the DPDK/app directory and are called test and testpmd. Once the
libraries are created, they can be found in the build/app directory.

• The test application provides a variety of specific tests for the various functions in the
DPDK.

• The testpmd application provides a number of different packet throughput tests and ex-
amples of features such as how to use the Flow Director found in the Intel® 82599 10
Gigabit Ethernet Controller.

1.4. Compiling and Running Sample Applications 13

DPDK documentation, Release 16.04.0

1.5 Enabling Additional Functionality

1.5.1 High Precision Event Timer HPET) Functionality

BIOS Support

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be
used. Otherwise, the Time Stamp Counter (TSC) is used by default. The BIOS is typically
accessed by pressing F2 while the platform is starting up. The user can then navigate to
the HPET option. On the Crystal Forest platform BIOS, the path is: Advanced -> PCH-IO
Configuration -> High Precision Timer -> (Change from Disabled to Enabled if necessary).

On a system that has already booted, the following command can be issued to check if HPET
is enabled:

grep hpet /proc/timer_list

If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above)
and the system rebooted.

Linux Kernel Support

The DPDK makes use of the platform HPET timer by mapping the timer counter into the pro-
cess address space, and as such, requires that the HPET_MMAP kernel configuration option be
enabled.

Warning: On Fedora, and other common distributions such as Ubuntu, the HPET_MMAP
kernel option is not enabled by default. To recompile the Linux kernel with this option en-
abled, please consult the distributions documentation for the relevant instructions.

Enabling HPET in the DPDK

By default, HPET support is disabled in the DPDK build configuration files. To use HPET,
the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to y, which will enable the
HPET settings at compile time.

For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API
calls, and optionally to make the HPET the default time source for the rte_timer library, the
new rte_eal_hpet_init() API call should be called at application initialization. This API
call will ensure that the HPET is accessible, returning an error to the application if it is not, for
example, if HPET_MMAP is not enabled in the kernel. The application can then determine what
action to take, if any, if the HPET is not available at run-time.

Note: For applications that require timing APIs, but not the HPET timer specifically, it is recom-
mended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used
instead of the HPET-specific APIs. These generic APIs can work with either TSC or HPET time
sources, depending on what is requested by an application call to rte_eal_hpet_init(),
if any, and on what is available on the system at runtime.

1.5. Enabling Additional Functionality 14

DPDK documentation, Release 16.04.0

1.5.2 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources di-
rectly, with a number of small permission adjustments it is possible to run these applications
as a user other than “root”. To do so, the ownership, or permissions, on the following Linux file
system objects should be adjusted to ensure that the Linux user account being used to run the
DPDK application has access to them:

• All directories which serve as hugepage mount points, for example, /mnt/huge

• The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

• The userspace-io sysfs config and resource files, for example for uio0:

/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resource*

• If the HPET is to be used, /dev/hpet

Note: On some Linux installations, /dev/hugepages is also a hugepage mount point cre-
ated by default.

1.5.3 Power Management and Power Saving Functionality

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the
power management feature of DPDK is to be used. Otherwise, the sys file folder
/sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based
power management cannot be used. Consult the relevant BIOS documentation to determine
how these settings can be accessed.

For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel
SpeedStep® Technology is:

Advanced
-> Processor Configuration
-> Enhanced Intel SpeedStep® Tech

In addition, C3 and C6 should be enabled as well for power management. The path of C3 and
C6 on the same platform BIOS is:

Advanced
-> Processor Configuration
-> Processor C3 Advanced
-> Processor Configuration
-> Processor C6

1.5.4 Using Linux Core Isolation to Reduce Context Switches

While the threads used by an DPDK application are pinned to logical cores on the system,
it is possible for the Linux scheduler to run other tasks on those cores also. To help prevent
additional workloads from running on those cores, it is possible to use the isolcpus Linux
kernel parameter to isolate them from the general Linux scheduler.

For example, if DPDK applications are to run on logical cores 2, 4 and 6, the following should
be added to the kernel parameter list:

1.5. Enabling Additional Functionality 15

DPDK documentation, Release 16.04.0

isolcpus=2,4,6

1.5.5 Loading the DPDK KNI Kernel Module

To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the
kni module) must be loaded into the running kernel. The module is found in the kmod sub-
directory of the DPDK target directory. Similar to the loading of the igb_uio module, this
module should be loaded using the insmod command as shown below (assuming that the
current directory is the DPDK target directory):

insmod kmod/rte_kni.ko

Note: See the “Kernel NIC Interface Sample Application” chapter in the DPDK Sample Appli-
cations User Guide for more details.

1.5.6 Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set.
These include:

• IOMMU_SUPPORT

• IOMMU_API

• INTEL_IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be
used when using igb_uio driver. This results in pass-through of the DMAR (DMA Remap-
ping) lookup in the host. Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the
intel_iommu=on kernel parameter must be used too. This ensures that the Intel IOMMU is
being initialized as expected.

Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci
driver can actually work with both iommu=pt and iommu=on.

1.5.7 High Performance of Small Packets on 40G NIC

As there might be firmware fixes for performance enhancement in latest version of firmware
image, the firmware update might be needed for getting high performance. Check with the
local Intel’s Network Division application engineers for firmware updates. The base driver to
support firmware version of FVL3E will be integrated in the next DPDK release, so currently
the validated firmware version is 4.2.6.

Enabling Extended Tag

PCI configuration of extended_tag has big impact on small packet size performance of 40G
ports. Enabling extended_tag can help 40G port to achieve the best performance, especially
for small packet size.

• Disabling/enabling extended_tag can be done in some BIOS implementations.

1.5. Enabling Additional Functionality 16

DPDK documentation, Release 16.04.0

• If BIOS does not enable it, and does not support changing it, tools (e.g. setpci on
Linux) can be used to enable or disable extended_tag.

• From release 16.04, extended_tag is enabled by default during port initialization, users
don’t need to care about that anymore.

Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes
size can provide helps to high performance of small packets. Configuration of
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16
bytes size RX descriptors.

High Performance and per Packet Latency Tradeoff

Due to the hardware design, the interrupt signal inside NIC is needed for per packet de-
scriptor write-back. The minimum interval of interrupts could be set at compile time by
CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL in configuration files. Though there is a default
configuration, the interval could be tuned by the users with that configuration item depends on
what the user cares about more, performance or per packet latency.

1.6 Quick Start Setup Script

The setup.sh script, found in the tools subdirectory, allows the user to perform the following
tasks:

• Build the DPDK libraries

• Insert and remove the DPDK IGB_UIO kernel module

• Insert and remove VFIO kernel modules

• Insert and remove the DPDK KNI kernel module

• Create and delete hugepages for NUMA and non-NUMA cases

• View network port status and reserve ports for DPDK application use

• Set up permissions for using VFIO as a non-privileged user

• Run the test and testpmd applications

• Look at hugepages in the meminfo

• List hugepages in /mnt/huge

• Remove built DPDK libraries

Once these steps have been completed for one of the EAL targets, the user may compile their
own application that links in the EAL libraries to create the DPDK image.

1.6. Quick Start Setup Script 17

DPDK documentation, Release 16.04.0

1.6.1 Script Organization

The setup.sh script is logically organized into a series of steps that a user performs in se-
quence. Each step provides a number of options that guide the user to completing the desired
task. The following is a brief synopsis of each step.

Step 1: Build DPDK Libraries

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries.

The user must have all libraries, modules, updates and compilers installed in the system prior
to this, as described in the earlier chapters in this Getting Started Guide.

Step 2: Setup Environment

The user configures the Linux* environment to support the running of DPDK applications.
Hugepages can be set up for NUMA or non-NUMA systems. Any existing hugepages will
be removed. The DPDK kernel module that is needed can also be inserted in this step, and
network ports may be bound to this module for DPDK application use.

Step 3: Run an Application

The user may run the test application once the other steps have been performed. The test
application allows the user to run a series of functional tests for the DPDK. The testpmd appli-
cation, which supports the receiving and sending of packets, can also be run.

Step 4: Examining the System

This step provides some tools for examining the status of hugepage mappings.

Step 5: System Cleanup

The final step has options for restoring the system to its original state.

1.6.2 Use Cases

The following are some example of how to use the setup.sh script. The script should be run
using the source command. Some options in the script prompt the user for further data before
proceeding.

Warning: The setup.sh script should be run with root privileges.

source tools/setup.sh

--

RTE_SDK exported as /home/user/rte

--

Step 1: Select the DPDK environment to build

--

[1] i686-native-linuxapp-gcc

[2] i686-native-linuxapp-icc

1.6. Quick Start Setup Script 18

DPDK documentation, Release 16.04.0

[3] ppc_64-power8-linuxapp-gcc

[4] x86_64-ivshmem-linuxapp-gcc

[5] x86_64-ivshmem-linuxapp-icc

[6] x86_64-native-bsdapp-clang

[7] x86_64-native-bsdapp-gcc

[8] x86_64-native-linuxapp-clang

[9] x86_64-native-linuxapp-gcc

[10] x86_64-native-linuxapp-icc

--

Step 2: Setup linuxapp environment

--

[11] Insert IGB UIO module

[12] Insert VFIO module

[13] Insert KNI module

[14] Setup hugepage mappings for non-NUMA systems

[15] Setup hugepage mappings for NUMA systems

[16] Display current Ethernet device settings

[17] Bind Ethernet device to IGB UIO module

[18] Bind Ethernet device to VFIO module

[19] Setup VFIO permissions

--

Step 3: Run test application for linuxapp environment

--

[20] Run test application ($RTE_TARGET/app/test)

[21] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)

--

Step 4: Other tools

--

[22] List hugepage info from /proc/meminfo

--

Step 5: Uninstall and system cleanup

--

1.6. Quick Start Setup Script 19

DPDK documentation, Release 16.04.0

[23] Uninstall all targets

[24] Unbind NICs from IGB UIO driver

[25] Remove IGB UIO module

[26] Remove VFIO module

[27] Remove KNI module

[28] Remove hugepage mappings

[29] Exit Script

Option:

The following selection demonstrates the creation of the x86_64-native-linuxapp-gcc
DPDK library.

Option: 9

================== Installing x86_64-native-linuxapp-gcc

Configuration done
== Build lib
...
Build complete
RTE_TARGET exported as x86_64-native-linuxapp-gcc

The following selection demonstrates the starting of the DPDK UIO driver.

Option: 25

Unloading any existing DPDK UIO module
Loading DPDK UIO module

The following selection demonstrates the creation of hugepages in a NUMA system. 1024 2
MByte pages are assigned to each node. The result is that the application should use -m 4096
for starting the application to access both memory areas (this is done automatically if the -m
option is not provided).

Note: If prompts are displayed to remove temporary files, type ‘y’.

Option: 15

Removing currently reserved hugepages
mounting /mnt/huge and removing directory
Input the number of 2MB pages for each node
Example: to have 128MB of hugepages available per node,
enter '64' to reserve 64 * 2MB pages on each node
Number of pages for node0: 1024
Number of pages for node1: 1024
Reserving hugepages
Creating /mnt/huge and mounting as hugetlbfs

The following selection demonstrates the launch of the test application to run on a single core.

Option: 20

Enter hex bitmask of cores to execute test app on
Example: to execute app on cores 0 to 7, enter 0xff

1.6. Quick Start Setup Script 20

DPDK documentation, Release 16.04.0

bitmask: 0x01
Launching app
EAL: coremask set to 1
EAL: Detected lcore 0 on socket 0
...
EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>

1.6.3 Applications

Once the user has run the setup.sh script, built one of the EAL targets and set up hugepages
(if using one of the Linux EAL targets), the user can then move on to building and running their
application or one of the examples provided.

The examples in the /examples directory provide a good starting point to gain an understanding
of the operation of the DPDK. The following command sequence shows how the helloworld
sample application is built and run. As recommended in Section 4.2.1 , “Logical Core Use by
Applications”, the logical core layout of the platform should be determined when selecting a
core mask to use for an application.

cd helloworld/
make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/app/helloworld -c 0xf -n 3
[sudo] password for rte:

EAL: coremask set to f
EAL: Detected lcore 0 as core 0 on socket 0
EAL: Detected lcore 1 as core 0 on socket 1
EAL: Detected lcore 2 as core 1 on socket 0
EAL: Detected lcore 3 as core 1 on socket 1
EAL: Setting up hugepage memory...
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0add800000 (size = 0x200000)
EAL: Ask a virtual area of 0x3d400000 bytes
EAL: Virtual area found at 0x7f0aa0200000 (size = 0x3d400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9fc00000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f000000 (size = 0x400000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9e600000 (size = 0x800000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9dc00000 (size = 0x800000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d000000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9ca00000 (size = 0x400000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c600000 (size = 0x200000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c200000 (size = 0x200000)
EAL: Ask a virtual area of 0x3fc00000 bytes

1.6. Quick Start Setup Script 21

DPDK documentation, Release 16.04.0

EAL: Virtual area found at 0x7f0a5c400000 (size = 0x3fc00000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a5c000000 (size = 0x200000)
EAL: Requesting 1024 pages of size 2MB from socket 0
EAL: Requesting 1024 pages of size 2MB from socket 1
EAL: Master core 0 is ready (tid=de25b700)
EAL: Core 1 is ready (tid=5b7fe700)
EAL: Core 3 is ready (tid=5a7fc700)
EAL: Core 2 is ready (tid=5affd700)
hello from core 1
hello from core 2
hello from core 3
hello from core 0

1.7 How to get best performance with NICs on Intel platforms

This document is a step-by-step guide for getting high performance from DPDK applications
on Intel platforms.

1.7.1 Hardware and Memory Requirements

For best performance use an Intel Xeon class server system such as Ivy Bridge, Haswell or
newer.

Ensure that each memory channel has at least one memory DIMM inserted, and that the mem-
ory size for each is at least 4GB. Note: this has one of the most direct effects on performance.

You can check the memory configuration using dmidecode as follows:

dmidecode -t memory | grep Locator

Locator: DIMM_A1
Bank Locator: NODE 1
Locator: DIMM_A2
Bank Locator: NODE 1
Locator: DIMM_B1
Bank Locator: NODE 1
Locator: DIMM_B2
Bank Locator: NODE 1
...
Locator: DIMM_G1
Bank Locator: NODE 2
Locator: DIMM_G2
Bank Locator: NODE 2
Locator: DIMM_H1
Bank Locator: NODE 2
Locator: DIMM_H2
Bank Locator: NODE 2

The sample output above shows a total of 8 channels, from A to H, where each channel has 2
DIMMs.

You can also use dmidecode to determine the memory frequency:

dmidecode -t memory | grep Speed

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown

1.7. How to get best performance with NICs on Intel platforms 22

DPDK documentation, Release 16.04.0

Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
...
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown

The output shows a speed of 2133 MHz (DDR4) and Unknown (not existing). This aligns with
the previous output which showed that each channel has one memory bar.

Network Interface Card Requirements

Use a DPDK supported high end NIC such as the Intel XL710 40GbE.

Make sure each NIC has been flashed the latest version of NVM/firmware.

Use PCIe Gen3 slots, such as Gen3 x8 or Gen3 x16 because PCIe Gen2 slots don’t provide
enough bandwidth for 2 x 10GbE and above. You can use lspci to check the speed of a PCI
slot using something like the following:

lspci -s 03:00.1 -vv | grep LnkSta

LnkSta: Speed 8GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- ...
LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ ...

When inserting NICs into PCI slots always check the caption, such as CPU0 or CPU1 to
indicate which socket it is connected to.

Care should be take with NUMA. If you are using 2 or more ports from different NICs, it is best
to ensure that these NICs are on the same CPU socket. An example of how to determine this
is shown further below.

BIOS Settings

The following are some recommendations on BIOS settings. Different platforms will have dif-
ferent BIOS naming so the following is mainly for reference:

1. Before starting consider resetting all BIOS settings to their default.

2. Disable all power saving options such as: Power performance tuning, CPU P-State, CPU
C3 Report and CPU C6 Report.

3. Select Performance as the CPU Power and Performance policy.

4. Disable Turbo Boost to ensure the performance scaling increases with the number of
cores.

5. Set memory frequency to the highest available number, NOT auto.

6. Disable all virtualization options when you test the physical function of the NIC, and turn
on VT-d if you wants to use VFIO.

1.7. How to get best performance with NICs on Intel platforms 23

http://dpdk.org/doc/nics

DPDK documentation, Release 16.04.0

Linux boot command line

The following are some recommendations on GRUB boot settings:

1. Use the default grub file as a starting point.

2. Reserve 1G huge pages via grub configurations. For example to reserve 8 huge pages
of 1G size:

default_hugepagesz=1G hugepagesz=1G hugepages=8

3. Isolate CPU cores which will be used for DPDK. For example:

isolcpus=2,3,4,5,6,7,8

4. If it wants to use VFIO, use the following additional grub parameters:

iommu=pt intel_iommu=on

1.7.2 Configurations before running DPDK

1. Build the DPDK target and reserve huge pages. See the earlier section on Use of
Hugepages in the Linux Environment for more details.

The following shell commands may help with building and configuration:

Build DPDK target.
cd dpdk_folder
make install T=x86_64-native-linuxapp-gcc -j

Get the hugepage size.
awk '/Hugepagesize/ {print $2}' /proc/meminfo

Get the total huge page numbers.
awk '/HugePages_Total/ {print $2} ' /proc/meminfo

Unmount the hugepages.
umount `awk '/hugetlbfs/ {print $2}' /proc/mounts`

Create the hugepage mount folder.
mkdir -p /mnt/huge

Mount to the specific folder.
mount -t hugetlbfs nodev /mnt/huge

2. Check the CPU layout using using the DPDK cpu_layout utility:

cd dpdk_folder

tools/cpu_layout.py

Or run lscpu to check the the cores on each socket.

3. Check your NIC id and related socket id:

List all the NICs with PCI address and device IDs.
lspci -nn | grep Eth

For example suppose your output was as follows:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
82:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

1.7. How to get best performance with NICs on Intel platforms 24

DPDK documentation, Release 16.04.0

Check the PCI device related numa node id:

cat /sys/bus/pci/devices/0000\:xx\:00.x/numa_node

Usually 0x:00.x is on socket 0 and 8x:00.x is on socket 1. Note: To get the best
performance, ensure that the core and NICs are in the same socket. In the example
above 85:00.0 is on socket 1 and should be used by cores on socket 1 for the best
performance.

4. Bind the test ports to DPDK compatible drivers, such as igb_uio. For example bind two
ports to a DPDK compatible driver and check the status:

Bind ports 82:00.0 and 85:00.0 to dpdk driver
./dpdk_folder/tools/dpdk_nic_bind.py -b igb_uio 82:00.0 85:00.0

Check the port driver status
./dpdk_folder/tools/dpdk_nic_bind.py --status

See dpdk_nic_bind.py --help for more details.

More details about DPDK setup and Linux kernel requirements see Compiling the DPDK Target
from Source.

1.7.3 Example of getting best performance for an Intel NIC

The following is an example of running the DPDK l3fwd sample application to get high perfor-
mance with an Intel server platform and Intel XL710 NICs. For specific 40G NIC configuration
please refer to the i40e NIC guide.

The example scenario is to get best performance with two Intel XL710 40GbE ports. See Fig.
1.1 for the performance test setup.

Fig. 1.1: Performance Test Setup

1. Add two Intel XL710 NICs to the platform, and use one port per card to get best perfor-
mance. The reason for using two NICs is to overcome a PCIe Gen3’s limitation since
it cannot provide 80G bandwidth for two 40G ports, but two different PCIe Gen3 x8 slot
can. Refer to the sample NICs output above, then we can select 82:00.0 and 85:00.0
as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

2. Connect the ports to the traffic generator. For high speed testing, it’s best to use a
hardware traffic generator.

3. Check the PCI devices numa node (socket id) and get the cores number on the exact
socket id. In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on
socket 1 in the referenced platform are 18-35 and 54-71. Note: Don’t use 2 logical cores
on the same core (e.g core18 has 2 logical cores, core18 and core54), instead, use 2
logical cores from different cores (e.g core18 and core19).

4. Bind these two ports to igb_uio.

5. As to XL710 40G port, we need at least two queue pairs to achieve best performance,
then two queues per port will be required, and each queue pair will need a dedicated
CPU core for receiving/transmitting packets.

1.7. How to get best performance with NICs on Intel platforms 25

DPDK documentation, Release 16.04.0

6. The DPDK sample application l3fwd will be used for performance testing, with using
two ports for bi-directional forwarding. Compile the l3fwd sample with the default lpm
mode.

7. The command line of running l3fwd would be something like the followings:

./l3fwd -c 0x3c0000 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19
for port 0, queue pair 1 forwarding, core 20 for port 1, queue pair 0 forwarding, and core
21 for port 1, queue pair 1 forwarding.

8. Configure the traffic at a traffic generator.

• Start creating a stream on packet generator.

• Set the Ethernet II type to 0x0800.

1.7. How to get best performance with NICs on Intel platforms 26

CHAPTER 2

Getting Started Guide for FreeBSD

2.1 Introduction

This document contains instructions for installing and configuring the Data Plane Development
Kit (DPDK) software. It is designed to get customers up and running quickly and describes
how to compile and run a DPDK application in a FreeBSD application (bsdapp) environment,
without going deeply into detail.

For a comprehensive guide to installing and using FreeBSD, the following handbook is available
from the FreeBSD Documentation Project: FreeBSD Handbook.

Note: The DPDK is now available as part of the FreeBSD ports collection. Installing via the
ports collection infrastructure is now the recommended way to install the DPDK on FreeBSD,
and is documented in the next chapter, Installing DPDK from the Ports Collection.

2.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guide (this document): Describes how to install and configure the
DPDK; designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

27

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

DPDK documentation, Release 16.04.0

• API Reference: Provides detailed information about DPDK functions, data structures
and other programming constructs.

• Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

2.2 Installing DPDK from the Ports Collection

The easiest way to get up and running with the DPDK on FreeBSD is to install it from the ports
collection. Details of getting and using the ports collection are documented in the FreeBSD
Handbook.

Note: Testing has been performed using FreeBSD 10.0-RELEASE (x86_64) and requires the
installation of the kernel sources, which should be included during the installation of FreeBSD.

2.2.1 Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK can be installed
using the commands:

cd /usr/ports/net/dpdk

make install

After the installation of the DPDK port, instructions will be printed on how to install the kernel
modules required to use the DPDK. A more complete version of these instructions can be
found in the sections Loading the DPDK contigmem Module and Loading the DPDK nic_uio
Module. Normally, lines like those below would be added to the file /boot/loader.conf.

Reserve 2 x 1G blocks of contiguous memory using contigmem driver:
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"

Identify NIC devices for DPDK apps to use and load nic_uio driver:
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

2.2.2 Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs its example
applications in /usr/local/share/dpdk/examples - also accessible via symlink as
/usr/local/share/examples/dpdk. These examples can be compiled and run as de-
scribed in Compiling and Running Sample Applications. In this case, the required environmen-
tal variables should be set as below:

• RTE_SDK=/usr/local/share/dpdk

• RTE_TARGET=x86_64-native-bsdapp-clang

2.2. Installing DPDK from the Ports Collection 28

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

DPDK documentation, Release 16.04.0

Note: To install a copy of the DPDK compiled using gcc, please download the official DPDK
package from http://dpdk.org/ and install manually using the instructions given in the next chap-
ter, Compiling the DPDK Target from Source

An example application can therefore be copied to a user’s home directory and compiled and
run as below:

export RTE_SDK=/usr/local/share/dpdk

export RTE_TARGET=x86_64-native-bsdapp-clang

cp -r /usr/local/share/dpdk/examples/helloworld .

cd helloworld/

gmake
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/helloworld -c F -n 2

EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus
EAL: Detected lcore 0
EAL: Detected lcore 1
EAL: Detected lcore 2
EAL: Detected lcore 3
EAL: Support maximum 64 logical core(s) by configuration.
EAL: Detected 4 lcore(s)
EAL: Setting up physically contiguous memory...
EAL: Mapped memory segment 1 @ 0x802400000: len 1073741824
EAL: Mapped memory segment 2 @ 0x842400000: len 1073741824
EAL: WARNING: clock_gettime cannot use CLOCK_MONOTONIC_RAW and HPET

is not available - clock timings may be less accurate.
EAL: TSC frequency is ~3569023 KHz
EAL: PCI scan found 24 devices
EAL: Master core 0 is ready (tid=0x802006400)
EAL: Core 1 is ready (tid=0x802006800)
EAL: Core 3 is ready (tid=0x802007000)
EAL: Core 2 is ready (tid=0x802006c00)
EAL: PCI device 0000:01:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x80074a000
EAL: PCI memory mapped at 0x8007ca000
EAL: PCI device 0000:01:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x8007ce000
EAL: PCI memory mapped at 0x80084e000
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x800852000
EAL: PCI memory mapped at 0x8008d2000
EAL: PCI device 0000:02:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x801b3f000
EAL: PCI memory mapped at 0x8008d6000
hello from core 1
hello from core 2
hello from core 3

2.2. Installing DPDK from the Ports Collection 29

http://dpdk.org/

DPDK documentation, Release 16.04.0

hello from core 0

Note: To run a DPDK process as a non-root user, adjust the permissions on the
/dev/contigmem and /dev/uio device nodes as described in section Running DPDK
Applications Without Root Privileges

Note: For an explanation of the command-line parameters that can be passed to an DPDK
application, see section Running a Sample Application.

2.3 Compiling the DPDK Target from Source

2.3.1 System Requirements

The DPDK and its applications require the GNU make system (gmake) to build on FreeBSD.
Optionally, gcc may also be used in place of clang to build the DPDK, in which case it too
must be installed prior to compiling the DPDK. The installation of these tools is covered in this
section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be included during
the installation of FreeBSD on the development platform. The DPDK also requires the use of
FreeBSD ports to compile and function.

To use the FreeBSD ports system, it is required to update and extract the FreeBSD ports tree
by issuing the following commands:

portsnap fetch
portsnap extract

If the environment requires proxies for external communication, these can be set using:

setenv http_proxy <my_proxy_host>:<port>
setenv ftp_proxy <my_proxy_host>:<port>

The FreeBSD ports below need to be installed prior to building the DPDK. In general these can
be installed using the following set of commands:

cd /usr/ports/<port_location>

make config-recursive

make install

make clean

Each port location can be found using:

whereis <port_name>

The ports required and their locations are as follows:

• dialog4ports: /usr/ports/ports-mgmt/dialog4ports

• GNU make(gmake): /usr/ports/devel/gmake

• coreutils: /usr/ports/sysutils/coreutils

2.3. Compiling the DPDK Target from Source 30

DPDK documentation, Release 16.04.0

For compiling and using the DPDK with gcc, the compiler must be installed from the ports
collection:

• gcc: version 4.8 is recommended /usr/ports/lang/gcc48. Ensure that CPU_OPTS
is selected (default is OFF).

When running the make config-recursive command, a dialog may be presented to the user.
For the installation of the DPDK, the default options were used.

Note: To avoid multiple dialogs being presented to the user during make install, it is advisable
before running the make install command to re-run the make config-recursive command until
no more dialogs are seen.

2.3.2 Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile
mk/ scripts/ tools/

The DPDK is composed of several directories:

• lib: Source code of DPDK libraries

• app: Source code of DPDK applications (automatic tests)

• examples: Source code of DPDK applications

• config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

2.3.3 Installation of the DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

Where:

• ARCH is: x86_64

• MACHINE is: native

• EXECENV is: bsdapp

• TOOLCHAIN is: gcc | clang

The configuration files for the DPDK targets can be found in the DPDK/config directory in the
form of:

defconfig_ARCH-MACHINE-EXECENV-TOOLCHAIN

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within
the configuration files, the RTE_MACHINE configuration value is set to native, which means that

2.3. Compiling the DPDK Target from Source 31

DPDK documentation, Release 16.04.0

the compiled software is tuned for the platform on which it is built. For more information on this
setting, and its possible values, see the DPDK Programmers Guide.

To make the target, use gmake install T=<target>.

For example to compile for FreeBSD use:

gmake install T=x86_64-native-bsdapp-clang

Note: If the compiler binary to be used does not correspond to that given in the TOOLCHAIN
part of the target, the compiler command may need to be explicitly specified. For example,
if compiling for gcc, where the gcc binary is called gcc4.8, the command would need to be
gmake install T=<target> CC=gcc4.8.

2.3.4 Browsing the Installed DPDK Environment Target

Once a target is created, it contains all the libraries and header files for the DPDK environment
that are required to build customer applications. In addition, the test and testpmd applications
are built under the build/app directory, which may be used for testing. A kmod directory is also
present that contains the kernel modules to install:

ls x86_64-native-bsdapp-gcc

app build hostapp include kmod lib Makefile

2.3.5 Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required. In the absence of non-
transparent superpages, the included sources for the contigmem kernel module provides the
ability to present contiguous blocks of memory for the DPDK to use. The contigmem module
must be loaded into the running kernel before any DPDK is run. The module is found in the
kmod sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically contiguous
blocks to be reserved by the module can be set at runtime prior to module loading using:

kenv hw.contigmem.num_buffers=n
kenv hw.contigmem.buffer_size=m

The kernel environment variables can also be specified during boot by placing the following in
/boot/loader.conf:

hw.contigmem.num_buffers=n hw.contigmem.buffer_size=m

The variables can be inspected using the following command:

sysctl -a hw.contigmem

Where n is the number of blocks and m is the size in bytes of each area of contiguous memory.
A default of two buffers of size 1073741824 bytes (1 Gigabyte) each is set during module load
if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory is the DPDK
target directory):

kldload ./kmod/contigmem.ko

2.3. Compiling the DPDK Target from Source 32

DPDK documentation, Release 16.04.0

It is advisable to include the loading of the contigmem module during the boot process to
avoid issues with potential memory fragmentation during later system up time. This can be
achieved by copying the module to the /boot/kernel/ directory and placing the following
into /boot/loader.conf:

contigmem_load="YES"

Note: The contigmem_load directive should be placed after any definitions of
hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values are
not to be used.

An error such as:

kldload: can't load ./x86_64-native-bsdapp-gcc/kmod/contigmem.ko:
Exec format error

is generally attributed to not having enough contiguous memory available and can be verified
via dmesg or /var/log/messages:

kernel: contigmalloc failed for buffer <n>

To avoid this error, reduce the number of buffers or the buffer size.

2.3.6 Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio must also be loaded into the running
kernel prior to running any DPDK application. This module must be loaded using the kldload
command as shown below (assuming that the current directory is the DPDK target directory).

kldload ./kmod/nic_uio.ko

Note: If the ports to be used are currently bound to a existing kernel driver then the
hw.nic_uio.bdfs sysctl value will need to be set before loading the module. Setting
this value is described in the next section below.

Currently loaded modules can be seen by using the kldstat command and a module can be
removed from the running kernel by using kldunload <module_name>.

To load the module during boot, copy the nic_uio module to /boot/kernel and place the
following into /boot/loader.conf:

nic_uio_load="YES"

Note: nic_uio_load="YES" must appear after the contigmem_load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are recognized
DPDK devices and are not owned by another module. However, since the FreeBSD kernel
includes support, either built-in, or via a separate driver module, for most network card devices,
it is likely that the ports to be used are already bound to a driver other than nic_uio. The
following sub-section describe how to query and modify the device ownership of the ports to
be used by DPDK applications.

2.3. Compiling the DPDK Target from Source 33

DPDK documentation, Release 16.04.0

Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -l command. The example below shows
four Intel® 82599 network ports under if_ixgbe module ownership.

pciconf -l
ix0@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pci0:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00

The first column constitutes three components:

1. Device name: ixN

2. Unit name: pci0

3. Selector (Bus:Device:Function): 1:0:0

Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD kernel will include built-in drivers for the most common devices; a
kernel rebuild would normally be required to either remove the drivers or configure them as
loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port from its
current device driver. This is achieved by setting the hw.nic_uio.bdfs kernel environment
variable prior to loading nic_uio, as follows:

hw.nic_uio.bdfs="b:d:f,b:d:f,..."

Where a comma separated list of selectors is set, the list must not contain any whitespace.

For example to re-bind ix2@pci0:2:0:0 and ix3@pci0:2:0:1 to the nic_uio module
upon loading, use the following command:

kenv hw.nic_uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into
/boot/loader.conf, before the previously-described nic_uio_load line - as shown:

hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel, it is necessary to
reboot FreeBSD to restore the original device binding. Before doing so, update or remove the
hw.nic_uio.bdfs in /boot/loader.conf.

If rebinding to a driver that is a loadable module, the network port binding can be reset without
rebooting. To do so, unload both the target kernel module and the nic_uio module, modify
or clear the hw.nic_uio.bdfs kernel environment (kenv) value, and reload the two drivers -
first the original kernel driver, and then the nic_uio driver. Note: the latter does not need
to be reloaded unless there are ports that are still to be bound to it.

Example commands to perform these steps are shown below:

kldunload nic_uio
kldunload <original_driver>

To clear the value completely:

2.3. Compiling the DPDK Target from Source 34

DPDK documentation, Release 16.04.0

kenv -u hw.nic_uio.bdfs

To update the list of ports to bind:
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

kldload <original_driver>

kldload nic_uio # optional

2.4 Compiling and Running Sample Applications

The chapter describes how to compile and run applications in a DPDK environment. It also
provides a pointer to where sample applications are stored.

2.4.1 Compiling a Sample Application

Once a DPDK target environment directory has been created (such as
x86_64-native-bsdapp-clang), it contains all libraries and header files required to
build an application.

When compiling an application in the FreeBSD environment on the DPDK, the following vari-
ables must be exported:

• RTE_SDK - Points to the DPDK installation directory.

• RTE_TARGET - Points to the DPDK target environment directory. For FreeBSD, this is the
x86_64-native-bsdapp-clang or x86_64-native-bsdapp-gcc directory.

The following is an example of creating the helloworld application, which runs in the DPDK
FreeBSD environment. While the example demonstrates compiling using gcc version 4.8,
compiling with clang will be similar, except that the CC= parameter can probably be omitted.
The helloworld example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the
DPDK target environment, calls the various functions to initialize the DPDK environment, then
launches an entry point (dispatch application) for each core to be utilized. By default, the binary
is generated in the build directory.

setenv RTE_SDK /home/user/DPDK
cd $(RTE_SDK)
cd examples/helloworld/
setenv RTE_SDK $HOME/DPDK
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc48
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

ls build/app
helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. How-
ever, it could have been located outside the directory structure to keep the DPDK structure

2.4. Compiling and Running Sample Applications 35

DPDK documentation, Release 16.04.0

intact. In the following case, the helloworld application is copied to a new directory as a
new starting point.

setenv RTE_SDK /home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc48
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

2.4.2 Running a Sample Application

1. The contigmem and nic_uio modules must be set up prior to running an application.

2. Any ports to be used by the application must be already bound to the nic_uio module,
as described in section Binding Network Ports to the nic_uio Module, prior to running the
application. The application is linked with the DPDK target environment’s Environment
Abstraction Layer (EAL) library, which provides some options that are generic to every
DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
[-r NUM] [-v] [--proc-type <primary|secondary|auto>]

Note: EAL has a common interface between all operating systems and is based on the Linux
notation for PCI devices. For example, a FreeBSD device selector of pci0:2:0:1 is referred
to as 02:00.1 in EAL.

The EAL options for FreeBSD are as follows:

• -c COREMASK: A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand.

• -n NUM: Number of memory channels per processor socket.

• -b <domain:bus:devid.func>: Blacklisting of ports; prevent EAL from using speci-
fied PCI device (multiple -b options are allowed).

• --use-device: Use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

• -r NUM: Number of memory ranks.

• -v: Display version information on startup.

• --proc-type: The type of process instance.

Other options, specific to Linux and are not supported under FreeBSD are as follows:

• socket-mem: Memory to allocate from hugepages on specific sockets.

• --huge-dir: The directory where hugetlbfs is mounted.

2.4. Compiling and Running Sample Applications 36

DPDK documentation, Release 16.04.0

• --file-prefix: The prefix text used for hugepage filenames.

• -m MB: Memory to allocate from hugepages, regardless of processor socket. It is rec-
ommended that --socket-mem be used instead of this option.

The -c option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming
the platform has four memory channels, and that cores 0-3 are present and are to be used for
running the application):

./helloworld -c f -n 4

Note: The --proc-type and --file-prefix EAL options are used for running multiple
DPDK processes. See the “Multi-process Sample Application” chapter in the DPDK Sample
Applications User Guide and the DPDK Programmers Guide for more details.

2.4.3 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources di-
rectly, with a number of small permission adjustments, it is possible to run these applications
as a user other than “root”. To do so, the ownership, or permissions, on the following file sys-
tem objects should be adjusted to ensure that the user account being used to run the DPDK
application has access to them:

• The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

• The userspace contiguous memory device: /dev/contigmem

Note: Please refer to the DPDK Release Notes for supported applications.

2.4. Compiling and Running Sample Applications 37

CHAPTER 3

Xen Guide

3.1 DPDK Xen Based Packet-Switching Solution

3.1.1 Introduction

DPDK provides a para-virtualization packet switching solution, based on the Xen hypervisor’s
Grant Table, Note 1, which provides simple and fast packet switching capability between guest
domains and host domain based on MAC address or VLAN tag.

This solution is comprised of two components; a Poll Mode Driver (PMD) as the front end in
the guest domain and a switching back end in the host domain. XenStore is used to exchange
configure information between the PMD front end and switching back end, including grant
reference IDs for shared Virtio RX/TX rings, MAC address, device state, and so on. XenStore
is an information storage space shared between domains, see further information on XenStore
below.

The front end PMD can be found in the DPDK directory lib/ librte_pmd_xenvirt and back end
example in examples/vhost_xen.

The PMD front end and switching back end use shared Virtio RX/TX rings as para- virtualized
interface. The Virtio ring is created by the front end, and Grant table references for the ring are
passed to host. The switching back end maps those grant table references and creates shared
rings in a mapped address space.

The following diagram describes the functionality of the DPDK Xen Packet- Switching Solution.

Note 1 The Xen hypervisor uses a mechanism called a Grant Table to share memory between
domains (http://wiki.xen.org/wiki/Grant Table).

A diagram of the design is shown below, where “gva” is the Guest Virtual Address, which is the
data pointer of the mbuf, and “hva” is the Host Virtual Address:

In this design, a Virtio ring is used as a para-virtualized interface for better performance over
a Xen private ring when packet switching to and from a VM. The additional performance is
gained by avoiding a system call and memory map in each memory copy with a XEN private
ring.

38

http://wiki.xen.org/wiki/Grant%20Table

DPDK documentation, Release 16.04.0

Fig. 3.1: Functionality of the DPDK Xen Packet Switching Solution.

Fig. 3.2: DPDK Xen Layout

3.1. DPDK Xen Based Packet-Switching Solution 39

DPDK documentation, Release 16.04.0

3.1.2 Device Creation

Poll Mode Driver Front End

• Mbuf pool allocation:

To use a Xen switching solution, the DPDK application should use
rte_mempool_gntalloc_create() to reserve mbuf pools during initialization.
rte_mempool_gntalloc_create() creates a mempool with objects from memory allo-
cated and managed via gntalloc/gntdev.

The DPDK now supports construction of mempools from allocated virtual memory
through the rte_mempool_xmem_create() API.

This front end constructs mempools based on memory allocated through the
xen_gntalloc driver. rte_mempool_gntalloc_create() allocates Grant pages, maps them
to continuous virtual address space, and calls rte_mempool_xmem_create() to build
mempools. The Grant IDs for all Grant pages are passed to the host through XenStore.

• Virtio Ring Creation:

The Virtio queue size is defined as 256 by default in the VQ_DESC_NUM macro. Using
the queue setup function, Grant pages are allocated based on ring size and are mapped
to continuous virtual address space to form the Virtio ring. Normally, one ring is com-
prised of several pages. Their Grant IDs are passed to the host through XenStore.

There is no requirement that this memory be physically continuous.

• Interrupt and Kick:

There are no interrupts in DPDK Xen Switching as both front and back ends work in
polling mode. There is no requirement for notification.

• Feature Negotiation:

Currently, feature negotiation through XenStore is not supported.

• Packet Reception & Transmission:

With mempools and Virtio rings created, the front end can operate Virtio devices, as
it does in Virtio PMD for KVM Virtio devices with the exception that the host does not
require notifications or deal with interrupts.

XenStore is a database that stores guest and host information in the form of (key, value) pairs.
The following is an example of the information generated during the startup of the front end
PMD in a guest VM (domain ID 1):

xenstore -ls /local/domain/1/control/dpdk
0_mempool_gref="3042,3043,3044,3045"
0_mempool_va="0x7fcbc6881000"
0_tx_vring_gref="3049"
0_rx_vring_gref="3053"
0_ether_addr="4e:0b:d0:4e:aa:f1"
0_vring_flag="3054"
...

Multiple mempools and multiple Virtios may exist in the guest domain, the first number is the
index, starting from zero.

The idx#_mempool_va stores the guest virtual address for mempool idx#.

3.1. DPDK Xen Based Packet-Switching Solution 40

DPDK documentation, Release 16.04.0

The idx#_ether_adder stores the MAC address of the guest Virtio device.

For idx#_rx_ring_gref, idx#_tx_ring_gref, and idx#_mempool_gref, the value is a list of Grant
references. Take idx#_mempool_gref node for example, the host maps those Grant references
to a continuous virtual address space. The real Grant reference information is stored in this
virtual address space, where (gref, pfn) pairs follow each other with -1 as the terminator.

Fig. 3.3: Mapping Grant references to a continuous virtual address space

After all gref# IDs are retrieved, the host maps them to a continuous virtual address space.
With the guest mempool virtual address, the host establishes 1:1 address mapping. With
multiple guest mempools, the host establishes multiple address translation regions.

Switching Back End

The switching back end monitors changes in XenStore. When the back end detects that a new
Virtio device has been created in a guest domain, it will:

1. Retrieve Grant and configuration information from XenStore.

2. Map and create a Virtio ring.

3. Map mempools in the host and establish address translation between the guest address
and host address.

4. Select a free VMDQ pool, set its affinity with the Virtio device, and set the MAC/ VLAN
filter.

Packet Reception

When packets arrive from an external network, the MAC?VLAN filter classifies packets into
queues in one VMDQ pool. As each pool is bonded to a Virtio device in some guest domain,
the switching back end will:

1. Fetch an available entry from the Virtio RX ring.

2. Get gva, and translate it to hva.

3. Copy the contents of the packet to the memory buffer pointed to by gva.

The DPDK application in the guest domain, based on the PMD front end, is polling the shared
Virtio RX ring for available packets and receives them on arrival.

Packet Transmission

When a Virtio device in one guest domain is to transmit a packet, it puts the virtual address of
the packet’s data area into the shared Virtio TX ring.

3.1. DPDK Xen Based Packet-Switching Solution 41

DPDK documentation, Release 16.04.0

The packet switching back end is continuously polling the Virtio TX ring. When new packets
are available for transmission from a guest, it will:

1. Fetch an available entry from the Virtio TX ring.

2. Get gva, and translate it to hva.

3. Copy the packet from hva to the host mbuf’s data area.

4. Compare the destination MAC address with all the MAC addresses of the Virtio devices
it manages. If a match exists, it directly copies the packet to the matched VIrtio RX ring.
Otherwise, it sends the packet out through hardware.

Note: The packet switching back end is for demonstration purposes only. The user could
implement their switching logic based on this example. In this example, only one physical port
on the host is supported. Multiple segments are not supported. The biggest mbuf supported
is 4KB. When the back end is restarted, all front ends must also be restarted.

3.1.3 Running the Application

The following describes the steps required to run the application.

Validated Environment

Host:

Xen-hypervisor: 4.2.2

Distribution: Fedora release 18

Kernel: 3.10.0

Xen development package (including Xen, Xen-libs, xen-devel): 4.2.3

Guest:

Distribution: Fedora 16 and 18

Kernel: 3.6.11

Xen Host Prerequisites

Note that the following commands might not be the same on different Linux* distributions.

• Install xen-devel package:

yum install xen-devel.x86_64

• Start xend if not already started:

/etc/init.d/xend start

• Mount xenfs if not already mounted:

mount -t xenfs none /proc/xen

• Enlarge the limit for xen_gntdev driver:

3.1. DPDK Xen Based Packet-Switching Solution 42

DPDK documentation, Release 16.04.0

modprobe -r xen_gntdev
modprobe xen_gntdev limit=1000000

Note: The default limit for earlier versions of the xen_gntdev driver is 1024. That is insufficient
to support the mapping of multiple Virtio devices into multiple VMs, so it is necessary to enlarge
the limit by reloading this module. The default limit of recent versions of xen_gntdev is 1048576.
The rough calculation of this limit is:

limit=nb_mbuf# * VM#.

In DPDK examples, nb_mbuf# is normally 8192.

Building and Running the Switching Backend

1. Edit config/common_linuxapp, and change the default configuration value for the follow-
ing two items:

CONFIG_RTE_LIBRTE_XEN_DOM0=y
CONFIG RTE_LIBRTE_PMD_XENVIRT=n

2. Build the target:

make install T=x86_64-native-linuxapp-gcc

3. Ensure that RTE_SDK and RTE_TARGET are correctly set. Build the switching example:

make -C examples/vhost_xen/

4. Load the Xen DPDK memory management module and preallocate memory:

insmod ./x86_64-native-linuxapp-gcc/build/lib/librte_eal/linuxapp/xen_dom0/rte_dom0_mm.ko
echo 2048> /sys/kernel/mm/dom0-mm/memsize-mB/memsize

Note: On Xen Dom0, there is no hugepage support. Under Xen Dom0, the DPDK uses a
special memory management kernel module to allocate chunks of physically continuous
memory. Refer to the DPDK Getting Started Guide for more information on memory
management in the DPDK. In the above command, 4 GB memory is reserved (2048 of 2
MB pages) for DPDK.

5. Load uio_pci_generic and bind one Intel NIC controller to it:

modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 0000:09:00:00.0

In this case, 0000:09:00.0 is the PCI address for the NIC controller.

6. Run the switching back end example:

examples/vhost_xen/build/vhost-switch -c f -n 3 --xen-dom0 -- -p1

Note: The -xen-dom0 option instructs the DPDK to use the Xen kernel module to allocate
memory.

Other Parameters:

3.1. DPDK Xen Based Packet-Switching Solution 43

DPDK documentation, Release 16.04.0

• -vm2vm

The vm2vm parameter enables/disables packet switching in software. Disabling vm2vm
implies that on a VM packet transmission will always go to the Ethernet port and will not
be switched to another VM

• -Stats

The Stats parameter controls the printing of Virtio-net device statistics. The parameter
specifies the interval (in seconds) at which to print statistics, an interval of 0 seconds will
disable printing statistics.

Xen PMD Frontend Prerequisites

1. Install xen-devel package for accessing XenStore:

yum install xen-devel.x86_64

2. Mount xenfs, if it is not already mounted:

mount -t xenfs none /proc/xen

3. Enlarge the default limit for xen_gntalloc driver:

modprobe -r xen_gntalloc
modprobe xen_gntalloc limit=6000

Note: Before the Linux kernel version 3.8-rc5, Jan 15th 2013, a critical defect occurs when a
guest is heavily allocating Grant pages. The Grant driver allocates fewer pages than expected
which causes kernel memory corruption. This happens, for example, when a guest uses the v1
format of a Grant table entry and allocates more than 8192 Grant pages (this number might be
different on different hypervisor versions). To work around this issue, set the limit for gntalloc
driver to 6000. (The kernel normally allocates hundreds of Grant pages with one Xen front end
per virtualized device). If the kernel allocates a lot of Grant pages, for example, if the user uses
multiple net front devices, it is best to upgrade the Grant alloc driver. This defect has been
fixed in kernel version 3.8-rc5 and later.

Building and Running the Front End

1. Edit config/common_linuxapp, and change the default configuration value:

CONFIG_RTE_LIBRTE_XEN_DOM0=n
CONFIG_RTE_LIBRTE_PMD_XENVIRT=y

2. Build the package:

make install T=x86_64-native-linuxapp-gcc

3. Enable hugepages. Refer to the DPDK Getting Started Guide for instructions on how to
use hugepages in the DPDK.

4. Run TestPMD. Refer to DPDK TestPMD Application User Guide for detailed parameter
usage.

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11"
testpmd>set fwd mac
testpmd>start

3.1. DPDK Xen Based Packet-Switching Solution 44

DPDK documentation, Release 16.04.0

As an example to run two TestPMD instances over 2 Xen Virtio devices:

--vdev="eth_xenvirt0,mac=00:00:00:00:00:11" --vdev="eth_xenvirt1;mac=00:00:00:00:00:22"

Usage Examples: Injecting a Packet Stream Using a Packet Generator

Loopback Mode

Run TestPMD in a guest VM:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22
testpmd> set fwd mac
testpmd> start

Example output of the vhost_switch would be:

DATA:(0) MAC_ADDRESS 00:00:00:00:00:11 and VLAN_TAG 1000 registered.

The above message indicates that device 0 has been registered with MAC address
00:00:00:00:00:11 and VLAN tag 1000. Any packets received on the NIC with these values
is placed on the device’s receive queue.

Configure a packet stream in the packet generator, set the destination MAC address to
00:00:00:00:00:11, and VLAN to 1000, the guest Virtio receives these packets and sends them
out with destination MAC address 00:00:00:00:00:22.

Inter-VM Mode

Run TestPMD in guest VM1:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22 -- -i

Run TestPMD in guest VM2:

./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:22" -- -i --eth-peer=0,00:00:00:00:00:33

Configure a packet stream in the packet generator, and set the destination MAC address to
00:00:00:00:00:11 and VLAN to 1000. The packets received in Virtio in guest VM1 will be
forwarded to Virtio in guest VM2 and then sent out through hardware with destination MAC
address 00:00:00:00:00:33.

The packet flow is:

packet generator->Virtio in guest VM1->switching backend->Virtio in guest VM2->switching
backend->wire

3.1. DPDK Xen Based Packet-Switching Solution 45

CHAPTER 4

Programmer’s Guide

4.1 Introduction

This document provides software architecture information, development environment informa-
tion and optimization guidelines.

For programming examples and for instructions on compiling and running each sample appli-
cation, see the DPDK Sample Applications User Guide for details.

For general information on compiling and running applications, see the DPDK Getting Started
Guide.

4.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes (this document): Provides release-specific information, including sup-
ported features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

• Getting Started Guide : Describes how to install and configure the DPDK software;
designed to get users up and running quickly with the software.

• FreeBSD* Getting Started Guide : A document describing the use of the DPDK with
FreeBSD* has been added in DPDK Release 1.6.0. Refer to this guide for installation
and configuration instructions to get started using the DPDK with FreeBSD*.

• Programmer’s Guide (this document): Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference : Provides detailed information about DPDK functions, data structures
and other programming constructs.

46

DPDK documentation, Release 16.04.0

• Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

4.1.2 Related Publications

The following documents provide information that is relevant to the development of applications
using the DPDK:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Pro-
gramming Guide

Part 1: Architecture Overview

4.2 Overview

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple, complete framework for fast packet process-
ing in data plane applications. Users may use the code to understand some of the techniques
employed, to build upon for prototyping or to add their own protocol stacks. Alternative ecosys-
tem options that use the DPDK are available.

The framework creates a set of libraries for specific environments through the creation of an
Environment Abstraction Layer (EAL), which may be specific to a mode of the Intel® architec-
ture (32-bit or 64-bit), Linux* user space compilers or a specific platform. These environments
are created through the use of make files and configuration files. Once the EAL library is cre-
ated, the user may link with the library to create their own applications. Other libraries, outside
of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also provided.
Sample applications are provided to help show the user how to use various features of the
DPDK.

The DPDK implements a run to completion model for packet processing, where all resources
must be allocated prior to calling Data Plane applications, running as execution units on logical
processing cores. The model does not support a scheduler and all devices are accessed by
polling. The primary reason for not using interrupts is the performance overhead imposed by
interrupt processing.

In addition to the run-to-completion model, a pipeline model may also be used by passing
packets or messages between cores via the rings. This allows work to be performed in stages
and may allow more efficient use of code on cores.

4.2.1 Development Environment

The DPDK project installation requires Linux and the associated toolchain, such as one or more
compilers, assembler, make utility, editor and various libraries to create the DPDK components
and libraries.

Once these libraries are created for the specific environment and architecture, they may then
be used to create the user’s data plane application.

4.2. Overview 47

DPDK documentation, Release 16.04.0

When creating applications for the Linux user space, the glibc library is used. For DPDK
applications, two environmental variables (RTE_SDK and RTE_TARGET) must be configured
before compiling the applications. The following are examples of how the variables can be set:

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for information on setting up the development environ-
ment.

4.2.2 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface that hides the environ-
ment specifics from the applications and libraries. The services provided by the EAL are:

• DPDK loading and launching

• Support for multi-process and multi-thread execution types

• Core affinity/assignment procedures

• System memory allocation/de-allocation

• Atomic/lock operations

• Time reference

• PCI bus access

• Trace and debug functions

• CPU feature identification

• Interrupt handling

• Alarm operations

• Memory management (malloc)

The EAL is fully described in Environment Abstraction Layer .

4.2.3 Core Components

The core components are a set of libraries that provide all the elements needed for high-
performance packet processing applications.

Fig. 4.1: Core Components Architecture

Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO API in a finite size
table. It has some advantages over lockless queues; easier to implement, adapted to bulk
operations and faster. A ring is used by the Memory Pool Manager (librte_mempool) and
may be used as a general communication mechanism between cores and/or execution blocks
connected together on a logical core.

This ring buffer and its usage are fully described in Ring Library .

4.2. Overview 48

DPDK documentation, Release 16.04.0

Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory. A pool
is identified by name and uses a ring to store free objects. It provides some other optional
services, such as a per-core object cache and an alignment helper to ensure that objects are
padded to spread them equally on all RAM channels.

This memory pool allocator is described in Mempool Library .

Network Packet Buffer Management (librte_mbuf)

The mbuf library provides the facility to create and destroy buffers that may be used by the
DPDK application to store message buffers. The message buffers are created at startup time
and stored in a mempool, using the DPDK mempool library.

This library provide an API to allocate/free mbufs, manipulate control message buffers (ctrlm-
buf) which are generic message buffers, and packet buffers (pktmbuf) which are used to carry
network packets.

Network Packet Buffer Management is described in Mbuf Library .

Timer Manager (librte_timer)

This library provides a timer service to DPDK execution units, providing the ability to execute
a function asynchronously. It can be periodic function calls, or just a one-shot call. It uses
the timer interface provided by the Environment Abstraction Layer (EAL) to get a precise time
reference and can be initiated on a per-core basis as required.

The library documentation is available in Timer Library .

4.2.4 Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtu-
alized virtio Ethernet controllers which are designed to work without asynchronous, interrupt-
based signaling mechanisms.

See Poll Mode Driver .

4.2.5 Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm) libraries to
support the corresponding packet forwarding algorithms.

See Hash Library and LPM Library for more information.

4.2.6 librte_net

The librte_net library is a collection of IP protocol definitions and convenience macros. It is
based on code from the FreeBSD* IP stack and contains protocol numbers (for use in IP
headers), IP-related macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header
structures.

4.2. Overview 49

DPDK documentation, Release 16.04.0

4.3 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level re-
sources such as hardware and memory space. It provides a generic interface that hides the
environment specifics from the applications and libraries. It is the responsibility of the initial-
ization routine to decide how to allocate these resources (that is, memory space, PCI devices,
timers, consoles, and so on).

Typical services expected from the EAL are:

• DPDK Loading and Launching: The DPDK and its application are linked as a single
application and must be loaded by some means.

• Core Affinity/Assignment Procedures: The EAL provides mechanisms for assigning exe-
cution units to specific cores as well as creating execution instances.

• System Memory Reservation: The EAL facilitates the reservation of different memory
zones, for example, physical memory areas for device interactions.

• PCI Address Abstraction: The EAL provides an interface to access PCI address space.

• Trace and Debug Functions: Logs, dump_stack, panic and so on.

• Utility Functions: Spinlocks and atomic counters that are not provided in libc.

• CPU Feature Identification: Determine at runtime if a particular feature, for example,
Intel® AVX is supported. Determine if the current CPU supports the feature set that the
binary was compiled for.

• Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt
sources.

• Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

4.3.1 EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application
using the pthread library. PCI information about devices and address space is discovered
through the /sys kernel interface and through kernel modules such as uio_pci_generic, or
igb_uio. Refer to the UIO: User-space drivers documentation in the Linux kernel. This memory
is mmap’d in the application.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page
sizes to increase performance). This memory is exposed to DPDK service layers such as the
Mempool Library .

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls,
each execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel
API through a mmap() call.

Initialization and Core Launching

Part of the initialization is done by the start function of glibc. A check is also performed at
initialization time to ensure that the micro architecture type chosen in the config file is supported

4.3. Environment Abstraction Layer 50

DPDK documentation, Release 16.04.0

by the CPU. Then, the main() function is called. The core initialization and launch is done
in rte_eal_init() (see the API documentation). It consist of calls to the pthread library (more
specifically, pthread_self(), pthread_create(), and pthread_setaffinity_np()).

Fig. 4.2: EAL Initialization in a Linux Application Environment

Note: Initialization of objects, such as memory zones, rings, memory pools, lpm tables and
hash tables, should be done as part of the overall application initialization on the master lcore.
The creation and initialization functions for these objects are not multi-thread safe. However,
once initialized, the objects themselves can safely be used in multiple threads simultaneously.

Multi-process Support

The Linuxapp EAL allows a multi-process as well as a multi-threaded (pthread) deployment
model. See chapter Multi-process Support for more details.

Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesys-
tem. The EAL provides an API to reserve named memory zones in this contiguous memory.
The physical address of the reserved memory for that memory zone is also returned to the
user by the memory zone reservation API.

Note: Memory reservations done using the APIs provided by rte_malloc are also backed by
pages from the hugetlbfs filesystem.

Xen Dom0 support without hugetbls

The existing memory management implementation is based on the Linux kernel hugepage
mechanism. However, Xen Dom0 does not support hugepages, so a new Linux kernel module
rte_dom0_mm is added to workaround this limitation.

The EAL uses IOCTL interface to notify the Linux kernel module rte_dom0_mm to allocate
memory of specified size, and get all memory segments information from the module, and
the EAL uses MMAP interface to map the allocated memory. For each memory segment,
the physical addresses are contiguous within it but actual hardware addresses are contiguous
within 2MB.

PCI Access

The EAL uses the /sys/bus/pci utilities provided by the kernel to scan the content on the PCI
bus. To access PCI memory, a kernel module called uio_pci_generic provides a /dev/uioX
device file and resource files in /sys that can be mmap’d to obtain access to PCI address
space from the application. The DPDK-specific igb_uio module can also be used for this. Both
drivers use the uio kernel feature (userland driver).

4.3. Environment Abstraction Layer 51

DPDK documentation, Release 16.04.0

Per-lcore and Shared Variables

Note: lcore refers to a logical execution unit of the processor, sometimes called a hardware
thread.

Shared variables are the default behavior. Per-lcore variables are implemented using Thread
Local Storage (TLS) to provide per-thread local storage.

Logs

A logging API is provided by EAL. By default, in a Linux application, logs are sent to syslog and
also to the console. However, the log function can be overridden by the user to use a different
logging mechanism.

Trace and Debug Functions

There are some debug functions to dump the stack in glibc. The rte_panic() function can
voluntarily provoke a SIG_ABORT, which can trigger the generation of a core file, readable by
gdb.

CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_feature() function) to determine
which CPU features are available.

User Space Interrupt Event

• User Space Interrupt and Alarm Handling in Host Thread

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts.
Callbacks can be registered or unregistered by the EAL functions for a specific interrupt event
and are called in the host thread asynchronously. The EAL also allows timed callbacks to be
used in the same way as for NIC interrupts.

Note: In DPDK PMD, the only interrupts handled by the dedicated host thread are those for
link status change, i.e. link up and link down notification.

• RX Interrupt Event

The receive and transmit routines provided by each PMD don’t limit themselves to execute in
polling thread mode. To ease the idle polling with tiny throughput, it’s useful to pause the polling
and wait until the wake-up event happens. The RX interrupt is the first choice to be such kind
of wake-up event, but probably won’t be the only one.

EAL provides the event APIs for this event-driven thread mode. Taking linuxapp as an example,
the implementation relies on epoll. Each thread can monitor an epoll instance in which all the
wake-up events’ file descriptors are added. The event file descriptors are created and mapped

4.3. Environment Abstraction Layer 52

DPDK documentation, Release 16.04.0

to the interrupt vectors according to the UIO/VFIO spec. From bsdapp’s perspective, kqueue
is the alternative way, but not implemented yet.

EAL initializes the mapping between event file descriptors and interrupt vectors, while each
device initializes the mapping between interrupt vectors and queues. In this way, EAL actually
is unaware of the interrupt cause on the specific vector. The eth_dev driver takes responsibility
to program the latter mapping.

Note: Per queue RX interrupt event is only allowed in VFIO which supports multiple MSI-
X vector. In UIO, the RX interrupt together with other interrupt causes shares the same
vector. In this case, when RX interrupt and LSC(link status change) interrupt are both en-
abled(intr_conf.lsc == 1 && intr_conf.rxq == 1), only the former is capable.

The RX interrupt are controlled/enabled/disabled by ethdev APIs - ‘rte_eth_dev_rx_intr_*’.
They return failure if the PMD hasn’t support them yet. The intr_conf.rxq flag is used to turn on
the capability of RX interrupt per device.

Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted,
so they are ignored by the DPDK. The ports to be blacklisted are identified using the PCIe*
description (Domain:Bus:Device.Function).

Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

4.3.2 Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL. As physical memory
can have gaps, the memory is described in a table of descriptors, and each descriptor (called
rte_memseg) describes a contiguous portion of memory.

On top of this, the memzone allocator’s role is to reserve contiguous portions of physical mem-
ory. These zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure. This structure is
accessed using rte_eal_get_configuration(). The lookup (by name) of a memory zone returns
a descriptor containing the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align
parameter (by default, they are aligned to cache line size). The alignment value should be a
power of two and not less than the cache line size (64 bytes). Memory zones can also be
reserved from either 2 MB or 1 GB hugepages, provided that both are available on the system.

4.3.3 Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows
for significant performance gains, but lacks flexibility and is not always efficient.

4.3. Environment Abstraction Layer 53

DPDK documentation, Release 16.04.0

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency.
However, alternately it is possible to utilize the idle cycles available to take advantage of the
full capability of the CPU.

By taking advantage of cgroup, the CPU utilization quota can be simply assigned. This gives
another way to improve the CPU efficiency, however, there is a prerequisite; DPDK must handle
the context switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

EAL pthread and lcore Affinity

The term “lcore” refers to an EAL thread, which is really a Linux/FreeBSD pthread. “EAL
pthreads” are created and managed by EAL and execute the tasks issued by remote_launch.
In each EAL pthread, there is a TLS (Thread Local Storage) called _lcore_id for unique identi-
fication. As EAL pthreads usually bind 1:1 to the physical CPU, the _lcore_id is typically equal
to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL
pthread and a specified physical CPU. The EAL pthread may have affinity to a CPU set, and
as such the _lcore_id will not be the same as the CPU ID. For this reason, there is an EAL
long option ‘–lcores’ defined to assign the CPU affinity of lcores. For a specified lcore ID or ID
group, the option allows setting the CPU set for that EAL pthread.

The format pattern: –lcores=’<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],...]’

‘lcore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is “<number>-<number>”; a group is “(<num-
ber|range>[,<number|range>,...])”.

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘lcore_set’.

For example, "--lcores='1,2@(5-7),(3-5)@(0,2),(0,6),7-8'" which means start 9 EAL thread;
lcore 0 runs on cpuset 0x41 (cpu 0,6);
lcore 1 runs on cpuset 0x2 (cpu 1);
lcore 2 runs on cpuset 0xe0 (cpu 5,6,7);
lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);
lcore 6 runs on cpuset 0x41 (cpu 0,6);
lcore 7 runs on cpuset 0x80 (cpu 7);
lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given lcore ID, the associated CPUs can be assigned. It’s also
compatible with the pattern of corelist(‘-l’) option.

non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. Non-EAL
pthreads). In a non-EAL pthread, the _lcore_id is always LCORE_ID_ANY which identifies
that it is not an EAL thread with a valid, unique, _lcore_id. Some libraries will use an alter-
native unique ID (e.g. TID), some will not be impacted at all, and some will work but with
limitations (e.g. timer and mempool libraries).

All these impacts are mentioned in Known Issues section.

4.3. Environment Abstraction Layer 54

DPDK documentation, Release 16.04.0

Public Thread API

There are two public APIs rte_thread_set_affinity() and
rte_pthread_get_affinity() introduced for threads. When they’re used in any
pthread context, the Thread Local Storage(TLS) will be set/get.

Those TLS include _cpuset and _socket_id :

• _cpuset stores the CPUs bitmap to which the pthread is affinitized.

• _socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to
different NUMA node, the _socket_id will be set to SOCKET_ID_ANY.

Known Issues

• rte_mempool

The rte_mempool uses a per-lcore cache inside the mempool. For non-EAL pthreads,
rte_lcore_id() will not return a valid number. So for now, when rte_mempool is used
with non-EAL pthreads, the put/get operations will bypass the mempool cache and there
is a performance penalty because of this bypass. Support for non-EAL mempool cache
is currently being enabled.

• rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue. However, it is
non-preemptive, this has a knock on effect of making rte_mempool non-preemptable.

Note: The “non-preemptive” constraint means:

– a pthread doing multi-producers enqueues on a given ring must not be preempted
by another pthread doing a multi-producer enqueue on the same ring.

– a pthread doing multi-consumers dequeues on a given ring must not be preempted
by another pthread doing a multi-consumer dequeue on the same ring.

Bypassing this constraint it may cause the 2nd pthread to spin until the 1st one is sched-
uled again. Moreover, if the 1st pthread is preempted by a context that has an higher
priority, it may even cause a dead lock.

This does not mean it cannot be used, simply, there is a need to narrow down the situation
when it is used by multi-pthread on the same core.

1. It CAN be used for any single-producer or single-consumer situation.

2. It MAY be used by multi-producer/consumer pthread whose scheduling policy are all
SCHED_OTHER(cfs). User SHOULD be aware of the performance penalty before
using it.

3. It MUST not be used by multi-producer/consumer pthreads, whose scheduling poli-
cies are SCHED_FIFO or SCHED_RR.

RTE_RING_PAUSE_REP_COUNT is defined for rte_ring to reduce contention. It’s mainly
for case 2, a yield is issued after number of times pause repeat.

4.3. Environment Abstraction Layer 55

DPDK documentation, Release 16.04.0

It adds a sched_yield() syscall if the thread spins for too long while waiting on the other
thread to finish its operations on the ring. This gives the preempted thread a chance to
proceed and finish with the ring enqueue/dequeue operation.

• rte_timer

Running rte_timer_manager() on a non-EAL pthread is not allowed. However, re-
setting/stopping the timer from a non-EAL pthread is allowed.

• rte_log

In non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are
used.

• misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in a non-
EAL pthread.

cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1)
doing packet I/O on the same core ($CPU). We expect only 50% of CPU spend on packet IO.

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo $cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

4.3.4 Malloc

The EAL provides a malloc API to allocate any-sized memory.

The objective of this API is to provide malloc-like functions to allow allocation from hugepage
memory and to facilitate application porting. The DPDK API Reference manual describes the
available functions.

Typically, these kinds of allocations should not be done in data plane processing because they
are slower than pool-based allocation and make use of locks within the allocation and free
paths. However, they can be used in configuration code.

Refer to the rte_malloc() function description in the DPDK API Reference manual for more
information.

4.3. Environment Abstraction Layer 56

DPDK documentation, Release 16.04.0

Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains overwrite
protection fields to help identify buffer overflows.

Alignment and NUMA Constraints

The rte_malloc() takes an align argument that can be used to request a memory area that is
aligned on a multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return memory that has
been allocated on the NUMA socket of the core which made the call. A set of APIs is also
provided, to allow memory to be explicitly allocated on a NUMA socket directly, or by allocated
on the NUMA socket where another core is located, in the case where the memory is to be
used by a logical core other than on the one doing the memory allocation.

Use Cases

This API is meant to be used by an application that requires malloc-like functions at initialization
time.

For allocating/freeing data at runtime, in the fast-path of an application, the memory pool library
should be used instead.

Internal Implementation

Data Structures

There are two data structure types used internally in the malloc library:

• struct malloc_heap - used to track free space on a per-socket basis

• struct malloc_elem - the basic element of allocation and free-space tracking inside the
library.

Structure: malloc_heap The malloc_heap structure is used to manage free space on a
per-socket basis. Internally, there is one heap structure per NUMA node, which allows us to
allocate memory to a thread based on the NUMA node on which this thread runs. While this
does not guarantee that the memory will be used on that NUMA node, it is no worse than a
scheme where the memory is always allocated on a fixed or random node.

The key fields of the heap structure and their function are described below (see also diagram
above):

• lock - the lock field is needed to synchronize access to the heap. Given that the free
space in the heap is tracked using a linked list, we need a lock to prevent two threads
manipulating the list at the same time.

• free_head - this points to the first element in the list of free nodes for this malloc heap.

4.3. Environment Abstraction Layer 57

DPDK documentation, Release 16.04.0

Note: The malloc_heap structure does not keep track of in-use blocks of memory, since these
are never touched except when they are to be freed again - at which point the pointer to the
block is an input to the free() function.

Fig. 4.3: Example of a malloc heap and malloc elements within the malloc library

Structure: malloc_elem The malloc_elem structure is used as a generic header structure
for various blocks of memory. It is used in three different ways - all shown in the diagram above:

1. As a header on a block of free or allocated memory - normal case

2. As a padding header inside a block of memory

3. As an end-of-memseg marker

The most important fields in the structure and how they are used are described below.

Note: If the usage of a particular field in one of the above three usages is not described, the
field can be assumed to have an undefined value in that situation, for example, for padding
headers only the “state” and “pad” fields have valid values.

• heap - this pointer is a reference back to the heap structure from which this block was
allocated. It is used for normal memory blocks when they are being freed, to add the
newly-freed block to the heap’s free-list.

• prev - this pointer points to the header element/block in the memseg immediately behind
the current one. When freeing a block, this pointer is used to reference the previous block
to check if that block is also free. If so, then the two free blocks are merged to form a
single larger block.

• next_free - this pointer is used to chain the free-list of unallocated memory blocks to-
gether. It is only used in normal memory blocks; on malloc() to find a suitable free
block to allocate and on free() to add the newly freed element to the free-list.

• state - This field can have one of three values: FREE, BUSY or PAD. The former two are
to indicate the allocation state of a normal memory block and the latter is to indicate that
the element structure is a dummy structure at the end of the start-of-block padding, i.e.
where the start of the data within a block is not at the start of the block itself, due to
alignment constraints. In that case, the pad header is used to locate the actual malloc
element header for the block. For the end-of-memseg structure, this is always a BUSY
value, which ensures that no element, on being freed, searches beyond the end of the
memseg for other blocks to merge with into a larger free area.

• pad - this holds the length of the padding present at the start of the block. In the case
of a normal block header, it is added to the address of the end of the header to give the
address of the start of the data area, i.e. the value passed back to the application on
a malloc. Within a dummy header inside the padding, this same value is stored, and is
subtracted from the address of the dummy header to yield the address of the actual block
header.

• size - the size of the data block, including the header itself. For end-of-memseg struc-
tures, this size is given as zero, though it is never actually checked. For normal blocks

4.3. Environment Abstraction Layer 58

DPDK documentation, Release 16.04.0

which are being freed, this size value is used in place of a “next” pointer to identify the
location of the next block of memory that in the case of being FREE, the two free blocks
can be merged into one.

Memory Allocation

On EAL initialization, all memsegs are setup as part of the malloc heap. This setup involves
placing a dummy structure at the end with BUSY state, which may contain a sentinel value if
CONFIG_RTE_MALLOC_DEBUG is enabled, and a proper element header with FREE at the start
for each memseg. The FREE element is then added to the free_list for the malloc heap.

When an application makes a call to a malloc-like function, the malloc function will first index the
lcore_config structure for the calling thread, and determine the NUMA node of that thread.
The NUMA node is used to index the array of malloc_heap structures which is passed as a
parameter to the heap_alloc() function, along with the requested size, type, alignment and
boundary parameters.

The heap_alloc() function will scan the free_list of the heap, and attempt to find a free block
suitable for storing data of the requested size, with the requested alignment and boundary
constraints.

When a suitable free element has been identified, the pointer to be returned to the user is
calculated. The cache-line of memory immediately preceding this pointer is filled with a struct
malloc_elem header. Because of alignment and boundary constraints, there could be free
space at the start and/or end of the element, resulting in the following behavior:

1. Check for trailing space. If the trailing space is big enough, i.e. > 128 bytes, then the free
element is split. If it is not, then we just ignore it (wasted space).

2. Check for space at the start of the element. If the space at the start is small, i.e. <=128
bytes, then a pad header is used, and the remaining space is wasted. If, however, the
remaining space is greater, then the free element is split.

The advantage of allocating the memory from the end of the existing element is that no ad-
justment of the free list needs to take place - the existing element on the free list just has its
size pointer adjusted, and the following element has its “prev” pointer redirected to the newly
created element.

Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed to the free
function. The size of the malloc_elem structure is subtracted from this pointer to get the
element header for the block. If this header is of type PAD then the pad length is further
subtracted from the pointer to get the proper element header for the entire block.

From this element header, we get pointers to the heap from which the block was allocated and
to where it must be freed, as well as the pointer to the previous element, and via the size field,
we can calculate the pointer to the next element. These next and previous elements are then
checked to see if they are also FREE, and if so, they are merged with the current element. This
means that we can never have two FREE memory blocks adjacent to one another, as they are
always merged into a single block.

4.3. Environment Abstraction Layer 59

DPDK documentation, Release 16.04.0

4.4 Ring Library

The ring allows the management of queues. Instead of having a linked list of infinite size, the
rte_ring has the following properties:

• FIFO

• Maximum size is fixed, the pointers are stored in a table

• Lockless implementation

• Multi-consumer or single-consumer dequeue

• Multi-producer or single-producer enqueue

• Bulk dequeue - Dequeues the specified count of objects if successful; otherwise fails

• Bulk enqueue - Enqueues the specified count of objects if successful; otherwise fails

• Burst dequeue - Dequeue the maximum available objects if the specified count cannot
be fulfilled

• Burst enqueue - Enqueue the maximum available objects if the specified count cannot
be fulfilled

The advantages of this data structure over a linked list queue are as follows:

• Faster; only requires a single Compare-And-Swap instruction of sizeof(void *) instead of
several double-Compare-And-Swap instructions.

• Simpler than a full lockless queue.

• Adapted to bulk enqueue/dequeue operations. As pointers are stored in a table, a de-
queue of several objects will not produce as many cache misses as in a linked queue.
Also, a bulk dequeue of many objects does not cost more than a dequeue of a simple
object.

The disadvantages:

• Size is fixed

• Having many rings costs more in terms of memory than a linked list queue. An empty
ring contains at least N pointers.

A simplified representation of a Ring is shown in with consumer and producer head and tail
pointers to objects stored in the data structure.

Fig. 4.4: Ring Structure

4.4.1 References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at
least in Intel drivers):

• bufring.h in FreeBSD

• bufring.c in FreeBSD

4.4. Ring Library 60

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup

DPDK documentation, Release 16.04.0

4.4.2 Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design.

4.4.3 Additional Features

Name

A ring is identified by a unique name. It is not possible to create two rings with the same name
(rte_ring_create() returns NULL if this is attempted).

Water Marking

The ring can have a high water mark (threshold). Once an enqueue operation reaches the high
water mark, the producer is notified, if the water mark is configured.

This mechanism can be used, for example, to exert a back pressure on I/O to inform the LAN
to PAUSE.

Debug

When debug is enabled (CONFIG_RTE_LIBRTE_RING_DEBUG is set), the library stores
some per-ring statistic counters about the number of enqueues/dequeues. These statistics
are per-core to avoid concurrent accesses or atomic operations.

4.4.4 Use Cases

Use cases for the Ring library include:

• Communication between applications in the DPDK

• Used by memory pool allocator

4.4.5 Anatomy of a Ring Buffer

This section explains how a ring buffer operates. The ring structure is composed of two head
and tail couples; one is used by producers and one is used by the consumers. The figures of
the following sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

Each figure represents a simplified state of the ring, which is a circular buffer. The content
of the function local variables is represented on the top of the figure, and the content of ring
structure is represented on the bottom of the figure.

Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring. In this example,
only the producer head and tail (prod_head and prod_tail) are modified, and there is only one
producer.

The initial state is to have a prod_head and prod_tail pointing at the same location.

4.4. Ring Library 61

http://lwn.net/Articles/340400/

DPDK documentation, Release 16.04.0

Enqueue First Step

First, ring->prod_head and ring->cons_tail are copied in local variables. The prod_next lo-
cal variable points to the next element of the table, or several elements after in case of bulk
enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an
error.

Fig. 4.5: Enqueue first step

Enqueue Second Step

The second step is to modify ring->prod_head in ring structure to point to the same location
as prod_next.

A pointer to the added object is copied in the ring (obj4).

Fig. 4.6: Enqueue second step

Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to
the same location as ring->prod_head. The enqueue operation is finished.

Fig. 4.7: Enqueue last step

Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring. In this
example, only the consumer head and tail (cons_head and cons_tail) are modified and there
is only one consumer.

The initial state is to have a cons_head and cons_tail pointing at the same location.

Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables. The cons_next local
variable points to the next element of the table, or several elements after in the case of bulk
dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an
error.

4.4. Ring Library 62

DPDK documentation, Release 16.04.0

Fig. 4.8: Dequeue last step

Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location
as cons_next.

The pointer to the dequeued object (obj1) is copied in the pointer given by the user.

Fig. 4.9: Dequeue second step

Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring-
>cons_head. The dequeue operation is finished.

Fig. 4.10: Dequeue last step

Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod_head and prod_tail pointing at the same location.

Multiple Consumer Enqueue First Step

On both cores, ring->prod_head and ring->cons_tail are copied in local variables. The
prod_next local variable points to the next element of the table, or several elements after in
the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an
error.

Multiple Consumer Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location
as prod_next. This operation is done using a Compare And Swap (CAS) instruction, which
does the following operations atomically:

• If ring->prod_head is different to local variable prod_head, the CAS operation fails, and
the code restarts at first step.

• Otherwise, ring->prod_head is set to local prod_next, the CAS operation is successful,
and processing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

4.4. Ring Library 63

DPDK documentation, Release 16.04.0

Fig. 4.11: Multiple consumer enqueue first step

Fig. 4.12: Multiple consumer enqueue second step

Multiple Consumer Enqueue Third Step

The CAS operation is retried on core 2 with success.

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

Fig. 4.13: Multiple consumer enqueue third step

Multiple Consumer Enqueue Fourth Step

Each core now wants to update ring->prod_tail. A core can only update it if ring->prod_tail is
equal to the prod_head local variable. This is only true on core 1. The operation is finished on
core 1.

Multiple Consumer Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too. The operation is
also finished on core 2.

Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are repre-
sented by arrows. In the actual implementation, these values are not between 0 and size(ring)-
1 as would be assumed. The indexes are between 0 and 2^32 -1, and we mask their value
when we access the pointer table (the ring itself). 32-bit modulo also implies that operations
on indexes (such as, add/subtract) will automatically do 2^32 modulo if the result overflows the
32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

Note: To simplify the explanation, operations with modulo 16-bit are used instead of modulo
32-bit. In addition, the four indexes are defined as unsigned 16-bit integers, as opposed to
unsigned 32-bit integers in the more realistic case.

This ring contains 11000 entries.

This ring contains 12536 entries.

Note: For ease of understanding, we use modulo 65536 operations in the above examples.
In real execution cases, this is redundant for low efficiency, but is done automatically when the
result overflows.

4.4. Ring Library 64

DPDK documentation, Release 16.04.0

Fig. 4.14: Multiple consumer enqueue fourth step

Fig. 4.15: Multiple consumer enqueue last step

The code always maintains a distance between producer and consumer between 0 and
size(ring)-1. Thanks to this property, we can do subtractions between 2 index values in a
modulo-32bit base: that’s why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1, even if only the first term
of subtraction has overflowed:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

4.4.6 References

• bufring.h in FreeBSD (version 8)

• bufring.c in FreeBSD (version 8)

• Linux Lockless Ring Buffer Design

4.5 Mempool Library

A memory pool is an allocator of a fixed-sized object. In the DPDK, it is identified by name
and uses a ring to store free objects. It provides some other optional services such as a per-
core object cache and an alignment helper to ensure that objects are padded to spread them
equally on all DRAM or DDR3 channels.

This library is used by the Mbuf Library and the Environment Abstraction Layer (for logging
history).

4.5.1 Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added
at the beginning and end of allocated blocks. The allocated objects then contain overwrite
protection fields to help debugging buffer overflows.

4.5.2 Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), statistics about get
from/put in the pool are stored in the mempool structure. Statistics are per-lcore to avoid
concurrent access to statistics counters.

Fig. 4.16: Modulo 32-bit indexes - Example 1

4.5. Mempool Library 65

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup
http://lwn.net/Articles/340400/

DPDK documentation, Release 16.04.0

Fig. 4.17: Modulo 32-bit indexes - Example 2

4.5.3 Memory Alignment Constraints

Depending on hardware memory configuration, performance can be greatly improved by
adding a specific padding between objects. The objective is to ensure that the beginning of
each object starts on a different channel and rank in memory so that all channels are equally
loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification. Only
the first 64 bytes are accessed, so performance can be increased by spreading the start ad-
dresses of objects among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMs that can be
accessed for the full data bit-width of the DIMM. The ranks cannot be accessed simultaneously
since they share the same data path. The physical layout of the DRAM chips on the DIMM itself
does not necessarily relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the
number of memory channels and ranks.

Note: The command line must always have the number of memory channels specified for the
processor.

Examples of alignment for different DIMM architectures are shown in Fig. 4.18 and Fig. 4.19.

Fig. 4.18: Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases, no padding is required between
objects (except for objects whose size are n x 3 x 64 bytes blocks).

Fig. 4.19: Three Channels and Two Dual-ranked DIMM Example

When creating a new pool, the user can specify to use this feature or not.

4.5.4 Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool’s ring of free
buffers may be high since each access requires a compare-and-set (CAS) operation. To avoid
having too many access requests to the memory pool’s ring, the memory pool allocator can
maintain a per-core cache and do bulk requests to the memory pool’s ring, via the cache with
many fewer locks on the actual memory pool structure. In this way, each core has full access
to its own cache (with locks) of free objects and only when the cache fills does the core need to
shuffle some of the free objects back to the pools ring or obtain more objects when the cache
is empty.

4.5. Mempool Library 66

DPDK documentation, Release 16.04.0

While this may mean a number of buffers may sit idle on some core’s cache, the speed at
which a core can access its own cache for a specific memory pool without locks provides
performance gains.

The cache is composed of a small, per-core table of pointers and its length (used as a stack).
This cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CON-
FIG_RTE_MEMPOOL_CACHE_MAX_SIZE).

Fig. 4.20 shows a cache in operation.

Fig. 4.20: A mempool in Memory with its Associated Ring

4.5.5 Use Cases

All allocations that require a high level of performance should use a pool-based memory allo-
cator. Below are some examples:

• Mbuf Library

• Environment Abstraction Layer , for logging service

• Any application that needs to allocate fixed-sized objects in the data plane and that will
be continuously utilized by the system.

4.6 Mbuf Library

The mbuf library provides the ability to allocate and free buffers (mbufs) that may be used by
the DPDK application to store message buffers. The message buffers are stored in a mempool,
using the Mempool Library .

A rte_mbuf struct can carry network packet buffers or generic control buffers (indicated by the
CTRL_MBUF_FLAG). This can be extended to other types. The rte_mbuf header structure is
kept as small as possible and currently uses just two cache lines, with the most frequently used
fields being on the first of the two cache lines.

4.6.1 Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were consid-
ered:

1. Embed metadata within a single memory buffer the structure followed by a fixed size area
for the packet data.

2. Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole
memory representation of a packet. On the other hand, the second method is more flexible
and allows the complete separation of the allocation of metadata structures from the allocation
of packet data buffers.

4.6. Mbuf Library 67

DPDK documentation, Release 16.04.0

The first method was chosen for the DPDK. The metadata contains control information such as
message type, length, offset to the start of the data and a pointer for additional mbuf structures
allowing buffer chaining.

Message buffers that are used to carry network packets can handle buffer chaining where
multiple buffers are required to hold the complete packet. This is the case for jumbo frames
that are composed of many mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is
RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned.
Message buffers may be used to carry control information, packets, events, and so on between
different entities in the system. Message buffers may also use their buffer pointers to point to
other message buffer data sections or other structures.

Fig. 4.21 and Fig. 4.22 show some of these scenarios.

Fig. 4.21: An mbuf with One Segment

Fig. 4.22: An mbuf with Three Segments

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate
network packets.

4.6.2 Buffers Stored in Memory Pools

The Buffer Manager uses the Mempool Library to allocate buffers. Therefore, it ensures
that the packet header is interleaved optimally across the channels and ranks for L3 pro-
cessing. An mbuf contains a field indicating the pool that it originated from. When calling
rte_ctrlmbuf_free(m) or rte_pktmbuf_free(m), the mbuf returns to its original pool.

4.6.3 Constructors

Packet and control mbuf constructors are provided by the API. The rte_pktmbuf_init() and
rte_ctrlmbuf_init() functions initialize some fields in the mbuf structure that are not modified by
the user once created (mbuf type, origin pool, buffer start address, and so on). This function is
given as a callback function to the rte_mempool_create() function at pool creation time.

4.6.4 Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf
should be taken. For any newly-allocated mbuf, it contains one segment, with a length
of 0. The offset to data is initialized to have some bytes of headroom in the buffer
(RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool. The content of an mbuf is not
modified when it is stored in a pool (as a free mbuf). Fields initialized by the constructor do not
need to be re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned
to their original mempool.

4.6. Mbuf Library 68

DPDK documentation, Release 16.04.0

4.6.5 Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:

• Get data length

• Get a pointer to the start of data

• Prepend data before data

• Append data after data

• Remove data at the beginning of the buffer (rte_pktmbuf_adj())

• Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Refer-
ence for details.

4.6.6 Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make process-
ing easier. For instance, the VLAN, the RSS hash result (see Poll Mode Driver) and a flag
indicating that the checksum was computed by hardware.

An mbuf also contains the input port (where it comes from), and the number of segment mbufs
in the chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet timestamp mechanism, the
VLAN tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some processing to the hardware
if it supports it. For instance, the PKT_TX_IP_CKSUM flag allows to offload the computation
of the IPv4 checksum.

The following examples explain how to configure different TX offloads on a vxlan-encapsulated
tcp packet: out_eth/out_ip/out_udp/vxlan/in_eth/in_ip/in_tcp/payload

• calculate checksum of out_ip:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.

• calculate checksum of out_ip and out_udp:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
set out_ip checksum to 0 in the packet
set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM
and DEV_TX_OFFLOAD_UDP_CKSUM.

• calculate checksum of in_ip:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)

4.6. Mbuf Library 69

DPDK documentation, Release 16.04.0

mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set in_ip checksum to 0 in the packet

This is similar to case 1), but l2_len is different. It is supported on hardware advertising
DEV_TX_OFFLOAD_IPV4_CKSUM. Note that it can only work if outer L4 checksum is
0.

• calculate checksum of in_ip and in_tcp:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is similar to case 2), but l2_len is different. It is supported on hardware advertising
DEV_TX_OFFLOAD_IPV4_CKSUM and DEV_TX_OFFLOAD_TCP_CKSUM. Note that
it can only work if outer L4 checksum is 0.

• segment inner TCP:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->l4_len = len(in_tcp)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |

PKT_TX_TCP_SEG;
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header without including the IP

payload length using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO. Note that it
can only work if outer L4 checksum is 0.

• calculate checksum of out_ip, in_ip, in_tcp:

mb->outer_l2_len = len(out_eth)
mb->outer_l3_len = len(out_ip)
mb->l2_len = len(out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM | \
PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM;

set out_ip checksum to 0 in the packet
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM,
DEV_TX_OFFLOAD_UDP_CKSUM and DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

The list of flags and their precise meaning is described in the mbuf API documentation
(rte_mbuf.h). Also refer to the testpmd source code (specifically the csumonly.c file) for de-
tails.

4.6.7 Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained. An indirect buffer
behaves like a direct buffer but for the fact that the buffer pointer and data offset in it refer to
data in another direct buffer. This is useful in situations where packets need to be duplicated
or fragmented, since indirect buffers provide the means to reuse the same packet data across
multiple buffers.

4.6. Mbuf Library 70

DPDK documentation, Release 16.04.0

A buffer becomes indirect when it is “attached” to a direct buffer using the rte_pktmbuf_attach()
function. Each buffer has a reference counter field and whenever an indirect buffer is attached
to the direct buffer, the reference counter on the direct buffer is incremented. Similarly, when-
ever the indirect buffer is detached, the reference counter on the direct buffer is decremented.
If the resulting reference counter is equal to 0, the direct buffer is freed since it is no longer in
use.

There are a few things to remember when dealing with indirect buffers. First of all, it is not
possible to attach an indirect buffer to another indirect buffer. Secondly, for a buffer to become
indirect, its reference counter must be equal to 1, that is, it must not be already referenced by
another indirect buffer. Finally, it is not possible to reattach an indirect buffer to the direct buffer
(unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended
rte_pktmbuf_attach() and rte_pktmbuf_detach() functions, it is suggested to use the higher-
level rte_pktmbuf_clone() function, which takes care of the correct initialization of an indirect
buffer and can clone buffers with multiple segments.

Since indirect buffers are not supposed to actually hold any data, the memory pool for indirect
buffers should be configured to indicate the reduced memory consumption. Examples of the
initialization of a memory pool for indirect buffers (as well as use case examples for indirect
buffers) can be found in several of the sample applications, for example, the IPv4 Multicast
sample application.

4.6.8 Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled), the functions of the mbuf library
perform sanity checks before any operation (such as, buffer corruption, bad type, and so on).

4.6.9 Use Cases

All networking application should use mbufs to transport network packets.

4.7 Poll Mode Driver

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode
Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user
space, to configure the devices and their respective queues. In addition, a PMD accesses the
RX and TX descriptors directly without any interrupts (with the exception of Link Status Change
interrupts) to quickly receive, process and deliver packets in the user’s application. This section
describes the requirements of the PMDs, their global design principles and proposes a high-
level architecture and a generic external API for the Ethernet PMDs.

4.7.1 Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-
completion and pipe-line:

4.7. Poll Mode Driver 71

DPDK documentation, Release 16.04.0

• In the run-to-completion model, a specific port’s RX descriptor ring is polled for packets
through an API. Packets are then processed on the same core and placed on a port’s TX
descriptor ring through an API for transmission.

• In the pipe-line model, one core polls one or more port’s RX descriptor ring through
an API. Packets are received and passed to another core via a ring. The other core
continues to process the packet which then may be placed on a port’s TX descriptor ring
through an API for transmission.

In a synchronous run-to-completion model, each logical core assigned to the DPDK executes
a packet processing loop that includes the following steps:

• Retrieve input packets through the PMD receive API

• Process each received packet one at a time, up to its forwarding

• Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the
retrieval of received packets and other logical cores to the processing of previously received
packets. Received packets are exchanged between logical cores through rings. The loop for
packet retrieval includes the following steps:

• Retrieve input packets through the PMD receive API

• Provide received packets to processing lcores through packet queues

The loop for packet processing includes the following steps:

• Retrieve the received packet from the packet queue

• Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not
use any asynchronous notification mechanisms. Whenever needed and appropriate, asyn-
chronous communication should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment. To address this issue,
PMDs are designed to work with per-core private resources as much as possible. For example,
a PMD maintains a separate transmit queue per-core, per-port. In the same way, every receive
queue of a port is assigned to and polled by a single logical core (lcore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to
assign to each logical core a private buffer pool in local memory to minimize remote memory
access. The configuration of packet buffer pools should take into account the underlying physi-
cal memory architecture in terms of DIMMS, channels and ranks. The application must ensure
that appropriate parameters are given at memory pool creation time. See Mempool Library .

4.7.2 Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in
mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level.
Conversely, NIC PMD functions should not impede the benefits expected by upper-level global
policies, or worse prevent such policies from being applied.

4.7. Poll Mode Driver 72

DPDK documentation, Release 16.04.0

For instance, both the receive and transmit functions of a PMD have a maximum number of
packets/descriptors to poll. This allows a run-to-completion processing stack to statically fix or
to dynamically adapt its overall behavior through different global loop policies, such as:

• Receive, process immediately and transmit packets one at a time in a piecemeal fashion.

• Receive as many packets as possible, then process all received packets, transmitting
them immediately.

• Receive a given maximum number of packets, process the received packets, accumulate
them and finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimiza-
tion techniques must be considered and balanced against available low-level hardware-based
optimization features (CPU cache properties, bus speed, NIC PCI bandwidth, and so on). The
case of packet transmission is an example of this software/hardware tradeoff issue when opti-
mizing burst-oriented network packet processing engines. In the initial case, the PMD could ex-
port only an rte_eth_tx_one function to transmit one packet at a time on a given queue. On top
of that, one can easily build an rte_eth_tx_burst function that loops invoking the rte_eth_tx_one
function to transmit several packets at a time. However, an rte_eth_tx_burst function is effec-
tively implemented by the PMD to minimize the driver-level transmit cost per packet through
the following optimizations:

• Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one func-
tion.

• Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware fea-
tures (prefetch data in cache, use of NIC head/tail registers) to minimize the number of
CPU cycles per packet, for example by avoiding unnecessary read memory accesses
to ring transmit descriptors, or by systematically using arrays of pointers that exactly fit
cache line boundaries and sizes.

• Apply burst-oriented software optimization techniques to remove operations that would
otherwise be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used
by the PMD. This applies in particular to buffer allocators used to populate NIC rings, which
provide functions to allocate/free several buffers at a time. For example, an mbuf_multiple_alloc
function returning an array of pointers to rte_mbuf buffers which speeds up the receive poll
function of the PMD when replenishing multiple descriptors of the receive ring.

4.7.3 Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor’s logical cores
and interfaces utilize its local memory. Therefore, mbuf allocation associated with local PCIe*
interfaces should be allocated from memory pools created in the local memory. The buffers
should, if possible, remain on the local processor to obtain the best performance results and RX
and TX buffer descriptors should be populated with mbufs allocated from a mempool allocated
from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local
memory instead of a remote processors memory. This is also true for the pipe-line model
provided all logical cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this
would require global locks and hinder performance.

4.7. Poll Mode Driver 73

DPDK documentation, Release 16.04.0

4.7.4 Device Identification and Configuration

Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI identifiers as-
signed by the PCI probing/enumeration function executed at DPDK initialization. Based on
their PCI identifier, NIC ports are assigned two other identifiers:

• A port index used to designate the NIC port in all functions exported by the PMD API.

• A port name used to designate the port in console messages, for administration or de-
bugging purposes. For ease of use, the port name includes the port index.

Device Configuration

The configuration of each NIC port includes the following operations:

• Allocate PCI resources

• Reset the hardware (issue a Global Reset) to a well-known default state

• Set up the PHY and the link

• Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and
functions to set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through
specific configuration parameters. This is the case for the Receive Side Scaling (RSS) and
Data Center Bridging (DCB) features for example.

On-the-Fly Configuration

All device features that can be started or stopped “on the fly” (that is, without stopping the
device) do not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the config-
uration of these features in specific functions outside of the drivers.

For this purpose, the PMD API exports a function that provides all the information associated
with a device that can be used to set up a given device feature outside of the driver. This
includes the PCI vendor identifier, the PCI device identifier, the mapping address of the PCI
device registers, and the name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the
API used to configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Giga-
bit Ethernet Controller and the Intel® 82599 10 Gigabit Ethernet Controller controllers in the
testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in
the same way. Ethernet* flow control (pause frame) can be configured on the individual port.
Refer to the testpmd source code for details. Also, L4 (UDP/TCP/ SCTP) checksum offload by

4.7. Poll Mode Driver 74

DPDK documentation, Release 16.04.0

the NIC can be enabled for an individual packet as long as the packet mbuf is set up correctly.
See Hardware Offload for details.

Configuration of Transmit and Receive Queues

Each transmit queue is independently configured with the following information:

• The number of descriptors of the transmit ring

• The socket identifier used to identify the appropriate DMA memory zone from which to
allocate the transmit ring in NUMA architectures

• The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue

• The minimum transmit packets to free threshold (tx_free_thresh). When the number of
descriptors used to transmit packets exceeds this threshold, the network adaptor should
be checked to see if it has written back descriptors. A value of 0 can be passed during
the TX queue configuration to indicate the default value should be used. The default
value for tx_free_thresh is 32. This ensures that the PMD does not search for completed
descriptors until at least 32 have been processed by the NIC for this queue.

• The minimum RS bit threshold. The minimum number of transmit descriptors to use be-
fore setting the Report Status (RS) bit in the transmit descriptor. Note that this parameter
may only be valid for Intel 10 GbE network adapters. The RS bit is set on the last de-
scriptor used to transmit a packet if the number of descriptors used since the last RS bit
setting, up to the first descriptor used to transmit the packet, exceeds the transmit RS
bit threshold (tx_rs_thresh). In short, this parameter controls which transmit descriptors
are written back to host memory by the network adapter. A value of 0 can be passed
during the TX queue configuration to indicate that the default value should be used. The
default value for tx_rs_thresh is 32. This ensures that at least 32 descriptors are used
before the network adapter writes back the most recently used descriptor. This saves
upstream PCIe* bandwidth resulting from TX descriptor write-backs. It is important to
note that the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh
is greater than 1. Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for
more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:

• tx_rs_thresh must be greater than 0.

• tx_rs_thresh must be less than the size of the ring minus 2.

• tx_rs_thresh must be less than or equal to tx_free_thresh.

• tx_free_thresh must be greater than 0.

• tx_free_thresh must be less than the size of the ring minus 3.

• For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater
than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence
the maximum threshold constraints.

Note: When configuring for DCB operation, at port initialization, both the number of transmit
queues and the number of receive queues must be set to 128.

4.7. Poll Mode Driver 75

DPDK documentation, Release 16.04.0

Hardware Offload

Depending on driver capabilities advertised by rte_eth_dev_info_get(), the PMD may
support hardware offloading feature like checksumming, TCP segmentation or VLAN insertion.

The support of these offload features implies the addition of dedicated status bit(s) and value
field(s) into the rte_mbuf data structure, along with their appropriate handling by the re-
ceive/transmit functions exported by each PMD. The list of flags and their precise meaning
is described in the mbuf API documentation and in the in Mbuf Library , section “Meta Informa-
tion”.

4.7.5 Poll Mode Driver API

Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed not to be
invoked in parallel on different logical cores to work on the same target object. For instance,
a PMD receive function cannot be invoked in parallel on two logical cores to poll the same RX
queue of the same port. Of course, this function can be invoked in parallel by different logical
cores on different RX queues. It is the responsibility of the upper-level application to enforce
this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly pro-
tected by dedicated inline lock-aware functions built on top of their corresponding lock-free
functions of the PMD API.

Generic Packet Representation

A packet is represented by an rte_mbuf structure, which is a generic metadata structure con-
taining all necessary housekeeping information. This includes fields and status bits corre-
sponding to offload hardware features, such as checksum computation of IP headers or VLAN
tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload
features provided by network controllers. For an input packet, most fields of the rte_mbuf
structure are filled in by the PMD receive function with the information contained in the receive
descriptor. Conversely, for output packets, most fields of rte_mbuf structures are used by the
PMD transmit function to initialize transmit descriptors.

The mbuf structure is fully described in the Mbuf Library chapter.

Ethernet Device API

The Ethernet device API exported by the Ethernet PMDs is described in the DPDK API Refer-
ence.

Extended Statistics API

The extended statistics API allows each individual PMD to expose a unique set of statistics.
The client of the API provides an array of struct rte_eth_xstats type. Each struct

4.7. Poll Mode Driver 76

DPDK documentation, Release 16.04.0

rte_eth_xstats contains a string and value pair. The amount of xstats exposed, and posi-
tion of the statistic in the array must remain constant during runtime.

A naming scheme exists for the strings exposed to clients of the API. This is to allow scraping of
the API for statistics of interest. The naming scheme uses strings split by a single underscore
_. The scheme is as follows:

• direction

• detail 1

• detail 2

• detail n

• unit

Examples of common statistics xstats strings, formatted to comply to the scheme proposed
above:

• rx_bytes

• rx_crc_errors

• tx_multicast_packets

The scheme, although quite simple, allows flexibility in presenting and reading information
from the statistic strings. The following example illustrates the naming scheme:rx_packets.
In this example, the string is split into two components. The first component rx indicates that
the statistic is associated with the receive side of the NIC. The second component packets
indicates that the unit of measure is packets.

A more complicated example: tx_size_128_to_255_packets. In this example, tx indi-
cates transmission, size is the first detail, 128 etc are more details, and packets indicates
that this is a packet counter.

Some additions in the metadata scheme are as follows:

• If the first part does not match rx or tx, the statistic does not have an affinity with either
receive of transmit.

• If the first letter of the second part is q and this q is followed by a number, this statistic is
part of a specific queue.

An example where queue numbers are used is as follows: tx_q7_bytes which indicates this
statistic applies to queue number 7, and represents the number of transmitted bytes on that
queue.

4.8 Cryptography Device Library

The cryptodev library provides a Crypto device framework for management and provisioning
of hardware and software Crypto poll mode drivers, defining generic APIs which support a
number of different Crypto operations. The framework currently only supports cipher, authen-
tication, chained cipher/authentication and AEAD symmetric Crypto operations.

4.8. Cryptography Device Library 77

DPDK documentation, Release 16.04.0

4.8.1 Design Principles

The cryptodev library follows the same basic principles as those used in DPDKs Ethernet
Device framework. The Crypto framework provides a generic Crypto device framework which
supports both physical (hardware) and virtual (software) Crypto devices as well as a generic
Crypto API which allows Crypto devices to be managed and configured and supports Crypto
operations to be provisioned on Crypto poll mode driver.

4.8.2 Device Management

Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the EAL function
which is executed at DPDK initialization, based on their PCI device identifier, each unique
PCI BDF (bus/bridge, device, function). Specific physical Crypto devices, like other physical
devices in DPDK can be white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options
or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'cryptodev_aesni_mb_pmd0,max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0'

Our using the rte_eal_vdev_init API within the application code.

rte_eal_vdev_init("cryptodev_aesni_mb_pmd",
"max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0")

All virtual Crypto devices support the following initialization parameters:

• max_nb_queue_pairs - maximum number of queue pairs supported by the device.

• max_nb_sessions - maximum number of sessions supported by the device

• socket_id - socket on which to allocate the device resources on.

Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

• A unique device index used to designate the Crypto device in all functions exported by
the cryptodev API.

• A device name used to designate the Crypto device in console messages, for adminis-
tration or debugging purposes. For ease of use, the port name includes the port index.

Device Configuration

The configuration of each Crypto device includes the following operations:

• Allocation of resources, including hardware resources if a physical device.

• Resetting the device into a well-known default state.

• Initialization of statistics counters.

4.8. Cryptography Device Library 78

DPDK documentation, Release 16.04.0

The rte_cryptodev_configure API is used to configure a Crypto device.

int rte_cryptodev_configure(uint8_t dev_id,
struct rte_cryptodev_config *config)

The rte_cryptodev_config structure is used to pass the configuration parameters. In
contains parameter for socket selection, number of queue pairs and the session mempool
configuration.

struct rte_cryptodev_config {
int socket_id;
/**< Socket to allocate resources on */
uint16_t nb_queue_pairs;
/**< Number of queue pairs to configure on device */

struct {
uint32_t nb_objs;
uint32_t cache_size;

} session_mp;
/**< Session mempool configuration */

};

Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the
rte_cryptodev_queue_pair_setup API. Each queue pairs resources may be allo-
cated on a specified socket.

int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)

struct rte_cryptodev_qp_conf {
uint32_t nb_descriptors; /**< Number of descriptors per queue pair */

};

Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when a processor’s
logical cores and interfaces utilize its local memory. Therefore Crypto operations, and in the
case of symmetric Crypto operations, the session and the mbuf being operated on, should
be allocated from memory pools created in the local memory. The buffers should, if possible,
remain on the local processor to obtain the best performance results and buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of virtual Crypto de-
vices, if the Crypto operation and session and data buffer is in local memory instead of a
remote processor’s memory. This is also true for the pipe-line model provided all logical cores
used are located on the same processor.

Multiple logical cores should never share the same queue pair for enqueuing operations or de-
queuing operations on the same Crypto device since this would require global locks and hinder
performance. It is however possible to use a different logical core to dequeue an operation on
a queue pair from the logical core which it was enqueued on. This means that a crypto burst
enqueue/dequeue APIs are a logical place to transition from one logical core to another in a
packet processing pipeline.

4.8. Cryptography Device Library 79

DPDK documentation, Release 16.04.0

4.8.3 Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device features and
algorithm capabilities. Global devices features identify device wide level features which are
applicable to the whole device such as the device having hardware acceleration or supporting
symmetric Crypto operations,

The capabilities mechanism defines the individual algorithms/functions which the device sup-
ports, such as a specific symmetric Crypto cipher or authentication operation.

Device Features

Currently the following Crypto device features are defined:

• Symmetric Crypto operations

• Asymmetric Crypto operations

• Chaining of symmetric Crypto operations

• SSE accelerated SIMD vector operations

• AVX accelerated SIMD vector operations

• AVX2 accelerated SIMD vector operations

• AESNI accelerated instructions

• Hardware off-load processing

Device Operation Capabilities

Crypto capabilities which identify particular algorithm which the Crypto PMD supports are de-
fined by the operation type, the operation transform, the transform identifier and then the par-
ticulars of the transform. For the full scope of the Crypto capability see the definition of the
structure in the DPDK API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities for the operations it
supports. Below is an example of the capabilities for a PMD which supports the authentication
algorithm SHA1_HMAC and the cipher algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
{ /* SHA1 HMAC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
.auth = {

.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,

.block_size = 64,

.key_size = {
.min = 64,
.max = 64,
.increment = 0

},
.digest_size = {

.min = 12,

.max = 12,

4.8. Cryptography Device Library 80

DPDK documentation, Release 16.04.0

.increment = 0
},
.aad_size = { 0 }

}
}

},
{ /* AES CBC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
.cipher = {

.algo = RTE_CRYPTO_CIPHER_AES_CBC,

.block_size = 16,

.key_size = {
.min = 16,
.max = 32,
.increment = 8

},
.iv_size = {

.min = 16,

.max = 16,

.increment = 0
}

}
}

}
}

Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver is achieved
through the rte_cryptodev_info_get function.

void rte_cryptodev_info_get(uint8_t dev_id,
struct rte_cryptodev_info *dev_info);

This allows the user to query a specific Crypto PMD and get all the device features and ca-
pabilities. The rte_cryptodev_info structure contains all the relevant information for the
device.

struct rte_cryptodev_info {
const char *driver_name;
enum rte_cryptodev_type dev_type;
struct rte_pci_device *pci_dev;

uint64_t feature_flags;

const struct rte_cryptodev_capabilities *capabilities;

unsigned max_nb_queue_pairs;

struct {
unsigned max_nb_sessions;

} sym;
};

4.8.4 Operation Processing

Scheduling of Crypto operations on DPDK’s application data path is performed using a burst
oriented asynchronous API set. A queue pair on a Crypto device accepts a burst of Crypto

4.8. Cryptography Device Library 81

DPDK documentation, Release 16.04.0

operations using enqueue burst API. On physical Crypto devices the enqueue burst API will
place the operations to be processed on the devices hardware input queue, for virtual devices
the processing of the Crypto operations is usually completed during the enqueue call to the
Crypto device. The dequeue burst API will retrieve any processed operations available from the
queue pair on the Crypto device, from physical devices this is usually directly from the devices
processed queue, and for virtual device’s from a rte_ring where processed operations are
place after being processed on the enqueue call.

Enqueue / Dequeue Burst APIs

The burst enqueue API uses a Crypto device identifier and a queue pair identifier to specify the
Crypto device queue pair to schedule the processing on. The nb_ops parameter is the number
of operations to process which are supplied in the ops array of rte_crypto_op structures.
The enqueue function returns the number of operations it actually enqueued for processing, a
return value equal to nb_ops means that all packets have been enqueued.

uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_op **ops, uint16_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but the nb_ops
and ops parameters are now used to specify the max processed operations the user wishes
to retrieve and the location in which to store them. The API call returns the actual number of
processed operations returned, this can never be larger than nb_ops.

uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_op **ops, uint16_t nb_ops)

Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a generic metadata
container for all necessary information required for the Crypto operation to be processed on a
particular Crypto device poll mode driver.

The operation structure includes the operation type and the operation status, a reference to
the operation specific data, which can vary in size and content depending on the operation
being provisioned. It also contains the source mempool for the operation, if it allocate from a
mempool. Finally an opaque pointer for user specific data is provided.

If Crypto operations are allocated from a Crypto operation mempool, see next section, there is
also the ability to allocate private memory with the operation for applications purposes.

Application software is responsible for specifying all the operation specific fields in the
rte_crypto_op structure which are then used by the Crypto PMD to process the requested
operation.

Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which utilize the
Mempool Library to allocate operation buffers. Therefore, it ensures that the crytpo op-
eration is interleaved optimally across the channels and ranks for optimal processing. A
rte_crypto_op contains a field indicating the pool that it originated from. When calling
rte_crypto_op_free(op), the operation returns to its original pool.

4.8. Cryptography Device Library 82

DPDK documentation, Release 16.04.0

extern struct rte_mempool *
rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,

unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
int socket_id);

During pool creation rte_crypto_op_init() is called as a constructor to initialize each
Crypto operation which subsequently calls __rte_crypto_op_reset() to configure any
operation type specific fields based on the type parameter.

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc() are used to allo-
cate Crypto operations of a specific type from a given Crypto operation mempool.
__rte_crypto_op_reset() is called on each operation before being returned to allocate
to a user so the operation is always in a good known state before use by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type,
struct rte_crypto_op **ops, uint16_t nb_ops)

rte_crypto_op_free() is called by the application to return an operation to its allocating
pool.

void rte_crypto_op_free(struct rte_crypto_op *op)

4.8.5 Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric Crypto operations;
cipher, authentication, including chaining of these operations, as well as also supporting AEAD
operations.

Session and Session Management

Session are used in symmetric cryptographic processing to store the immutable data defined in
a cryptographic transform which is used in the operation processing of a packet flow. Sessions
are used to manage information such as expand cipher keys and HMAC IPADs and OPADs,
which need to be calculated for a particular Crypto operation, but are immutable on a packet
to packet basis for a flow. Crypto sessions cache this immutable data in a optimal way for the
underlying PMD and this allows further acceleration of the offload of Crypto workloads.

The Crypto device framework provides a set of session pool management APIs for the creation
and freeing of the sessions, utilizing the Mempool Library.

The framework also provides hooks so the PMDs can pass the amount of memory required for
that PMDs private session parameters, as well as initialization functions for the configuration
of the session parameters and freeing function so the PMD can managed the memory on
destruction of a session.

Note: Sessions created on a particular device can only be used on Crypto devices of the same
type, and if you try to use a session on a device different to that on which it was created then
the Crypto operation will fail.

4.8. Cryptography Device Library 83

DPDK documentation, Release 16.04.0

rte_cryptodev_sym_session_create() is used to create a symmetric session on
Crypto device. A symmetric transform chain is used to specify the particular operation and
its parameters. See the section below for details on transforms.

struct rte_cryptodev_sym_session * rte_cryptodev_sym_session_create(
uint8_t dev_id, struct rte_crypto_sym_xform *xform);

Note: For AEAD operations the algorithm selected for authentication and ciphering must
aligned, eg AES_GCM.

Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used to spec-
ify the details of the Crypto operation. For chaining of symmetric operations such as cipher
encrypt and authentication generate, the next pointer allows transform to be chained together.
Crypto devices which support chaining must publish the chaining of symmetric Crypto opera-
tions feature flag.

Currently there are two transforms types cipher and authentication, to specify an AEAD opera-
tion it is required to chain a cipher and an authentication transform together. Also it is important
to note that the order in which the transforms are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain */
enum rte_crypto_sym_xform_type type;
/**< xform type */
union {

struct rte_crypto_auth_xform auth;
/**< Authentication / hash xform */
struct rte_crypto_cipher_xform cipher;
/**< Cipher xform */

};
};

The API does not place a limit on the number of transforms that can be chained together but
this will be limited by the underlying Crypto device poll mode driver which is processing the
operation.

Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating to performing
symmetric cryptographic processing on a referenced mbuf data buffer. It is used for either
cipher, authentication, AEAD and chained operations.

As a minimum the symmetric operation must have a source data buffer (m_src), the session
type (session-based/less), a valid session (or transform chain if in session-less mode) and
the minimum authentication/ cipher parameters required depending on the type of operation
specified in the session or the transform chain.

struct rte_crypto_sym_op {
struct rte_mbuf *m_src;
struct rte_mbuf *m_dst;

enum rte_crypto_sym_op_sess_type type;

4.8. Cryptography Device Library 84

DPDK documentation, Release 16.04.0

union {
struct rte_cryptodev_sym_session *session;
/**< Handle for the initialised session context */
struct rte_crypto_sym_xform *xform;
/**< Session-less API Crypto operation parameters */

};

struct {
struct {

uint32_t offset;
uint32_t length;

} data; /**< Data offsets and length for ciphering */

struct {
uint8_t *data;
phys_addr_t phys_addr;
uint16_t length;

} iv; /**< Initialisation vector parameters */
} cipher;

struct {
struct {

uint32_t offset;
uint32_t length;

} data; /**< Data offsets and length for authentication */

struct {
uint8_t *data;
phys_addr_t phys_addr;
uint16_t length;

} digest; /**< Digest parameters */

struct {
uint8_t *data;
phys_addr_t phys_addr;
uint16_t length;

} aad; /**< Additional authentication parameters */
} auth;

}

4.8.6 Asymmetric Cryptography

Asymmetric functionality is currently not supported by the cryptodev API.

Crypto Device API

The cryptodev Library API is described in the DPDK API Reference document.

4.9 IVSHMEM Library

The DPDK IVSHMEM library facilitates fast zero-copy data sharing among virtual machines
(host-to-guest or guest-to-guest) by means of QEMU’s IVSHMEM mechanism.

The library works by providing a command line for QEMU to map several hugepages into a
single IVSHMEM device. For the guest to know what is inside any given IVSHMEM device
(and to distinguish between DPDK and non-DPDK IVSHMEM devices), a metadata file is also

4.9. IVSHMEM Library 85

DPDK documentation, Release 16.04.0

mapped into the IVSHMEM segment. No work needs to be done by the guest application to
map IVSHMEM devices into memory; they are automatically recognized by the DPDK Envi-
ronment Abstraction Layer (EAL).

A typical DPDK IVSHMEM use case looks like the following.

Fig. 4.23: Typical Ivshmem use case

The same could work with several virtual machines, providing host-to-VM or VM-to-VM com-
munication. The maximum number of metadata files is 32 (by default) and each metadata file
can contain different (or even the same) hugepages. The only constraint is that each VM has
to have access to the memory it is sharing with other entities (be it host or another VM). For
example, if the user wants to share the same memzone across two VMs, each VM must have
that memzone in its metadata file.

4.9.1 IVHSHMEM Library API Overview

The following is a simple guide to using the IVSHMEM Library API:

• Call rte_ivshmem_metadata_create() to create a new metadata file. The metadata name
is used to distinguish between multiple metadata files.

• Populate each metadata file with DPDK data structures. This can be done using the
following API calls:

– rte_ivhshmem_metadata_add_memzone() to add rte_memzone to metadata file

4.9. IVSHMEM Library 86

DPDK documentation, Release 16.04.0

– rte_ivshmem_metadata_add_ring() to add rte_ring to metadata file

– rte_ivshmem_metadata_add_mempool() to add rte_mempool to metadata file

• Finally, call rte_ivshmem_metadata_cmdline_generate() to generate the command line
for QEMU. Multiple metadata files (and thus multiple command lines) can be supplied to
a single VM.

Note: Only data structures fully residing in DPDK hugepage memory work correctly. Sup-
ported data structures created by malloc(), mmap() or otherwise using non-DPDK memory
cause undefined behavior and even a segmentation fault.

4.9.2 IVSHMEM Environment Configuration

The steps needed to successfully run IVSHMEM applications are the following:

• Compile a special version of QEMU from sources.

The source code can be found on the QEMU website (currently, version 1.4.x is sup-
ported, but version 1.5.x is known to work also), however, the source code will need to
be patched to support using regular files as the IVSHMEM memory backend. The patch
is not included in the DPDK package, but is available on the Intel®DPDK-vswitch project
webpage (either separately or in a DPDK vSwitch package).

• Enable IVSHMEM library in the DPDK build configuration.

In the default configuration, IVSHMEM library is not compiled. To compile the IVSH-
MEM library, one has to either use one of the provided IVSHMEM targets (for example,
x86_64-ivshmem-linuxapp-gcc), or set CONFIG_RTE_LIBRTE_IVSHMEM to “y” in the
build configuration.

• Set up hugepage memory on the virtual machine.

The guest applications run as regular DPDK (primary) processes and thus need their own
hugepage memory set up inside the VM. The process is identical to the one described in
the DPDK Getting Started Guide.

4.9.3 Best Practices for Writing IVSHMEM Applications

When considering the use of IVSHMEM for sharing memory, security implications need to be
carefully evaluated. IVSHMEM is not suitable for untrusted guests, as IVSHMEM is essentially
a window into the host process memory. This also has implications for the multiple VM scenar-
ios. While the IVSHMEM library tries to share as little memory as possible, it is quite probable
that data designated for one VM might also be present in an IVSMHMEM device designated
for another VM. Consequently, any shared memory corruption will affect both host and all VMs
sharing that particular memory.

IVSHMEM applications essentially behave like multi-process applications, so it is important to
implement access serialization to data and thread safety. DPDK ring structures are already
thread-safe, however, any custom data structures that the user might need would have to be
thread-safe also.

4.9. IVSHMEM Library 87

https://01.org/packet-processing/intel%C2%AE-ovdk
https://01.org/packet-processing/intel%C2%AE-ovdk

DPDK documentation, Release 16.04.0

Similar to regular DPDK multi-process applications, it is not recommended to use function
pointers as functions might have different memory addresses in different processes.

It is best to avoid freeing the rte_mbuf structure on a different machine from where it was
allocated, that is, if the mbuf was allocated on the host, the host should free it. Consequently,
any packet transmission and reception should also happen on the same machine (whether
virtual or physical). Failing to do so may lead to data corruption in the mempool cache.

Despite the IVSHMEM mechanism being zero-copy and having good performance, it is still
desirable to do processing in batches and follow other procedures described in Performance
Optimization.

4.9.4 Best Practices for Running IVSHMEM Applications

For performance reasons, it is best to pin host processes and QEMU processes to different
cores so that they do not interfere with each other. If NUMA support is enabled, it is also
desirable to keep host process’ hugepage memory and QEMU process on the same NUMA
node.

For the best performance across all NUMA nodes, each QEMU core should be pinned to host
CPU core on the appropriate NUMA node. QEMU’s virtual NUMA nodes should also be set
up to correspond to physical NUMA nodes. More on how to set up DPDK and QEMU NUMA
support can be found in DPDK Getting Started Guide and QEMU documentation respectively.
A script called cpu_layout.py is provided with the DPDK package (in the tools directory) that
can be used to identify which CPU cores correspond to which NUMA node.

The QEMU IVSHMEM command line creation should be considered the last step before start-
ing the virtual machine. Currently, there is no hot plug support for QEMU IVSHMEM devices,
so one cannot add additional memory to an IVSHMEM device once it has been created. There-
fore, the correct sequence to run an IVSHMEM application is to run host application first, obtain
the command lines for each IVSHMEM device and then run all QEMU instances with guest ap-
plications afterwards.

It is important to note that once QEMU is started, it holds on to the hugepages it uses for
IVSHMEM devices. As a result, if the user wishes to shut down or restart the IVSHMEM host
application, it is not enough to simply shut the application down. The virtual machine must also
be shut down (if not, it will hold onto outdated host data).

4.10 Link Bonding Poll Mode Driver Library

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, DPDK also includes
a pure-software library that allows physical PMD’s to be bonded together to create a single
logical PMD.

Fig. 4.24: Bonded PMDs

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of rte_eth_dev
ports of the same speed and duplex to provide similar the capabilities to that found in Linux
bonding driver to allow the aggregation of multiple (slave) NICs into a single logical interface
between a server and a switch. The new bonded PMD will then process these interfaces based

4.10. Link Bonding Poll Mode Driver Library 88

http://qemu.weilnetz.de/qemu-doc.html

DPDK documentation, Release 16.04.0

on the mode of operation specified to provide support for features such as redundant links, fault
tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the creation of bonded
devices as well as the configuration and management of the bonded device and its slave
devices.

Note: The Link Bonding PMD Library is enabled by default in the build configuration files, the
library can be disabled by setting CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the
DPDK.

4.10.1 Link Bonding Modes Overview

Currently the Link Bonding PMD library supports following modes of operation:

• Round-Robin (Mode 0):

Fig. 4.25: Round-Robin (Mode 0)

This mode provides load balancing and fault tolerance by transmission of packets in se-
quential order from the first available slave device through the last. Packets are bulk de-
queued from devices then serviced in a round-robin manner. This mode does not guaran-
tee in order reception of packets and down stream should be able to handle out of order
packets.

• Active Backup (Mode 1):

Fig. 4.26: Active Backup (Mode 1)

In this mode only one slave in the bond is active at any time, a different slave becomes
active if, and only if, the primary active slave fails, thereby providing fault tolerance to slave
failure. The single logical bonded interface’s MAC address is externally visible on only one
NIC (port) to avoid confusing the network switch.

• Balance XOR (Mode 2):

Fig. 4.27: Balance XOR (Mode 2)

This mode provides transmit load balancing (based on the selected transmission policy)
and fault tolerance. The default policy (layer2) uses a simple calculation based on the
packet flow source and destination MAC addresses as well as the number of active slaves
available to the bonded device to classify the packet to a specific slave to transmit on. Alter-
nate transmission policies supported are layer 2+3, this takes the IP source and destination
addresses into the calculation of the transmit slave port and the final supported policy is
layer 3+4, this uses IP source and destination addresses as well as the TCP/UDP source
and destination port.

Note: The coloring differences of the packets are used to identify different flow classification
calculated by the selected transmit policy

• Broadcast (Mode 3):

4.10. Link Bonding Poll Mode Driver Library 89

DPDK documentation, Release 16.04.0

Fig. 4.28: Broadcast (Mode 3)

This mode provides fault tolerance by transmission of packets on all slave ports.

• Link Aggregation 802.3AD (Mode 4):

Fig. 4.29: Link Aggregation 802.3AD (Mode 4)

This mode provides dynamic link aggregation according to the 802.3ad specification. It
negotiates and monitors aggregation groups that share the same speed and duplex settings
using the selected balance transmit policy for balancing outgoing traffic.
DPDK implementation of this mode provide some additional requirements of the applica-
tion.

1. It needs to call rte_eth_tx_burst and rte_eth_rx_burst with intervals period
of less than 100ms.

2. Calls to rte_eth_tx_burst must have a buffer size of at least 2xN, where N is
the number of slaves. This is a space required for LACP frames. Additionally LACP
packets are included in the statistics, but they are not returned to the application.

• Transmit Load Balancing (Mode 5):

Fig. 4.30: Transmit Load Balancing (Mode 5)

This mode provides an adaptive transmit load balancing. It dynamically changes the trans-
mitting slave, according to the computed load. Statistics are collected in 100ms intervals
and scheduled every 10ms.

4.10.2 Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API exported by
the Ethernet PMDs described in the DPDK API Reference.

The Link Bonding Library supports the creation of bonded devices at application startup time
during EAL initialization using the --vdev option as well as programmatically via the C API
rte_eth_bond_create function.

Bonded devices support the dynamical addition and removal of slave devices using the
rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs.

After a slave device is added to a bonded device slave is stopped using rte_eth_dev_stop
and then reconfigured using rte_eth_dev_configure the RX and TX queues are also re-
configured using rte_eth_tx_queue_setup / rte_eth_rx_queue_setup with the pa-
rameters use to configure the bonding device. If RSS is enabled for bonding device, this mode
is also enabled on new slave and configured as well.

Setting up multi-queue mode for bonding device to RSS, makes it fully RSS-capable, so all
slaves are synchronized with its configuration. This mode is intended to provide RSS configu-
ration on slaves transparent for client application implementation.

Bonding device stores its own version of RSS settings i.e. RETA, RSS hash function and RSS
key, used to set up its slaves. That let to define the meaning of RSS configuration of bonding
device as desired configuration of whole bonding (as one unit), without pointing any of slave
inside. It is required to ensure consistency and made it more error-proof.

4.10. Link Bonding Poll Mode Driver Library 90

DPDK documentation, Release 16.04.0

RSS hash function set for bonding device, is a maximal set of RSS hash functions supported
by all bonded slaves. RETA size is a GCD of all its RETA’s sizes, so it can be easily used as
a pattern providing expected behavior, even if slave RETAs’ sizes are different. If RSS Key is
not set for bonded device, it’s not changed on the slaves and default key for device is used.

All settings are managed through the bonding port API and always are propagated in one
direction (from bonding to slaves).

Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback, using the
rte_eth_dev_callback_register API, this will be called when the status of the bond-
ing device changes. For example in the case of a bonding device which has 3 slaves, the link
status will change to up when one slave becomes active or change to down when all slaves
become inactive. There is no callback notification when a single slave changes state and the
previous conditions are not met. If a user wishes to monitor individual slaves then they must
register callbacks with that slave directly.

The link bonding library also supports devices which do not implement link status change
interrupts, this is achieved by polling the devices link status at a defined period which is
set using the rte_eth_bond_link_monitoring_set API, the default polling interval is
10ms. When a device is added as a slave to a bonding device it is determined using the
RTE_PCI_DRV_INTR_LSC flag whether the device supports interrupts or whether the link sta-
tus should be monitored by polling it.

Requirements / Limitations

The current implementation only supports devices that support the same speed and duplex to
be added as a slaves to the same bonded device. The bonded device inherits these attributes
from the first active slave added to the bonded device and then all further slaves added to the
bonded device must support these parameters.

A bonding device must have a minimum of one slave before the bonding device itself can be
started.

To use a bonding device dynamic RSS configuration feature effectively, it is also required, that
all slaves should be RSS-capable and support, at least one common hash function available
for each of them. Changing RSS key is only possible, when all slave devices support the same
key size.

To prevent inconsistency on how slaves process packets, once a device is added to a bonding
device, RSS configuration should be managed through the bonding device API, and not directly
on the slave.

Like all other PMD, all functions exported by a PMD are lock-free functions that are assumed
not to be invoked in parallel on different logical cores to work on the same target object.

It should also be noted that the PMD receive function should not be invoked directly on a slave
devices after they have been to a bonded device since packets read directly from the slave
device will no longer be available to the bonded device to read.

4.10. Link Bonding Poll Mode Driver Library 91

DPDK documentation, Release 16.04.0

Configuration

Link bonding devices are created using the rte_eth_bond_create API which requires a
unique device name, the bonding mode, and the socket Id to allocate the bonding device’s
resources on. The other configurable parameters for a bonded device are its slave devices, its
primary slave, a user defined MAC address and transmission policy to use if the device is in
balance XOR mode.

Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices of the same
speed and duplex. Ethernet devices can be added as a slave to a maximum of one bonded
device. Slave devices are reconfigured with the configuration of the bonded device on being
added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its original value
of removal of a slave from it.

Primary Slave

The primary slave is used to define the default port to use when a bonded device is in active
backup mode. A different port will only be used if, and only if, the current primary port goes
down. If the user does not specify a primary port it will default to being the first port added to
the bonded device.

MAC Address

The bonded device can be configured with a user specified MAC address, this address will be
inherited by the some/all slave devices depending on the operating mode. If the device is in
active backup mode then only the primary device will have the user specified MAC, all other
slaves will retain their original MAC address. In mode 0, 2, 3, 4 all slaves devices are configure
with the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will default to using the
primary slaves MAC address.

Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in Balance XOR mode.
Layer 2, Layer 2+3, Layer 3+4.

• Layer 2: Ethernet MAC address based balancing is the default transmission policy for
Balance XOR bonding mode. It uses a simple XOR calculation on the source MAC
address and destination MAC address of the packet and then calculate the modulus of
this value to calculate the slave device to transmit the packet on.

• Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a combination of
source/destination MAC addresses and the source/destination IP addresses of the data
packet to decide which slave port the packet will be transmitted on.

4.10. Link Bonding Poll Mode Driver Library 92

DPDK documentation, Release 16.04.0

• Layer 3 + 4: IP Address & UDP Port based balancing uses a combination of
source/destination IP Address and the source/destination UDP ports of the packet of
the data packet to decide which slave port the packet will be transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6 and UDP
protocols for load balancing.

4.10.3 Using Link Bonding Devices

The librte_pmd_bond library supports two modes of device creation, the libraries export full C
API or using the EAL command line to statically configure link bonding devices at application
startup. Using the EAL option it is possible to use link bonding functionality transparently
without specific knowledge of the libraries API, this can be used, for example, to add bonding
functionality, such as active backup, to an existing application which has no knowledge of the
link bonding C API.

Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create and manage
link bonding device from within any application. Link bonding devices are created using the
rte_eth_bond_create API which requires a unique device name, the link bonding mode
to initial the device in and finally the socket Id which to allocate the devices resources onto.
After successful creation of a bonding device it must be configured using the generic Ethernet
device configure API rte_eth_dev_configure and then the RX and TX queues which will
be used must be setup using rte_eth_tx_queue_setup / rte_eth_rx_queue_setup.

Slave devices can be dynamically added and removed from a link bonding device us-
ing the rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs but at least
one slave device must be added to the link bonding device before it can be started using
rte_eth_dev_start.

The link status of a bonded device is dictated by that of its slaves, if all slave device link status
are down or if all slaves are removed from the link bonding device then the link status of the
bonding device will go down.

It is also possible to configure / query the configuration of the control param-
eters of a bonded device using the provided APIs rte_eth_bond_mode_set/
get, rte_eth_bond_primary_set/get, rte_eth_bond_mac_set/reset and
rte_eth_bond_xmit_policy_set/get.

Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the --vdev EAL com-
mand line option. The device name must start with the eth_bond prefix followed by numbers
or letters. The name must be unique for each device. Each device can have multiple options
arranged in a comma separated list. Multiple devices definitions can be arranged by calling the
--vdev option multiple times.

Device names and bonding options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'eth_bond0,bond_opt0=..,bond opt1=..'--vdev 'eth_bond1,bond _opt0=..,bond_opt1=..'

4.10. Link Bonding Poll Mode Driver Library 93

DPDK documentation, Release 16.04.0

Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as long as the
following two rules are respected:

• A unique device name, in the format of eth_bondX is provided, where X can be any
combination of numbers and/or letters, and the name is no greater than 32 characters
long.

• A least one slave device is provided with for each bonded device definition.

• The operation mode of the bonded device being created is provided.

The different options are:

• mode: Integer value defining the bonding mode of the device. Currently supports modes
0,1,2,3,4,5 (round-robin, active backup, balance, broadcast, link aggregation, transmit
load balancing).

mode=2

• slave: Defines the PMD device which will be added as slave to the bonded de-
vice. This option can be selected multiple times, for each device to be added as a
slave. Physical devices should be specified using their PCI address, in the format do-
main:bus:devid.function

slave=0000:0a:00.0,slave=0000:0a:00.1

• primary: Optional parameter which defines the primary slave port, is used in active
backup mode to select the primary slave for data TX/RX if it is available. The primary
port also is used to select the MAC address to use when it is not defined by the user.
This defaults to the first slave added to the device if it is specified. The primary device
must be a slave of the bonded device.

primary=0000:0a:00.0

• socket_id: Optional parameter used to select which socket on a NUMA device the bonded
devices resources will be allocated on.

socket_id=0

• mac: Optional parameter to select a MAC address for link bonding device, this overrides
the value of the primary slave device.

mac=00:1e:67:1d:fd:1d

• xmit_policy: Optional parameter which defines the transmission policy when the bonded
device is in balance mode. If not user specified this defaults to l2 (layer 2) forwarding, the
other transmission policies available are l23 (layer 2+3) and l34 (layer 3+4)

xmit_policy=l23

• lsc_poll_period_ms: Optional parameter which defines the polling interval in milli-
seconds at which devices which don’t support lsc interrupts are checked for a change
in the devices link status

lsc_poll_period_ms=100

• up_delay: Optional parameter which adds a delay in milli-seconds to the propagation of
a devices link status changing to up, by default this parameter is zero.

up_delay=10

4.10. Link Bonding Poll Mode Driver Library 94

DPDK documentation, Release 16.04.0

• down_delay: Optional parameter which adds a delay in milli-seconds to the propagation
of a devices link status changing to down, by default this parameter is zero.

down_delay=50

Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00' -- --port-topology=chained

Create a bonded device in round robin mode with two slaves specified by their PCI address
and an overriding MAC address:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained

Create a bonded device in active backup mode with two slaves specified, and a primary slave
specified by their PCI addresses:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=1, slave=0000:00a:00.01,slave=0000:004:00.00,primary=0000:00a:00.01' -- --port-topology=chained

Create a bonded device in balance mode with two slaves specified by their PCI addresses,
and a transmission policy of layer 3 + 4 forwarding:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=2, slave=0000:00a:00.01,slave=0000:004:00.00,xmit_policy=l34' -- --port-topology=chained

4.11 Timer Library

The Timer library provides a timer service to DPDK execution units to enable execution of
callback functions asynchronously. Features of the library are:

• Timers can be periodic (multi-shot) or single (one-shot).

• Timers can be loaded from one core and executed on another. It has to be specified in
the call to rte_timer_reset().

• Timers provide high precision (depends on the call frequency to rte_timer_manage() that
checks timer expiration for the local core).

• If not required in the application, timers can be disabled at compilation time by not calling
the rte_timer_manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event
Timer (HPET) or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The API is based on BSD
callout() with a few differences. Refer to the callout manual.

4.11.1 Implementation Details

Timers are tracked on a per-lcore basis, with all pending timers for a core being maintained
in order of timer expiry in a skiplist data structure. The skiplist used has ten levels and each
entry in the table appears in each level with probability ¼^level. This means that all entries are
present in level 0, 1 in every 4 entries is present at level 1, one in every 16 at level 2 and so on
up to level 9. This means that adding and removing entries from the timer list for a core can be
done in log(n) time, up to 4^10 entries, that is, approximately 1,000,000 timers per lcore.

4.11. Timer Library 95

http://www.daemon-systems.org/man/callout.9.html

DPDK documentation, Release 16.04.0

A timer structure contains a special field called status, which is a union of a timer state
(stopped, pending, running, config) and an owner (lcore id). Depending on the timer state,
we know if a timer is present in a list or not:

• STOPPED: no owner, not in a list

• CONFIG: owned by a core, must not be modified by another core, maybe in a list or not,
depending on previous state

• PENDING: owned by a core, present in a list

• RUNNING: owned by a core, must not be modified by another core, present in a list

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed. When
modifying the state of a timer, a Compare And Swap instruction should be used to guarantee
that the status (state+owner) is modified atomically.

Inside the rte_timer_manage() function, the skiplist is used as a regular list by iterating along
the level 0 list, which contains all timer entries, until an entry which has not yet expired has
been encountered. To improve performance in the case where there are entries in the timer
list but none of those timers have yet expired, the expiry time of the first list entry is maintained
within the per-core timer list structure itself. On 64-bit platforms, this value can be checked
without the need to take a lock on the overall structure. (Since expiry times are maintained
as 64-bit values, a check on the value cannot be done on 32-bit platforms without using either
a compare-and-swap (CAS) instruction or using a lock, so this additional check is skipped in
favor of checking as normal once the lock has been taken.) On both 64-bit and 32-bit platforms,
a call to rte_timer_manage() returns without taking a lock in the case where the timer list for
the calling core is empty.

4.11.2 Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines
(ARP, bridging, and so on).

4.11.3 References

• callout manual - The callout facility that provides timers with a mechanism to execute a
function at a given time.

• HPET - Information about the High Precision Event Timer (HPET).

4.12 Hash Library

The DPDK provides a Hash Library for creating hash table for fast lookup. The hash table is
a data structure optimized for searching through a set of entries that are each identified by a
unique key. For increased performance the DPDK Hash requires that all the keys have the
same number of bytes which is set at the hash creation time.

4.12.1 Hash API Overview

The main configuration parameters for the hash are:

4.12. Hash Library 96

http://www.daemon-systems.org/man/callout.9.html
http://en.wikipedia.org/wiki/HPET

DPDK documentation, Release 16.04.0

• Total number of hash entries

• Size of the key in bytes

The hash also allows the configuration of some low-level implementation related parameters
such as:

• Hash function to translate the key into a bucket index

The main methods exported by the hash are:

• Add entry with key: The key is provided as input. If a new entry is successfully added to
the hash for the specified key, or there is already an entry in the hash for the specified
key, then the position of the entry is returned. If the operation was not successful, for
example due to lack of free entries in the hash, then a negative value is returned;

• Delete entry with key: The key is provided as input. If an entry with the specified key is
found in the hash, then the entry is removed from the hash and the position where the
entry was found in the hash is returned. If no entry with the specified key exists in the
hash, then a negative value is returned

• Lookup for entry with key: The key is provided as input. If an entry with the specified
key is found in the hash (lookup hit), then the position of the entry is returned, otherwise
(lookup miss) a negative value is returned.

Apart from these method explained above, the API allows the user three more options:

• Add / lookup / delete with key and precomputed hash: Both the key and its precomputed
hash are provided as input. This allows the user to perform these operations faster, as
hash is already computed.

• Add / lookup with key and data: A pair of key-value is provided as input. This allows the
user to store not only the key, but also data which may be either a 8-byte integer or a
pointer to external data (if data size is more than 8 bytes).

• Combination of the two options above: User can provide key, precomputed hash and
data.

Also, the API contains a method to allow the user to look up entries in bursts, achieving higher
performance than looking up individual entries, as the function prefetches next entries at the
time it is operating with the first ones, which reduces significantly the impact of the necessary
memory accesses. Notice that this method uses a pipeline of 8 entries (4 stages of 2 entries),
so it is highly recommended to use at least 8 entries per burst.

The actual data associated with each key can be either managed by the user using a separate
table that mirrors the hash in terms of number of entries and position of each entry, as shown
in the Flow Classification use case describes in the following sections, or stored in the hash
table itself.

The example hash tables in the L2/L3 Forwarding sample applications defines which port to
forward a packet to based on a packet flow identified by the five-tuple lookup. However, this
table could also be used for more sophisticated features and provide many other functions and
actions that could be performed on the packets and flows.

4.12.2 Multi-process support

The hash library can be used in a multi-process environment, minding that only lookups
are thread-safe. The only function that can only be used in single-process mode is

4.12. Hash Library 97

DPDK documentation, Release 16.04.0

rte_hash_set_cmp_func(), which sets up a custom compare function, which is assigned to
a function pointer (therefore, it is not supported in multi-process mode).

4.12.3 Implementation Details

The hash table has two main tables:

• First table is an array of entries which is further divided into buckets, with the same
number of consecutive array entries in each bucket. Each entry contains the computed
primary and secondary hashes of a given key (explained below), and an index to the
second table.

• The second table is an array of all the keys stored in the hash table and its data associ-
ated to each key.

The hash library uses the cuckoo hash method to resolve collisions. For any input key, there
are two possible buckets (primary and secondary/alternative location) where that key can be
stored in the hash, therefore only the entries within those bucket need to be examined when
the key is looked up. The lookup speed is achieved by reducing the number of entries to be
scanned from the total number of hash entries down to the number of entries in the two hash
buckets, as opposed to the basic method of linearly scanning all the entries in the array. The
hash uses a hash function (configurable) to translate the input key into a 4-byte key signature.
The bucket index is the key signature modulo the number of hash buckets.

Once the buckets are identified, the scope of the hash add, delete and lookup operations is
reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).

To speed up the search logic within the bucket, each hash entry stores the 4-byte key signa-
ture together with the full key for each hash entry. For large key sizes, comparing the input key
against a key from the bucket can take significantly more time than comparing the 4-byte sig-
nature of the input key against the signature of a key from the bucket. Therefore, the signature
comparison is done first and the full key comparison done only when the signatures matches.
The full key comparison is still necessary, as two input keys from the same bucket can still
potentially have the same 4-byte hash signature, although this event is relatively rare for hash
functions providing good uniform distributions for the set of input keys.

Example of lookup:

First of all, the primary bucket is identified and entry is likely to be stored there. If signature
was stored there, we compare its key against the one provided and return the position where
it was stored and/or the data associated to that key if there is a match. If signature is not in
the primary bucket, the secondary bucket is looked up, where same procedure is carried out.
If there is no match there either, key is considered not to be in the table.

Example of addition:

Like lookup, the primary and secondary buckets are identified. If there is an empty slot in the
primary bucket, primary and secondary signatures are stored in that slot, key and data (if any)
are added to the second table and an index to the position in the second table is stored in
the slot of the first table. If there is no space in the primary bucket, one of the entries on that
bucket is pushed to its alternative location, and the key to be added is inserted in its position.
To know where the alternative bucket of the evicted entry is, the secondary signature is looked
up and alternative bucket index is calculated from doing the modulo, as seen above. If there is
room in the alternative bucket, the evicted entry is stored in it. If not, same process is repeated
(one of the entries gets pushed) until a non full bucket is found. Notice that despite all the

4.12. Hash Library 98

DPDK documentation, Release 16.04.0

entry movement in the first table, the second table is not touched, which would impact greatly
in performance.

In the very unlikely event that table enters in a loop where same entries are being evicted
indefinitely, key is considered not able to be stored. With random keys, this method allows the
user to get around 90% of the table utilization, without having to drop any stored entry (LRU)
or allocate more memory (extended buckets).

4.12.4 Entry distribution in hash table

As mentioned above, Cuckoo hash implementation pushes elements out of their bucket, if there
is a new entry to be added which primary location coincides with their current bucket, being
pushed to their alternative location. Therefore, as user adds more entries to the hash table,
distribution of the hash values in the buckets will change, being most of them in their primary
location and a few in their secondary location, which the later will increase, as table gets busier.
This information is quite useful, as performance may be lower as more entries are evicted to
their secondary location.

See the tables below showing example entry distribution as table utilization increases.

Table 4.1: Entry distribution measured with an example table with
1024 random entries using jhash algorithm

% Table used % In Primary location % In Secondary location
25 100 0
50 96.1 3.9
75 88.2 11.8
80 86.3 13.7
85 83.1 16.9
90 77.3 22.7
95.8 64.5 35.5

Table 4.2: Entry distribution measured with an example table with 1
million random entries using jhash algorithm

% Table used % In Primary location % In Secondary location
50 96 4
75 86.9 13.1
80 83.9 16.1
85 80.1 19.9
90 74.8 25.2
94.5 67.4 32.6

Note: Last values on the tables above are the average maximum table utilization with random
keys and using Jenkins hash function.

4.12. Hash Library 99

DPDK documentation, Release 16.04.0

4.12.5 Use Case: Flow Classification

Flow classification is used to map each input packet to the connection/flow it belongs to. This
operation is necessary as the processing of each input packet is usually done in the context
of their connection, so the same set of operations is applied to all the packets from the same
flow.

Applications using flow classification typically have a flow table to manage, with each separate
flow having an entry associated with it in this table. The size of the flow table entry is application
specific, with typical values of 4, 16, 32 or 64 bytes.

Each application using flow classification typically has a mechanism defined to uniquely iden-
tify a flow based on a number of fields read from the input packet that make up the flow key.
One example is to use the DiffServ 5-tuple made up of the following fields of the IP and trans-
port layer packet headers: Source IP Address, Destination IP Address, Protocol, Source Port,
Destination Port.

The DPDK hash provides a generic method to implement an application specific flow classifi-
cation mechanism. Given a flow table implemented as an array, the application should create
a hash object with the same number of entries as the flow table and with the hash key size set
to the number of bytes in the selected flow key.

The flow table operations on the application side are described below:

• Add flow: Add the flow key to hash. If the returned position is valid, use it to access the
flow entry in the flow table for adding a new flow or updating the information associated
with an existing flow. Otherwise, the flow addition failed, for example due to lack of free
entries for storing new flows.

• Delete flow: Delete the flow key from the hash. If the returned position is valid, use it to
access the flow entry in the flow table to invalidate the information associated with the
flow.

• Lookup flow: Lookup for the flow key in the hash. If the returned position is valid (flow
lookup hit), use the returned position to access the flow entry in the flow table. Otherwise
(flow lookup miss) there is no flow registered for the current packet.

4.12.6 References

• Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition), 1998, Addison-Wesley Professional

4.13 LPM Library

The DPDK LPM library component implements the Longest Prefix Match (LPM) table search
method for 32-bit keys that is typically used to find the best route match in IP forwarding appli-
cations.

4.13.1 LPM API Overview

The main configuration parameter for LPM component instances is the maximum number of
rules to support. An LPM prefix is represented by a pair of parameters (32- bit key, depth), with

4.13. LPM Library 100

DPDK documentation, Release 16.04.0

depth in the range of 1 to 32. An LPM rule is represented by an LPM prefix and some user
data associated with the prefix. The prefix serves as the unique identifier of the LPM rule. In
this implementation, the user data is 1-byte long and is called next hop, in correlation with its
main use of storing the ID of the next hop in a routing table entry.

The main methods exported by the LPM component are:

• Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix
present in the table, then the new rule is added to the LPM table. If a rule with the same
prefix is already present in the table, the next hop of the rule is updated. An error is
returned when there is no available rule space left.

• Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the
specified prefix is present in the LPM table, then it is removed.

• Lookup LPM key: The 32-bit key is provided as input. The algorithm selects the rule that
represents the best match for the given key and returns the next hop of that rule. In the
case that there are multiple rules present in the LPM table that have the same 32-bit key,
the algorithm picks the rule with the highest depth as the best match rule, which means
that the rule has the highest number of most significant bits matching between the input
key and the rule key.

4.13.2 Implementation Details

The current implementation uses a variation of the DIR-24-8 algorithm that trades memory
usage for improved LPM lookup speed. The algorithm allows the lookup operation to be per-
formed with typically a single memory read access. In the statistically rare case when the best
match rule is having a depth bigger than 24, the lookup operation requires two memory read
accesses. Therefore, the performance of the LPM lookup operation is greatly influenced by
whether the specific memory location is present in the processor cache or not.

The main data structure is built using the following elements:

• A table with 2^24 entries.

• A number of tables (RTE_LPM_TBL8_NUM_GROUPS) with 2^8 entries.

The first table, called tbl24, is indexed using the first 24 bits of the IP address to be looked up,
while the second table(s), called tbl8, is indexed using the last 8 bits of the IP address. This
means that depending on the outcome of trying to match the IP address of an incoming packet
to the rule stored in the tbl24 we might need to continue the lookup process in the second level.

Since every entry of the tbl24 can potentially point to a tbl8, ideally, we would have 2^24 tbl8s,
which would be the same as having a single table with 2^32 entries. This is not feasible due
to resource restrictions. Instead, this approach takes advantage of the fact that rules longer
than 24 bits are very rare. By splitting the process in two different tables/levels and limiting the
number of tbl8s, we can greatly reduce memory consumption while maintaining a very good
lookup speed (one memory access, most of the times).

An entry in tbl24 contains the following fields:

• next hop / index to the tbl8

• valid flag

• external entry flag

• depth of the rule (length)

4.13. LPM Library 101

DPDK documentation, Release 16.04.0

Fig. 4.31: Table split into different levels

The first field can either contain a number indicating the tbl8 in which the lookup process should
continue or the next hop itself if the longest prefix match has already been found. The two flags
are used to determine whether the entry is valid or not and whether the search process have
finished or not respectively. The depth or length of the rule is the number of bits of the rule that
is stored in a specific entry.

An entry in a tbl8 contains the following fields:

• next hop

• valid

• valid group

• depth

Next hop and depth contain the same information as in the tbl24. The two flags show whether
the entry and the table are valid respectively.

The other main data structure is a table containing the main information about the rules (IP
and next hop). This is a higher level table, used for different things:

• Check whether a rule already exists or not, prior to addition or deletion, without having to
actually perform a lookup.

• When deleting, to check whether there is a rule containing the one that is to be deleted.
This is important, since the main data structure will have to be updated accordingly.

4.13. LPM Library 102

DPDK documentation, Release 16.04.0

Addition

When adding a rule, there are different possibilities. If the rule’s depth is exactly 24 bits, then:

• Use the rule (IP address) as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning
the lookup process ends at this point, since this is the longest prefix that matches).

If the rule’s depth is exactly 32 bits, then:

• Use the first 24 bits of the rule as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8, set
the index to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the
external entry flag to 1 (meaning the lookup process must continue since the rule hasn’t
been explored completely).

If the rule’s depth is any other value, prefix expansion must be performed. This means the rule
is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits. This means that there are 2^(24 -
20) = 16 different combinations of the first 24 bits of an IP address that would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these
combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in either one or two memory accesses, depending on whether we need to move to
the next table or not. Prefix expansion is one of the keys of this algorithm, since it improves the
speed dramatically by adding redundancy.

Lookup

The lookup process is much simpler and quicker. In this case:

• Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use,
then it means we don’t have a rule matching this IP. If it is valid and the external entry
flag is set to 0, then the next hop is returned.

• If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out
the tbl8 to be checked, and the last 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address. If
it is valid then the next hop is returned.

Limitations in the Number of Rules

There are different things that limit the number of rules that can be added. The first one is the
maximum number of rules, which is a parameter passed through the API. Once this number is
reached, it is not possible to add any more rules to the routing table unless one or more are
removed.

The second reason is an intrinsic limitation of the algorithm. As explained before, to avoid high
memory consumption, the number of tbl8s is limited in compilation time (this value is by default

4.13. LPM Library 103

DPDK documentation, Release 16.04.0

256). If we exhaust tbl8s, we won’t be able to add any more rules. How many of them are
necessary for a specific routing table is hard to determine in advance.

A tbl8 is consumed whenever we have a new rule with depth bigger than 24, and the first 24
bits of this rule are not the same as the first 24 bits of a rule previously added. If they are, then
the new rule will share the same tbl8 than the previous one, since the only difference between
the two rules is within the last byte.

With the default value of 256, we can have up to 256 rules longer than 24 bits that differ on
their first three bytes. Since routes longer than 24 bits are unlikely, this shouldn’t be a problem
in most setups. Even if it is, however, the number of tbl8s can be modified.

Use Case: IPv4 Forwarding

The LPM algorithm is used to implement Classless Inter-Domain Routing (CIDR) strategy used
by routers implementing IPv4 forwarding.

References

• RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggre-
gation Strategy, http://www.ietf.org/rfc/rfc1519

• Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis,
Stanford University, 2000 (http://klamath.stanford.edu/~pankaj/thesis/ thesis_1sided.pdf
)

4.14 LPM6 Library

The LPM6 (LPM for IPv6) library component implements the Longest Prefix Match (LPM) ta-
ble search method for 128-bit keys that is typically used to find the best match route in IPv6
forwarding applications.

4.14.1 LPM6 API Overview

The main configuration parameters for the LPM6 library are:

• Maximum number of rules: This defines the size of the table that holds the rules, and
therefore the maximum number of rules that can be added.

• Number of tbl8s: A tbl8 is a node of the trie that the LPM6 algorithm is based on.

This parameter is related to the number of rules you can have, but there is no way to accurately
predict the number needed to hold a specific number of rules, since it strongly depends on the
depth and IP address of every rule. One tbl8 consumes 1 kb of memory. As a recommendation,
65536 tbl8s should be sufficient to store several thousand IPv6 rules, but the number can vary
depending on the case.

An LPM prefix is represented by a pair of parameters (128-bit key, depth), with depth in the
range of 1 to 128. An LPM rule is represented by an LPM prefix and some user data associated
with the prefix. The prefix serves as the unique identifier for the LPM rule. In this implementa-
tion, the user data is 1-byte long and is called “next hop”, which corresponds to its main use of
storing the ID of the next hop in a routing table entry.

4.14. LPM6 Library 104

http://www.ietf.org/rfc/rfc1519
http://klamath.stanford.edu/~pankaj/thesis/%20thesis_1sided.pdf

DPDK documentation, Release 16.04.0

The main methods exported for the LPM component are:

• Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix
present in the table, then the new rule is added to the LPM table. If a rule with the same
prefix is already present in the table, the next hop of the rule is updated. An error is
returned when there is no available space left.

• Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the
specified prefix is present in the LPM table, then it is removed.

• Lookup LPM key: The 128-bit key is provided as input. The algorithm selects the rule
that represents the best match for the given key and returns the next hop of that rule. In
the case that there are multiple rules present in the LPM table that have the same 128-bit
value, the algorithm picks the rule with the highest depth as the best match rule, which
means the rule has the highest number of most significant bits matching between the
input key and the rule key.

Implementation Details

This is a modification of the algorithm used for IPv4 (see Implementation Details). In this case,
instead of using two levels, one with a tbl24 and a second with a tbl8, 14 levels are used.

The implementation can be seen as a multi-bit trie where the stride or number of bits inspected
on each level varies from level to level. Specifically, 24 bits are inspected on the root node, and
the remaining 104 bits are inspected in groups of 8 bits. This effectively means that the trie
has 14 levels at the most, depending on the rules that are added to the table.

The algorithm allows the lookup operation to be performed with a number of memory accesses
that directly depends on the length of the rule and whether there are other rules with bigger
depths and the same key in the data structure. It can vary from 1 to 14 memory accesses, with
5 being the average value for the lengths that are most commonly used in IPv6.

The main data structure is built using the following elements:

• A table with 224 entries

• A number of tables, configurable by the user through the API, with 28 entries

The first table, called tbl24, is indexed using the first 24 bits of the IP address be looked up,
while the rest of the tables, called tbl8s, are indexed using the rest of the bytes of the IP
address, in chunks of 8 bits. This means that depending on the outcome of trying to match
the IP address of an incoming packet to the rule stored in the tbl24 or the subsequent tbl8s we
might need to continue the lookup process in deeper levels of the tree.

Similar to the limitation presented in the algorithm for IPv4, to store every possible IPv6 rule,
we would need a table with 2^128 entries. This is not feasible due to resource restrictions.

By splitting the process in different tables/levels and limiting the number of tbl8s, we can greatly
reduce memory consumption while maintaining a very good lookup speed (one memory ac-
cess per level).

An entry in a table contains the following fields:

• next hop / index to the tbl8

• depth of the rule (length)

• valid flag

4.14. LPM6 Library 105

DPDK documentation, Release 16.04.0

Fig. 4.32: Table split into different levels

• valid group flag

• external entry flag

The first field can either contain a number indicating the tbl8 in which the lookup process should
continue or the next hop itself if the longest prefix match has already been found. The depth
or length of the rule is the number of bits of the rule that is stored in a specific entry. The flags
are used to determine whether the entry/table is valid or not and whether the search process
have finished or not respectively.

Both types of tables share the same structure.

The other main data structure is a table containing the main information about the rules (IP,
next hop and depth). This is a higher level table, used for different things:

• Check whether a rule already exists or not, prior to addition or deletion, without having to
actually perform a lookup.

When deleting, to check whether there is a rule containing the one that is to be deleted. This
is important, since the main data structure will have to be updated accordingly.

Addition

When adding a rule, there are different possibilities. If the rule’s depth is exactly 24 bits, then:

• Use the rule (IP address) as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning
the lookup process ends at this point, since this is the longest prefix that matches).

4.14. LPM6 Library 106

DPDK documentation, Release 16.04.0

If the rule’s depth is bigger than 24 bits but a multiple of 8, then:

• Use the first 24 bits of the rule as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8, set
the index to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the
external entry flag to 1 (meaning the lookup process must continue since the rule hasn’t
been explored completely).

• Use the following 8 bits of the rule as an index to the next tbl8.

• Repeat the process until the tbl8 at the right level (depending on the depth) has been
reached and fill it with the next hop, setting the next entry flag to 0.

If the rule’s depth is any other value, prefix expansion must be performed. This means the rule
is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits. This means that there are 2^(24-20)
= 16 different combinations of the first 24 bits of an IP address that would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these
combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in, at the most, 14 memory accesses, depending on how many times we need to
move to the next table. Prefix expansion is one of the keys of this algorithm, since it improves
the speed dramatically by adding redundancy.

Prefix expansion can be performed at any level. So, for example, is the depth is 34 bits, it will
be performed in the third level (second tbl8-based level).

Lookup

The lookup process is much simpler and quicker. In this case:

• Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use,
then it means we don’t have a rule matching this IP. If it is valid and the external entry
flag is set to 0, then the next hop is returned.

• If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out
the tbl8 to be checked, and the next 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address. If
it is valid then check the external entry flag for a new tbl8 to be inspected.

• Repeat the process until either we find an invalid entry (lookup miss) or a valid entry with
the external entry flag set to 0. Return the next hop in the latter case.

Limitations in the Number of Rules

There are different things that limit the number of rules that can be added. The first one is the
maximum number of rules, which is a parameter passed through the API. Once this number is
reached, it is not possible to add any more rules to the routing table unless one or more are
removed.

The second limitation is in the number of tbl8s available. If we exhaust tbl8s, we won’t be able
to add any more rules. How to know how many of them are necessary for a specific routing
table is hard to determine in advance.

4.14. LPM6 Library 107

DPDK documentation, Release 16.04.0

In this algorithm, the maximum number of tbl8s a single rule can consume is 13, which is the
number of levels minus one, since the first three bytes are resolved in the tbl24. However:

• Typically, on IPv6, routes are not longer than 48 bits, which means rules usually take up
to 3 tbl8s.

As explained in the LPM for IPv4 algorithm, it is possible and very likely that several rules will
share one or more tbl8s, depending on what their first bytes are. If they share the same first 24
bits, for instance, the tbl8 at the second level will be shared. This might happen again in deeper
levels, so, effectively, two 48 bit-long rules may use the same three tbl8s if the only difference
is in their last byte.

The number of tbl8s is a parameter exposed to the user through the API in this version of the
algorithm, due to its impact in memory consumption and the number or rules that can be added
to the LPM table. One tbl8 consumes 1 kilobyte of memory.

4.14.2 Use Case: IPv6 Forwarding

The LPM algorithm is used to implement the Classless Inter-Domain Routing (CIDR) strategy
used by routers implementing IP forwarding.

4.15 Packet Distributor Library

The DPDK Packet Distributor library is a library designed to be used for dynamic load balancing
of traffic while supporting single packet at a time operation. When using this library, the logical
cores in use are to be considered in two roles: firstly a distributor lcore, which is responsible
for load balancing or distributing packets, and a set of worker lcores which are responsible for
receiving the packets from the distributor and operating on them. The model of operation is
shown in the diagram below.

4.15.1 Distributor Core Operation

The distributor core does the majority of the processing for ensuring that packets are fairly
shared among workers. The operation of the distributor is as follows:

1. Packets are passed to the distributor component by having the distributor lcore thread
call the “rte_distributor_process()” API

2. The worker lcores all share a single cache line with the distributor core in order to pass
messages and packets to and from the worker. The process API call will poll all the
worker cache lines to see what workers are requesting packets.

3. As workers request packets, the distributor takes packets from the set of packets passed
in and distributes them to the workers. As it does so, it examines the “tag” – stored in the
RSS hash field in the mbuf – for each packet and records what tags are being processed
by each worker.

4. If the next packet in the input set has a tag which is already being processed by a worker,
then that packet will be queued up for processing by that worker and given to it in prefer-
ence to other packets when that work next makes a request for work. This ensures that
no two packets with the same tag are processed in parallel, and that all packets with the
same tag are processed in input order.

4.15. Packet Distributor Library 108

DPDK documentation, Release 16.04.0

Fig. 4.33: Packet Distributor mode of operation

4.15. Packet Distributor Library 109

DPDK documentation, Release 16.04.0

5. Once all input packets passed to the process API have either been distributed to workers
or been queued up for a worker which is processing a given tag, then the process API
returns to the caller.

Other functions which are available to the distributor lcore are:

• rte_distributor_returned_pkts()

• rte_distributor_flush()

• rte_distributor_clear_returns()

Of these the most important API call is “rte_distributor_returned_pkts()” which should only be
called on the lcore which also calls the process API. It returns to the caller all packets which
have finished processing by all worker cores. Within this set of returned packets, all packets
sharing the same tag will be returned in their original order.

NOTE: If worker lcores buffer up packets internally for transmission in bulk afterwards, the
packets sharing a tag will likely get out of order. Once a worker lcore requests a new packet,
the distributor assumes that it has completely finished with the previous packet and therefore
that additional packets with the same tag can safely be distributed to other workers – who may
then flush their buffered packets sooner and cause packets to get out of order.

NOTE: No packet ordering guarantees are made about packets which do not share a common
packet tag.

Using the process and returned_pkts API, the following application workflow can be used, while
allowing packet order within a packet flow – identified by a tag – to be maintained.

Fig. 4.34: Application workflow

The flush and clear_returns API calls, mentioned previously, are likely of less use that the
process and returned_pkts APIS, and are principally provided to aid in unit testing of the li-
brary. Descriptions of these functions and their use can be found in the DPDK API Reference
document.

4.15. Packet Distributor Library 110

DPDK documentation, Release 16.04.0

4.15.2 Worker Operation

Worker cores are the cores which do the actual manipulation of the packets distributed by the
packet distributor. Each worker calls “rte_distributor_get_pkt()” API to request a new packet
when it has finished processing the previous one. [The previous packet should be returned to
the distributor component by passing it as the final parameter to this API call.]

Since it may be desirable to vary the number of worker cores, depending on the traffic load i.e.
to save power at times of lighter load, it is possible to have a worker stop processing packets
by calling “rte_distributor_return_pkt()” to indicate that it has finished the current packet and
does not want a new one.

4.16 Reorder Library

The Reorder Library provides a mechanism for reordering mbufs based on their sequence
number.

4.16.1 Operation

The reorder library is essentially a buffer that reorders mbufs. The user inserts out of order
mbufs into the reorder buffer and pulls in-order mbufs from it.

At a given time, the reorder buffer contains mbufs whose sequence number are inside the
sequence window. The sequence window is determined by the minimum sequence number
and the number of entries that the buffer was configured to hold. For example, given a reorder
buffer with 200 entries and a minimum sequence number of 350, the sequence window has
low and high limits of 350 and 550 respectively.

When inserting mbufs, the reorder library differentiates between valid, early and late mbufs
depending on the sequence number of the inserted mbuf:

• valid: the sequence number is inside the window.

• late: the sequence number is outside the window and less than the low limit.

• early: the sequence number is outside the window and greater than the high limit.

The reorder buffer directly returns late mbufs and tries to accommodate early mbufs.

4.16.2 Implementation Details

The reorder library is implemented as a pair of buffers, which referred to as the Order buffer
and the Ready buffer.

On an insert call, valid mbufs are inserted directly into the Order buffer and late mbufs are
returned to the user with an error.

In the case of early mbufs, the reorder buffer will try to move the window (incrementing the
minimum sequence number) so that the mbuf becomes a valid one. To that end, mbufs in the
Order buffer are moved into the Ready buffer. Any mbufs that have not arrived yet are ignored
and therefore will become late mbufs. This means that as long as there is room in the Ready
buffer, the window will be moved to accommodate early mbufs that would otherwise be outside
the reordering window.

4.16. Reorder Library 111

DPDK documentation, Release 16.04.0

For example, assuming that we have a buffer of 200 entries with a 350 minimum sequence
number, and we need to insert an early mbuf with 565 sequence number. That means that we
would need to move the windows at least 15 positions to accommodate the mbuf. The reorder
buffer would try to move mbufs from at least the next 15 slots in the Order buffer to the Ready
buffer, as long as there is room in the Ready buffer. Any gaps in the Order buffer at that point
are skipped, and those packet will be reported as late packets when they arrive. The process
of moving packets to the Ready buffer continues beyond the minimum required until a gap, i.e.
missing mbuf, in the Order buffer is encountered.

When draining mbufs, the reorder buffer would return mbufs in the Ready buffer first and then
from the Order buffer until a gap is found (mbufs that have not arrived yet).

4.16.3 Use Case: Packet Distributor

An application using the DPDK packet distributor could make use of the reorder library to
transmit packets in the same order they were received.

A basic packet distributor use case would consist of a distributor with multiple workers cores.
The processing of packets by the workers is not guaranteed to be in order, hence a reorder
buffer can be used to order as many packets as possible.

In such a scenario, the distributor assigns a sequence number to mbufs before delivering them
to the workers. As the workers finish processing the packets, the distributor inserts those mbufs
into the reorder buffer and finally transmit drained mbufs.

NOTE: Currently the reorder buffer is not thread safe so the same thread is responsible for
inserting and draining mbufs.

4.17 IP Fragmentation and Reassembly Library

The IP Fragmentation and Reassembly Library implements IPv4 and IPv6 packet fragmenta-
tion and reassembly.

4.17.1 Packet fragmentation

Packet fragmentation routines divide input packet into number of fragments. Both
rte_ipv4_fragment_packet() and rte_ipv6_fragment_packet() functions assume that input mbuf
data points to the start of the IP header of the packet (i.e. L2 header is already stripped out).
To avoid copying of the actual packet’s data zero-copy technique is used (rte_pktmbuf_attach).
For each fragment two new mbufs are created:

• Direct mbuf – mbuf that will contain L3 header of the new fragment.

• Indirect mbuf – mbuf that is attached to the mbuf with the original packet. It’s data field
points to the start of the original packets data plus fragment offset.

Then L3 header is copied from the original mbuf into the ‘direct’ mbuf and updated to reflect
new fragmented status. Note that for IPv4, header checksum is not recalculated and is set to
zero.

Finally ‘direct’ and ‘indirect’ mbufs for each fragment are linked together via mbuf’s next filed to
compose a packet for the new fragment.

4.17. IP Fragmentation and Reassembly Library 112

DPDK documentation, Release 16.04.0

The caller has an ability to explicitly specify which mempools should be used to allocate ‘direct’
and ‘indirect’ mbufs from.

For more information about direct and indirect mbufs, refer to Direct and Indirect Buffers.

4.17.2 Packet reassembly

IP Fragment Table

Fragment table maintains information about already received fragments of the packet.

Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>,
<ID>.

Note that all update/lookup operations on Fragment Table are not thread safe. So if different
execution contexts (threads/processes) will access the same table simultaneously, then some
external syncing mechanism have to be provided.

Each table entry can hold information about packets consisting of up to
RTE_LIBRTE_IP_FRAG_MAX (by default: 4) fragments.

Code example, that demonstrates creation of a new Fragment table:

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag_table_create(max_flow_num, bucket_entries, max_flow_num, frag_cycles, socket_id);

Internally Fragment table is a simple hash table. The basic idea is to use two hash functions
and <bucket_entries> * associativity. This provides 2 * <bucket_entries> possible locations
in the hash table for each key. When the collision occurs and all 2 * <bucket_entries> are
occupied, instead of reinserting existing keys into alternative locations, ip_frag_tbl_add() just
returns a failure.

Also, entries that resides in the table longer then <max_cycles> are considered as invalid, and
could be removed/replaced by the new ones.

Note that reassembly demands a lot of mbuf’s to be allocated. At any given time up to (2 *
bucket_entries * RTE_LIBRTE_IP_FRAG_MAX * <maximum number of mbufs per packet>)
can be stored inside Fragment Table waiting for remaining fragments.

Packet Reassembly

Fragmented packets processing and reassembly is done by the
rte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet. Functions. They
either return a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet
can’t be reassembled for some reason).

These functions are responsible for:

1. Search the Fragment Table for entry with packet’s <IPv4 Source Address, IPv4 Destina-
tion Address, Packet ID>.

2. If the entry is found, then check if that entry already timed-out. If yes, then free all
previously received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:

4.17. IP Fragmentation and Reassembly Library 113

DPDK documentation, Release 16.04.0

(a) Use as empty entry.

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry
with specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassem-
bled (the packet’s entry contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the
reassembled mbuf to the caller.

(b) If no, then return a NULL to the caller.

If at any stage of packet processing an error is encountered (e.g: can’t insert new entry into the
Fragment Table, or invalid/timed-out fragment), then the function will free all associated with
the packet fragments, mark the table entry as invalid and return NULL to the caller.

Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT config macro controls statistics collection for the
Fragment Table. This macro is not enabled by default.

The RTE_LIBRTE_IP_FRAG_DEBUG controls debug logging of IP fragments processing and
reassembling. This macro is disabled by default. Note that while logging contains a lot of
detailed information, it slows down packet processing and might cause the loss of a lot of
packets.

4.18 Multi-process Support

In the DPDK, multi-process support is designed to allow a group of DPDK processes to work
together in a simple transparent manner to perform packet processing, or other workloads, on
Intel® architecture hardware. To support this functionality, a number of additions have been
made to the core DPDK Environment Abstraction Layer (EAL).

The EAL has been modified to allow different types of DPDK processes to be spawned, each
with different permissions on the hugepage memory used by the applications. For now, there
are two types of process specified:

• primary processes, which can initialize and which have full permissions on shared mem-
ory

• secondary processes, which cannot initialize shared memory, but can attach to pre- ini-
tialized shared memory and create objects in it.

Standalone DPDK processes are primary processes, while secondary processes can only run
alongside a primary process or after a primary process has already configured the hugepage
shared memory for them.

To support these two process types, and other multi-process setups described later, two addi-
tional command-line parameters are available to the EAL:

• --proc-type: for specifying a given process instance as the primary or secondary
DPDK instance

• --file-prefix: to allow processes that do not want to co-operate to have different
memory regions

4.18. Multi-process Support 114

DPDK documentation, Release 16.04.0

A number of example applications are provided that demonstrate how multiple DPDK pro-
cesses can be used together. These are more fully documented in the “Multi- process Sample
Application” chapter in the DPDK Sample Application’s User Guide.

4.18.1 Memory Sharing

The key element in getting a multi-process application working using the DPDK is to ensure that
memory resources are properly shared among the processes making up the multi-process ap-
plication. Once there are blocks of shared memory available that can be accessed by multiple
processes, then issues such as inter-process communication (IPC) becomes much simpler.

On application start-up in a primary or standalone process, the DPDK records to memory-
mapped files the details of the memory configuration it is using - hugepages in use, the virtual
addresses they are mapped at, the number of memory channels present, etc. When a sec-
ondary process is started, these files are read and the EAL recreates the same memory con-
figuration in the secondary process so that all memory zones are shared between processes
and all pointers to that memory are valid, and point to the same objects, in both processes.

Note: Refer to Multi-process Limitations for details of how Linux kernel Address-Space Layout
Randomization (ASLR) can affect memory sharing.

Fig. 4.35: Memory Sharing in the DPDK Multi-process Sample Application

The EAL also supports an auto-detection mode (set by EAL --proc-type=auto flag),
whereby an DPDK process is started as a secondary instance if a primary instance is already
running.

4.18.2 Deployment Models

Symmetric/Peer Processes

DPDK multi-process support can be used to create a set of peer processes where each pro-
cess performs the same workload. This model is equivalent to having multiple threads each
running the same main-loop function, as is done in most of the supplied DPDK sample ap-
plications. In this model, the first of the processes spawned should be spawned using the
--proc-type=primary EAL flag, while all subsequent instances should be spawned using
the --proc-type=secondary flag.

The simple_mp and symmetric_mp sample applications demonstrate this usage model. They
are described in the “Multi-process Sample Application” chapter in the DPDK Sample Applica-
tion’s User Guide.

Asymmetric/Non-Peer Processes

An alternative deployment model that can be used for multi-process applications is to have
a single primary process instance that acts as a load-balancer or server distributing received
packets among worker or client threads, which are run as secondary processes. In this case,
extensive use of rte_ring objects is made, which are located in shared hugepage memory.

4.18. Multi-process Support 115

DPDK documentation, Release 16.04.0

The client_server_mp sample application shows this usage model. It is described in the “Multi-
process Sample Application” chapter in the DPDK Sample Application’s User Guide.

Running Multiple Independent DPDK Applications

In addition to the above scenarios involving multiple DPDK processes working together, it is
possible to run multiple DPDK processes side-by-side, where those processes are all work-
ing independently. Support for this usage scenario is provided using the --file-prefix
parameter to the EAL.

By default, the EAL creates hugepage files on each hugetlbfs filesystem using the rtemap_X
filename, where X is in the range 0 to the maximum number of hugepages -1. Similarly, it cre-
ates shared configuration files, memory mapped in each process, using the /var/run/.rte_config
filename, when run as root (or $HOME/.rte_config when run as a non-root user; if filesystem
and device permissions are set up to allow this). The rte part of the filenames of each of the
above is configurable using the file-prefix parameter.

In addition to specifying the file-prefix parameter, any DPDK applications that are to be run
side-by-side must explicitly limit their memory use. This is done by passing the -m flag to
each process to specify how much hugepage memory, in megabytes, each process can use
(or passing --socket-mem to specify how much hugepage memory on each socket each
process can use).

Note: Independent DPDK instances running side-by-side on a single machine cannot share
any network ports. Any network ports being used by one process should be blacklisted in every
other process.

Running Multiple Independent Groups of DPDK Applications

In the same way that it is possible to run independent DPDK applications side- by-side on a
single system, this can be trivially extended to multi-process groups of DPDK applications run-
ning side-by-side. In this case, the secondary processes must use the same --file-prefix
parameter as the primary process whose shared memory they are connecting to.

Note: All restrictions and issues with multiple independent DPDK processes running side-by-
side apply in this usage scenario also.

4.18.3 Multi-process Limitations

There are a number of limitations to what can be done when running DPDK multi-process
applications. Some of these are documented below:

• The multi-process feature requires that the exact same hugepage memory mappings be
present in all applications. The Linux security feature - Address-Space Layout Random-
ization (ASLR) can interfere with this mapping, so it may be necessary to disable this
feature in order to reliably run multi-process applications.

4.18. Multi-process Support 116

DPDK documentation, Release 16.04.0

Warning: Disabling Address-Space Layout Randomization (ASLR) may have security im-
plications, so it is recommended that it be disabled only when absolutely necessary, and
only when the implications of this change have been understood.

• All DPDK processes running as a single application and using shared memory must
have distinct coremask arguments. It is not possible to have a primary and secondary
instance, or two secondary instances, using any of the same logical cores. Attempting to
do so can cause corruption of memory pool caches, among other issues.

• The delivery of interrupts, such as Ethernet* device link status interrupts, do not work
in secondary processes. All interrupts are triggered inside the primary process only.
Any application needing interrupt notification in multiple processes should provide its
own mechanism to transfer the interrupt information from the primary process to any
secondary process that needs the information.

• The use of function pointers between multiple processes running based of different com-
piled binaries is not supported, since the location of a given function in one process may
be different to its location in a second. This prevents the librte_hash library from behav-
ing properly as in a multi-threaded instance, since it uses a pointer to the hash function
internally.

To work around this issue, it is recommended that multi-process applications perform the
hash calculations by directly calling the hashing function from the code and then using the
rte_hash_add_with_hash()/rte_hash_lookup_with_hash() functions instead of the functions
which do the hashing internally, such as rte_hash_add()/rte_hash_lookup().

• Depending upon the hardware in use, and the number of DPDK processes used, it may
not be possible to have HPET timers available in each DPDK instance. The minimum
number of HPET comparators available to Linux* userspace can be just a single com-
parator, which means that only the first, primary DPDK process instance can open and
mmap /dev/hpet. If the number of required DPDK processes exceeds that of the number
of available HPET comparators, the TSC (which is the default timer in this release) must
be used as a time source across all processes instead of the HPET.

4.19 Kernel NIC Interface

The DPDK Kernel NIC Interface (KNI) allows userspace applications access to the Linux*
control plane.

The benefits of using the DPDK KNI are:

• Faster than existing Linux TUN/TAP interfaces (by eliminating system calls and
copy_to_user()/copy_from_user() operations.

• Allows management of DPDK ports using standard Linux net tools such as ethtool, ifcon-
fig and tcpdump.

• Allows an interface with the kernel network stack.

The components of an application using the DPDK Kernel NIC Interface are shown in Fig.
4.36.

4.19. Kernel NIC Interface 117

DPDK documentation, Release 16.04.0

Fig. 4.36: Components of a DPDK KNI Application

4.19. Kernel NIC Interface 118

DPDK documentation, Release 16.04.0

4.19.1 The DPDK KNI Kernel Module

The KNI kernel loadable module provides support for two types of devices:

• A Miscellaneous device (/dev/kni) that:

– Creates net devices (via ioctl calls).

– Maintains a kernel thread context shared by all KNI instances (simulating the RX
side of the net driver).

– For single kernel thread mode, maintains a kernel thread context shared by all KNI
instances (simulating the RX side of the net driver).

– For multiple kernel thread mode, maintains a kernel thread context for each KNI
instance (simulating the RX side of the new driver).

• Net device:

– Net functionality provided by implementing several operations such as netdev_ops,
header_ops, ethtool_ops that are defined by struct net_device, including support for
DPDK mbufs and FIFOs.

– The interface name is provided from userspace.

– The MAC address can be the real NIC MAC address or random.

4.19.2 KNI Creation and Deletion

The KNI interfaces are created by a DPDK application dynamically. The interface name and
FIFO details are provided by the application through an ioctl call using the rte_kni_device_info
struct which contains:

• The interface name.

• Physical addresses of the corresponding memzones for the relevant FIFOs.

• Mbuf mempool details, both physical and virtual (to calculate the offset for mbuf pointers).

• PCI information.

• Core affinity.

Refer to rte_kni_common.h in the DPDK source code for more details.

The physical addresses will be re-mapped into the kernel address space and stored in separate
KNI contexts.

The KNI interfaces can be deleted by a DPDK application dynamically after being created.
Furthermore, all those KNI interfaces not deleted will be deleted on the release operation of
the miscellaneous device (when the DPDK application is closed).

4.19.3 DPDK mbuf Flow

To minimize the amount of DPDK code running in kernel space, the mbuf mempool is managed
in userspace only. The kernel module will be aware of mbufs, but all mbuf allocation and free
operations will be handled by the DPDK application only.

Fig. 4.37 shows a typical scenario with packets sent in both directions.

4.19. Kernel NIC Interface 119

DPDK documentation, Release 16.04.0

Fig. 4.37: Packet Flow via mbufs in the DPDK KNI

4.19.4 Use Case: Ingress

On the DPDK RX side, the mbuf is allocated by the PMD in the RX thread context. This thread
will enqueue the mbuf in the rx_q FIFO. The KNI thread will poll all KNI active devices for the
rx_q. If an mbuf is dequeued, it will be converted to a sk_buff and sent to the net stack via
netif_rx(). The dequeued mbuf must be freed, so the same pointer is sent back in the free_q
FIFO.

The RX thread, in the same main loop, polls this FIFO and frees the mbuf after dequeuing it.

4.19.5 Use Case: Egress

For packet egress the DPDK application must first enqueue several mbufs to create an mbuf
cache on the kernel side.

The packet is received from the Linux net stack, by calling the kni_net_tx() callback. The mbuf
is dequeued (without waiting due the cache) and filled with data from sk_buff. The sk_buff is
then freed and the mbuf sent in the tx_q FIFO.

The DPDK TX thread dequeues the mbuf and sends it to the PMD (via rte_eth_tx_burst()). It
then puts the mbuf back in the cache.

4.19.6 Ethtool

Ethtool is a Linux-specific tool with corresponding support in the kernel where each net device
must register its own callbacks for the supported operations. The current implementation uses
the igb/ixgbe modified Linux drivers for ethtool support. Ethtool is not supported in i40e and
VMs (VF or EM devices).

4.19. Kernel NIC Interface 120

DPDK documentation, Release 16.04.0

4.19.7 Link state and MTU change

Link state and MTU change are network interface specific operations usually done via ifconfig.
The request is initiated from the kernel side (in the context of the ifconfig process) and handled
by the user space DPDK application. The application polls the request, calls the application
handler and returns the response back into the kernel space.

The application handlers can be registered upon interface creation or explicitly regis-
tered/unregistered in runtime. This provides flexibility in multiprocess scenarios (where the
KNI is created in the primary process but the callbacks are handled in the secondary one).
The constraint is that a single process can register and handle the requests.

4.19.8 KNI Working as a Kernel vHost Backend

vHost is a kernel module usually working as the backend of virtio (a para- virtualization driver
framework) to accelerate the traffic from the guest to the host. The DPDK Kernel NIC interface
provides the ability to hookup vHost traffic into userspace DPDK application. Together with
the DPDK PMD virtio, it significantly improves the throughput between guest and host. In the
scenario where DPDK is running as fast path in the host, kni-vhost is an efficient path for the
traffic.

Overview

vHost-net has three kinds of real backend implementations. They are: 1) tap, 2) macvtap and
3) RAW socket. The main idea behind kni-vhost is making the KNI work as a RAW socket,
attaching it as the backend instance of vHost-net. It is using the existing interface with vHost-
net, so it does not require any kernel hacking, and is fully-compatible with the kernel vhost
module. As vHost is still taking responsibility for communicating with the front-end virtio, it
naturally supports both legacy virtio -net and the DPDK PMD virtio. There is a little penalty that
comes from the non-polling mode of vhost. However, it scales throughput well when using KNI
in multi-thread mode.

Packet Flow

There is only a minor difference from the original KNI traffic flows. On transmit side, vhost
kthread calls the RAW socket’s ops sendmsg and it puts the packets into the KNI transmit
FIFO. On the receive side, the kni kthread gets packets from the KNI receive FIFO, puts them
into the queue of the raw socket, and wakes up the task in vhost kthread to begin receiving. All
the packet copying, irrespective of whether it is on the transmit or receive side, happens in the
context of vhost kthread. Every vhost-net device is exposed to a front end virtio device in the
guest.

Sample Usage

Before starting to use KNI as the backend of vhost, the CONFIG_RTE_KNI_VHOST configu-
ration option must be turned on. Otherwise, by default, KNI will not enable its backend support
capability.

Of course, as a prerequisite, the vhost/vhost-net kernel CONFIG should be chosen before
compiling the kernel.

4.19. Kernel NIC Interface 121

DPDK documentation, Release 16.04.0

Fig. 4.38: vHost-net Architecture Overview

Fig. 4.39: KNI Traffic Flow

4.19. Kernel NIC Interface 122

DPDK documentation, Release 16.04.0

1. Compile the DPDK and insert uio_pci_generic/igb_uio kernel modules as normal.

2. Insert the KNI kernel module:

insmod ./rte_kni.ko

If using KNI in multi-thread mode, use the following command line:

insmod ./rte_kni.ko kthread_mode=multiple

3. Running the KNI sample application:

examples/kni/build/app/kni -c -0xf0 -n 4 -- -p 0x3 -P --config="(0,4,6),(1,5,7)"

This command runs the kni sample application with two physical ports. Each port pins
two forwarding cores (ingress/egress) in user space.

4. Assign a raw socket to vhost-net during qemu-kvm startup. The DPDK does not provide
a script to do this since it is easy for the user to customize. The following shows the key
steps to launch qemu-kvm with kni-vhost:

#!/bin/bash
echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
qemu-kvm \
-name vm1 -cpu host -m 2048 -smp 1 -hda /opt/vm-fc16.img \
-netdev tap,fd=$fd,id=hostnet1,vhost=on \
-device virti-net-pci,netdev=hostnet1,id=net1,bus=pci.0,addr=0x4

It is simple to enable raw socket using sysfs sock_en and get raw socket fd using sock_fd under
the KNI device node.

Then, using the qemu-kvm command with the -netdev option to assign such raw socket fd as
vhost’s backend.

Note: The key word tap must exist as qemu-kvm now only supports vhost with a tap backend,
so here we cheat qemu-kvm by an existing fd.

Compatibility Configure Option

There is a CONFIG_RTE_KNI_VHOST_VNET_HDR_EN configuration option in DPDK config-
uration file. By default, it set to n, which means do not turn on the virtio net header, which is
used to support additional features (such as, csum offload, vlan offload, generic-segmentation
and so on), since the kni-vhost does not yet support those features.

Even if the option is turned on, kni-vhost will ignore the information that the header contains.
When working with legacy virtio on the guest, it is better to turn off unsupported offload features
using ethtool -K. Otherwise, there may be problems such as an incorrect L4 checksum error.

4.20 Thread Safety of DPDK Functions

The DPDK is comprised of several libraries. Some of the functions in these libraries can be
safely called from multiple threads simultaneously, while others cannot. This section allows the
developer to take these issues into account when building their own application.

4.20. Thread Safety of DPDK Functions 123

DPDK documentation, Release 16.04.0

The run-time environment of the DPDK is typically a single thread per logical core. In some
cases, it is not only multi-threaded, but multi-process. Typically, it is best to avoid sharing data
structures between threads and/or processes where possible. Where this is not possible, then
the execution blocks must access the data in a thread- safe manner. Mechanisms such as
atomics or locking can be used that will allow execution blocks to operate serially. However,
this can have an effect on the performance of the application.

4.20.1 Fast-Path APIs

Applications operating in the data plane are performance sensitive but certain functions within
those libraries may not be safe to call from multiple threads simultaneously. The hash, LPM
and mempool libraries and RX/TX in the PMD are examples of this.

The hash and LPM libraries are, by design, thread unsafe in order to maintain performance.
However, if required the developer can add layers on top of these libraries to provide thread
safety. Locking is not needed in all situations, and in both the hash and LPM libraries, lookups
of values can be performed in parallel in multiple threads. Adding, removing or modifying
values, however, cannot be done in multiple threads without using locking when a single hash
or LPM table is accessed. Another alternative to locking would be to create multiple instances
of these tables allowing each thread its own copy.

The RX and TX of the PMD are the most critical aspects of a DPDK application and it is
recommended that no locking be used as it will impact performance. Note, however, that these
functions can safely be used from multiple threads when each thread is performing I/O on a
different NIC queue. If multiple threads are to use the same hardware queue on the same NIC
port, then locking, or some other form of mutual exclusion, is necessary.

The ring library is based on a lockless ring-buffer algorithm that maintains its original de-
sign for thread safety. Moreover, it provides high performance for either multi- or single-
consumer/producer enqueue/dequeue operations. The mempool library is based on the DPDK
lockless ring library and therefore is also multi-thread safe.

4.20.2 Performance Insensitive API

Outside of the performance sensitive areas described in Section 25.1, the DPDK provides a
thread-safe API for most other libraries. For example, malloc and memzone functions are safe
for use in multi-threaded and multi-process environments.

The setup and configuration of the PMD is not performance sensitive, but is not thread safe
either. It is possible that the multiple read/writes during PMD setup and configuration could be
corrupted in a multi-thread environment. Since this is not performance sensitive, the developer
can choose to add their own layer to provide thread-safe setup and configuration. It is expected
that, in most applications, the initial configuration of the network ports would be done by a
single thread at startup.

4.20.3 Library Initialization

It is recommended that DPDK libraries are initialized in the main thread at application startup
rather than subsequently in the forwarding threads. However, the DPDK performs checks to
ensure that libraries are only initialized once. If initialization is attempted more than once, an
error is returned.

4.20. Thread Safety of DPDK Functions 124

DPDK documentation, Release 16.04.0

In the multi-process case, the configuration information of shared memory will only be initialized
by the master process. Thereafter, both master and secondary processes can allocate/release
any objects of memory that finally rely on rte_malloc or memzones.

4.20.4 Interrupt Thread

The DPDK works almost entirely in Linux user space in polling mode. For certain infrequent
operations, such as receiving a PMD link status change notification, callbacks may be called
in an additional thread outside the main DPDK processing threads. These function callbacks
should avoid manipulating DPDK objects that are also managed by the normal DPDK threads,
and if they need to do so, it is up to the application to provide the appropriate locking or mutual
exclusion restrictions around those objects.

4.21 Quality of Service (QoS) Framework

This chapter describes the DPDK Quality of Service (QoS) framework.

4.21.1 Packet Pipeline with QoS Support

An example of a complex packet processing pipeline with QoS support is shown in the following
figure.

Fig. 4.40: Complex Packet Processing Pipeline with QoS Support

This pipeline can be built using reusable DPDK software libraries. The main blocks implement-
ing QoS in this pipeline are: the policer, the dropper and the scheduler. A functional description
of each block is provided in the following table.

4.21. Quality of Service (QoS) Framework 125

DPDK documentation, Release 16.04.0

Table 4.3: Packet Processing Pipeline Implementing QoS

Block Functional Description
1 Packet I/O

RX & TX
Packet reception/ transmission from/to multiple NIC ports. Poll mode
drivers (PMDs) for Intel 1 GbE/10 GbE NICs.

2 Packet
parser

Identify the protocol stack of the input packet. Check the integrity of the
packet headers.

3 Flow clas-
sification

Map the input packet to one of the known traffic flows. Exact match table
lookup using configurable hash function (jhash, CRC and so on) and
bucket logic to handle collisions.

4 Policer Packet metering using srTCM (RFC 2697) or trTCM (RFC2698)
algorithms.

5 Load
Balancer

Distribute the input packets to the application workers. Provide uniform
load to each worker. Preserve the affinity of traffic flows to workers and
the packet order within each flow.

6 Worker
threads

Placeholders for the customer specific application workload (for
example, IP stack and so on).

7 Dropper Congestion management using the Random Early Detection (RED)
algorithm (specified by the Sally Floyd - Van Jacobson paper) or
Weighted RED (WRED). Drop packets based on the current scheduler
queue load level and packet priority. When congestion is experienced,
lower priority packets are dropped first.

8 Hierarchi-
cal
Scheduler

5-level hierarchical scheduler (levels are: output port, subport, pipe,
traffic class and queue) with thousands (typically 64K) leaf nodes
(queues). Implements traffic shaping (for subport and pipe levels), strict
priority (for traffic class level) and Weighted Round Robin (WRR) (for
queues within each pipe traffic class).

The infrastructure blocks used throughout the packet processing pipeline are listed in the fol-
lowing table.

Table 4.4: Infrastructure Blocks Used by the Packet Processing Pipeline

Block Functional Description
1 Buffer manager Support for global buffer pools and private per-thread buffer caches.
2 Queue manager Support for message passing between pipeline blocks.
3 Power saving Support for power saving during low activity periods.

The mapping of pipeline blocks to CPU cores is configurable based on the performance level
required by each specific application and the set of features enabled for each block. Some
blocks might consume more than one CPU core (with each CPU core running a different
instance of the same block on different input packets), while several other blocks could be
mapped to the same CPU core.

4.21.2 Hierarchical Scheduler

The hierarchical scheduler block, when present, usually sits on the TX side just before the
transmission stage. Its purpose is to prioritize the transmission of packets from different users
and different traffic classes according to the policy specified by the Service Level Agreements
(SLAs) of each network node.

4.21. Quality of Service (QoS) Framework 126

DPDK documentation, Release 16.04.0

Overview

The hierarchical scheduler block is similar to the traffic manager block used by network proces-
sors that typically implement per flow (or per group of flows) packet queuing and scheduling. It
typically acts like a buffer that is able to temporarily store a large number of packets just before
their transmission (enqueue operation); as the NIC TX is requesting more packets for trans-
mission, these packets are later on removed and handed over to the NIC TX with the packet
selection logic observing the predefined SLAs (dequeue operation).

Fig. 4.41: Hierarchical Scheduler Block Internal Diagram

The hierarchical scheduler is optimized for a large number of packet queues. When only a
small number of queues are needed, message passing queues should be used instead of this
block. See Worst Case Scenarios for Performance for a more detailed discussion.

Scheduling Hierarchy

The scheduling hierarchy is shown in Fig. 4.42. The first level of the hierarchy is the Ethernet
TX port 1/10/40 GbE, with subsequent hierarchy levels defined as subport, pipe, traffic class
and queue.

Typically, each subport represents a predefined group of users, while each pipe represents an
individual user/subscriber. Each traffic class is the representation of a different traffic type with
specific loss rate, delay and jitter requirements, such as voice, video or data transfers. Each
queue hosts packets from one or multiple connections of the same type belonging to the same
user.

The functionality of each hierarchical level is detailed in the following table.

4.21. Quality of Service (QoS) Framework 127

DPDK documentation, Release 16.04.0

Fig. 4.42: Scheduling Hierarchy per Port

4.21. Quality of Service (QoS) Framework 128

DPDK documentation, Release 16.04.0

Table 4.5: Port Scheduling Hierarchy

Level Siblings per Parent Functional Descrip-
tion

1 Port • 1. Output Ethernet
port 1/10/40
GbE.

2. Multiple ports
are scheduled
in round robin
order with all
ports having
equal priority.

2 Subport Configurable (default:
8) 1. Traffic shaping

using token
bucket algo-
rithm (one token
bucket per
subport).

2. Upper limit en-
forced per Traf-
fic Class (TC)
at the subport
level.

3. Lower priority
TCs able to
reuse subport
bandwidth cur-
rently unused by
higher priority
TCs.

3 Pipe Configurable (default:
4K) 1. Traffic shaping

using the token
bucket algo-
rithm (one token
bucket per pipe.

4 Traffic Class (TC) 4
1. TCs of the same

pipe handled in
strict priority or-
der.

2. Upper limit en-
forced per TC at
the pipe level.

3. Lower prior-
ity TCs able
to reuse pipe
bandwidth cur-
rently unused by
higher priority
TCs.

4. When subport
TC is over-
subscribed
(configuration
time event), pipe
TC upper limit
is capped to
a dynamically
adjusted value
that is shared by
all the subport
pipes.

5 Queue 4
1. Queues of the

same TC are
serviced us-
ing Weighted
Round Robin
(WRR) ac-
cording to
predefined
weights.

4.21. Quality of Service (QoS) Framework 129

DPDK documentation, Release 16.04.0

Application Programming Interface (API)

Port Scheduler Configuration API

The rte_sched.h file contains configuration functions for port, subport and pipe.

Port Scheduler Enqueue API

The port scheduler enqueue API is very similar to the API of the DPDK PMD TX function.

int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

Port Scheduler Dequeue API

The port scheduler dequeue API is very similar to the API of the DPDK PMD RX function.

int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

Usage Example

/* File "application.c" */

#define N_PKTS_RX 64
#define N_PKTS_TX 48
#define NIC_RX_PORT 0
#define NIC_RX_QUEUE 0
#define NIC_TX_PORT 1
#define NIC_TX_QUEUE 0

struct rte_sched_port *port = NULL;
struct rte_mbuf *pkts_rx[N_PKTS_RX], *pkts_tx[N_PKTS_TX];
uint32_t n_pkts_rx, n_pkts_tx;

/* Initialization */

<initialization code>

/* Runtime */
while (1) {

/* Read packets from NIC RX queue */

n_pkts_rx = rte_eth_rx_burst(NIC_RX_PORT, NIC_RX_QUEUE, pkts_rx, N_PKTS_RX);

/* Hierarchical scheduler enqueue */

rte_sched_port_enqueue(port, pkts_rx, n_pkts_rx);

/* Hierarchical scheduler dequeue */

n_pkts_tx = rte_sched_port_dequeue(port, pkts_tx, N_PKTS_TX);

/* Write packets to NIC TX queue */

rte_eth_tx_burst(NIC_TX_PORT, NIC_TX_QUEUE, pkts_tx, n_pkts_tx);
}

4.21. Quality of Service (QoS) Framework 130

DPDK documentation, Release 16.04.0

Implementation

Internal Data Structures per Port

A schematic of the internal data structures in shown in with details in.

4.21. Quality of Service (QoS) Framework 131

DPDK documentation, Release 16.04.0

Fig. 4.43: Internal Data Structures per Port

4.21. Quality of Service (QoS) Framework 132

DPDK documentation, Release 16.04.0

Table 4.6: Scheduler Internal Data Structures per Port

Data structure Size (bytes) # per port
Access type Description
Enq Deq

1 Subport ta-
ble entry

64 # subports
per port

• Rd, Wr Persistent
subport data
(credits,
etc).

2 Pipe table
entry

64 # pipes per
port

• Rd, Wr Persistent
data for
pipe, its
TCs and
its queues
(credits, etc)
that is up-
dated during
run-time.
The pipe
configura-
tion param-
eters do not
change dur-
ing run-time.
The same
pipe con-
figuration
parameters
are shared
by multiple
pipes, there-
fore they are
not part of
pipe table
entry.

3 Queue table
entry

4 #queues per
port

Rd, Wr Rd, Wr Persistent
queue data
(read and
write point-
ers). The
queue size
is the same
per TC for
all queues,
allowing
the queue
base ad-
dress to be
computed
using a fast
formula, so
these two
parameters
are not part
of queue
table entry.
The queue
table entries
for any given
pipe are
stored in the
same cache
line.

4 Queue stor-
age area

Config (de-
fault: 64 x8)

queues
per port

Wr Rd Array of el-
ements per
queue; each
element is
8 byte in
size (mbuf
pointer).

5 Active
queues
bitmap

1 bit per
queue

1 Wr (Set) Rd, Wr
(Clear)

The bitmap
maintains
one sta-
tus bit per
queue:
queue
not active
(queue is
empty) or
queue active
(queue is
not empty).
Queue bit is
set by the
scheduler
enqueue
and cleared
by the
scheduler
dequeue
when queue
becomes
empty.
Bitmap scan
operation
returns the
next non-
empty pipe
and its sta-
tus (16-bit
mask of
active queue
in the pipe).

6 Grinder ~128 Config (de-
fault: 8)

• Rd, Wr Short list
of active
pipes cur-
rently under
processing.
The grinder
contains
temporary
data dur-
ing pipe
processing.
Once the
current pipe
exhausts
packets or
credits, it
is replaced
with another
active pipe
from the
bitmap.

4.21. Quality of Service (QoS) Framework 133

DPDK documentation, Release 16.04.0

Multicore Scaling Strategy

The multicore scaling strategy is:

1. Running different physical ports on different threads. The enqueue and dequeue of the
same port are run by the same thread.

2. Splitting the same physical port to different threads by running different sets of subports
of the same physical port (virtual ports) on different threads. Similarly, a subport can
be split into multiple subports that are each run by a different thread. The enqueue
and dequeue of the same port are run by the same thread. This is only required if, for
performance reasons, it is not possible to handle a full port with a single core.

Enqueue and Dequeue for the Same Output Port Running enqueue and dequeue oper-
ations for the same output port from different cores is likely to cause significant impact on
scheduler’s performance and it is therefore not recommended.

The port enqueue and dequeue operations share access to the following data structures:

1. Packet descriptors

2. Queue table

3. Queue storage area

4. Bitmap of active queues

The expected drop in performance is due to:

1. Need to make the queue and bitmap operations thread safe, which requires either using
locking primitives for access serialization (for example, spinlocks/ semaphores) or using
atomic primitives for lockless access (for example, Test and Set, Compare And Swap, an
so on). The impact is much higher in the former case.

2. Ping-pong of cache lines storing the shared data structures between the cache hierar-
chies of the two cores (done transparently by the MESI protocol cache coherency CPU
hardware).

Therefore, the scheduler enqueue and dequeue operations have to be run from the same
thread, which allows the queues and the bitmap operations to be non-thread safe and keeps
the scheduler data structures internal to the same core.

Performance Scaling Scaling up the number of NIC ports simply requires a proportional
increase in the number of CPU cores to be used for traffic scheduling.

Enqueue Pipeline

The sequence of steps per packet:

1. Access the mbuf to read the data fields required to identify the destination queue for the
packet. These fields are: port, subport, traffic class and queue within traffic class, and
are typically set by the classification stage.

2. Access the queue structure to identify the write location in the queue array. If the queue
is full, then the packet is discarded.

4.21. Quality of Service (QoS) Framework 134

DPDK documentation, Release 16.04.0

3. Access the queue array location to store the packet (i.e. write the mbuf pointer).

It should be noted the strong data dependency between these steps, as steps 2 and 3 cannot
start before the result from steps 1 and 2 becomes available, which prevents the processor out
of order execution engine to provide any significant performance optimizations.

Given the high rate of input packets and the large amount of queues, it is expected that the
data structures accessed to enqueue the current packet are not present in the L1 or L2 data
cache of the current core, thus the above 3 memory accesses would result (on average) in L1
and L2 data cache misses. A number of 3 L1/L2 cache misses per packet is not acceptable for
performance reasons.

The workaround is to prefetch the required data structures in advance. The prefetch operation
has an execution latency during which the processor should not attempt to access the data
structure currently under prefetch, so the processor should execute other work. The only other
work available is to execute different stages of the enqueue sequence of operations on other
input packets, thus resulting in a pipelined implementation for the enqueue operation.

Fig. 4.44 illustrates a pipelined implementation for the enqueue operation with 4 pipeline stages
and each stage executing 2 different input packets. No input packet can be part of more than
one pipeline stage at a given time.

Fig. 4.44: Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

The congestion management scheme implemented by the enqueue pipeline described above
is very basic: packets are enqueued until a specific queue becomes full, then all the packets
destined to the same queue are dropped until packets are consumed (by the dequeue oper-
ation). This can be improved by enabling RED/WRED as part of the enqueue pipeline which
looks at the queue occupancy and packet priority in order to yield the enqueue/drop decision for
a specific packet (as opposed to enqueuing all packets / dropping all packets indiscriminately).

Dequeue State Machine

The sequence of steps to schedule the next packet from the current pipe is:

1. Identify the next active pipe using the bitmap scan operation, prefetch pipe.

2. Read pipe data structure. Update the credits for the current pipe and its subport. Identify
the first active traffic class within the current pipe, select the next queue using WRR,
prefetch queue pointers for all the 16 queues of the current pipe.

3. Read next element from the current WRR queue and prefetch its packet descriptor.

4. Read the packet length from the packet descriptor (mbuf structure). Based on the packet
length and the available credits (of current pipe, pipe traffic class, subport and subport
traffic class), take the go/no go scheduling decision for the current packet.

To avoid the cache misses, the above data structures (pipe, queue, queue array, mbufs) are
prefetched in advance of being accessed. The strategy of hiding the latency of the prefetch

4.21. Quality of Service (QoS) Framework 135

DPDK documentation, Release 16.04.0

operations is to switch from the current pipe (in grinder A) to another pipe (in grinder B) imme-
diately after a prefetch is issued for the current pipe. This gives enough time to the prefetch
operation to complete before the execution switches back to this pipe (in grinder A).

The dequeue pipe state machine exploits the data presence into the processor cache, therefore
it tries to send as many packets from the same pipe TC and pipe as possible (up to the available
packets and credits) before moving to the next active TC from the same pipe (if any) or to
another active pipe.

Fig. 4.45: Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation

Timing and Synchronization

The output port is modeled as a conveyor belt of byte slots that need to be filled by the sched-
uler with data for transmission. For 10 GbE, there are 1.25 billion byte slots that need to be

4.21. Quality of Service (QoS) Framework 136

DPDK documentation, Release 16.04.0

filled by the port scheduler every second. If the scheduler is not fast enough to fill the slots, pro-
vided that enough packets and credits exist, then some slots will be left unused and bandwidth
will be wasted.

In principle, the hierarchical scheduler dequeue operation should be triggered by NIC TX.
Usually, once the occupancy of the NIC TX input queue drops below a predefined threshold,
the port scheduler is woken up (interrupt based or polling based, by continuously monitoring
the queue occupancy) to push more packets into the queue.

Internal Time Reference The scheduler needs to keep track of time advancement for the
credit logic, which requires credit updates based on time (for example, subport and pipe traffic
shaping, traffic class upper limit enforcement, and so on).

Every time the scheduler decides to send a packet out to the NIC TX for transmission, the
scheduler will increment its internal time reference accordingly. Therefore, it is convenient
to keep the internal time reference in units of bytes, where a byte signifies the time duration
required by the physical interface to send out a byte on the transmission medium. This way,
as a packet is scheduled for transmission, the time is incremented with (n + h), where n is the
packet length in bytes and h is the number of framing overhead bytes per packet.

Internal Time Reference Re-synchronization The scheduler needs to align its internal time
reference to the pace of the port conveyor belt. The reason is to make sure that the scheduler
does not feed the NIC TX with more bytes than the line rate of the physical medium in order
to prevent packet drop (by the scheduler, due to the NIC TX input queue being full, or later on,
internally by the NIC TX).

The scheduler reads the current time on every dequeue invocation. The CPU time stamp can
be obtained by reading either the Time Stamp Counter (TSC) register or the High Precision
Event Timer (HPET) register. The current CPU time stamp is converted from number of CPU
clocks to number of bytes: time_bytes = time_cycles / cycles_per_byte, where cycles_per_byte
is the amount of CPU cycles that is equivalent to the transmission time for one byte on the wire
(e.g. for a CPU frequency of 2 GHz and a 10GbE port,*cycles_per_byte = 1.6*).

The scheduler maintains an internal time reference of the NIC time. Whenever a packet is
scheduled, the NIC time is incremented with the packet length (including framing overhead).
On every dequeue invocation, the scheduler checks its internal reference of the NIC time
against the current time:

1. If NIC time is in the future (NIC time >= current time), no adjustment of NIC time is
needed. This means that scheduler is able to schedule NIC packets before the NIC
actually needs those packets, so the NIC TX is well supplied with packets;

2. If NIC time is in the past (NIC time < current time), then NIC time should be adjusted by
setting it to the current time. This means that the scheduler is not able to keep up with
the speed of the NIC byte conveyor belt, so NIC bandwidth is wasted due to poor packet
supply to the NIC TX.

Scheduler Accuracy and Granularity The scheduler round trip delay (SRTD) is the time
(number of CPU cycles) between two consecutive examinations of the same pipe by the sched-
uler.

To keep up with the output port (that is, avoid bandwidth loss), the scheduler should be able to
schedule n packets faster than the same n packets are transmitted by NIC TX.

4.21. Quality of Service (QoS) Framework 137

DPDK documentation, Release 16.04.0

The scheduler needs to keep up with the rate of each individual pipe, as configured for the pipe
token bucket, assuming that no port oversubscription is taking place. This means that the size
of the pipe token bucket should be set high enough to prevent it from overflowing due to big
SRTD, as this would result in credit loss (and therefore bandwidth loss) for the pipe.

Credit Logic

Scheduling Decision The scheduling decision to send next packet from (subport S, pipe P,
traffic class TC, queue Q) is favorable (packet is sent) when all the conditions below are met:

• Pipe P of subport S is currently selected by one of the port grinders;

• Traffic class TC is the highest priority active traffic class of pipe P;

• Queue Q is the next queue selected by WRR within traffic class TC of pipe P;

• Subport S has enough credits to send the packet;

• Subport S has enough credits for traffic class TC to send the packet;

• Pipe P has enough credits to send the packet;

• Pipe P has enough credits for traffic class TC to send the packet.

If all the above conditions are met, then the packet is selected for transmission and the nec-
essary credits are subtracted from subport S, subport S traffic class TC, pipe P, pipe P traffic
class TC.

Framing Overhead As the greatest common divisor for all packet lengths is one byte, the
unit of credit is selected as one byte. The number of credits required for the transmission of a
packet of n bytes is equal to (n+h), where h is equal to the number of framing overhead bytes
per packet.

Table 4.7: Ethernet Frame Overhead Fields

Packet field Length
(bytes)

Comments

1 Preamble 7
2 Start of Frame

Delimiter (SFD)
1

3 Frame Check
Sequence (FCS)

4 Considered overhead only if not included in the
mbuf packet length field.

4 Inter Frame Gap
(IFG)

12

5 Total 24

Traffic Shaping The traffic shaping for subport and pipe is implemented using a token bucket
per subport/per pipe. Each token bucket is implemented using one saturated counter that
keeps track of the number of available credits.

The token bucket generic parameters and operations are presented in Table 4.8 and Table 4.9.

4.21. Quality of Service (QoS) Framework 138

DPDK documentation, Release 16.04.0

Table 4.8: Token Bucket Generic Operations

Token Bucket
Parameter

Unit Description

1 bucket_rate Credits per
second

Rate of adding credits to the bucket.

2 bucket_size Credits Max number of credits that can be stored in
the bucket.

Table 4.9: Token Bucket Generic Parameters

Token
Bucket
Operation

Description

1 Initialization Bucket set to a predefined value, e.g. zero or half of the bucket size.
2 Credit

update
Credits are added to the bucket on top of existing ones, either
periodically or on demand, based on the bucket_rate. Credits cannot
exceed the upper limit defined by the bucket_size, so any credits to be
added to the bucket while the bucket is full are dropped.

3 Credit con-
sumption

As result of packet scheduling, the necessary number of credits is
removed from the bucket. The packet can only be sent if enough credits
are in the bucket to send the full packet (packet bytes and framing
overhead for the packet).

To implement the token bucket generic operations described above, the current design uses
the persistent data structure presented in Table 4.10, while the implementation of the token
bucket operations is described in Table 4.11.

4.21. Quality of Service (QoS) Framework 139

DPDK documentation, Release 16.04.0

Table 4.10: Token Bucket Persistent Data Structure

Token bucket field Unit Description
1 tb_time Bytes Time of the last credit

update. Measured in
bytes instead of sec-
onds or CPU cycles
for ease of credit con-
sumption operation
(as the current time
is also maintained in
bytes).
See Section
26.2.4.5.1 “Inter-
nal Time Reference”
for an explanation
of why the time is
maintained in byte
units.

2 tb_period Bytes Time period that
should elapse since
the last credit up-
date in order for the
bucket to be awarded
tb_credits_per_period
worth or credits.

3 tb_credits_per_period Bytes Credit allowance per
tb_period.

4 tb_size Bytes Bucket size, i.e. upper
limit for the tb_credits.

5 tb_credits Bytes Number of credits cur-
rently in the bucket.

The bucket rate (in bytes per second) can be computed with the following formula:

bucket_rate = (tb_credits_per_period / tb_period) * r

where, r = port line rate (in bytes per second).

4.21. Quality of Service (QoS) Framework 140

DPDK documentation, Release 16.04.0

Table 4.11: Token Bucket Operations

Token bucket operation Description
1 Initialization tb_credits = 0; or tb_credits =

tb_size / 2;
2 Credit update Credit update options:

• Every time a packet is
sent for a port, update
the credits of all the the
subports and pipes of
that port. Not feasible.

• Every time a packet is
sent, update the cred-
its for the pipe and sub-
port. Very accurate, but
not needed (a lot of cal-
culations).

• Every time a pipe is se-
lected (that is, picked by
one of the grinders), up-
date the credits for the
pipe and its subport.

The current implementation
is using option 3. Accord-
ing to Section Dequeue State
Machine, the pipe and sub-
port credits are updated every
time a pipe is selected by the
dequeue process before the
pipe and subport credits are
actually used.
The implementation uses a
tradeoff between accuracy
and speed by updating the
bucket credits only when at
least a full tb_period has
elapsed since the last update.

• Full accuracy can
be achieved by se-
lecting the value for
tb_period for which
tb_credits_per_period =
1.

• When full accuracy is
not required, better per-
formance is achieved by
setting tb_credits to a
larger value.

Update operations:
• n_periods = (time -

tb_time) / tb_period;
• tb_credits += n_periods

* tb_credits_per_period;
• tb_credits =

min(tb_credits, tb_size);
• tb_time += n_periods *

tb_period;

3
Credit consumption (on

packet scheduling)

As result of packet schedul-
ing, the necessary number
of credits is removed from
the bucket. The packet can
only be sent if enough cred-
its are in the bucket to send
the full packet (packet bytes
and framing overhead for the
packet).
Scheduling operations:
pkt_credits = pkt_len
+ frame_overhead;
if (tb_credits >=
pkt_credits){tb_credits -=
pkt_credits;}

4.21. Quality of Service (QoS) Framework 141

DPDK documentation, Release 16.04.0

Traffic Classes

Implementation of Strict Priority Scheduling Strict priority scheduling of traffic classes
within the same pipe is implemented by the pipe dequeue state machine, which selects the
queues in ascending order. Therefore, queues 0..3 (associated with TC 0, highest priority TC)
are handled before queues 4..7 (TC 1, lower priority than TC 0), which are handled before
queues 8..11 (TC 2), which are handled before queues 12..15 (TC 3, lowest priority TC).

Upper Limit Enforcement The traffic classes at the pipe and subport levels are not traffic
shaped, so there is no token bucket maintained in this context. The upper limit for the traffic
classes at the subport and pipe levels is enforced by periodically refilling the subport / pipe
traffic class credit counter, out of which credits are consumed every time a packet is scheduled
for that subport / pipe, as described in Table 4.12 and Table 4.13.

Table 4.12: Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

Subport or pipe field Unit Description
1 tc_time Bytes Time of the next up-

date (upper limit refill)
for the 4 TCs of the
current subport / pipe.
See Section Internal
Time Reference for
the explanation of why
the time is maintained
in byte units.

2 tc_period Bytes Time between two
consecutive updates
for the 4 TCs of the
current subport / pipe.
This is expected to
be many times bigger
than the typical value
of the token bucket
tb_period.

3 tc_credits_per_period Bytes Upper limit for the
number of credits al-
lowed to be consumed
by the current TC dur-
ing each enforcement
period tc_period.

4 tc_credits Bytes Current upper limit for
the number of credits
that can be consumed
by the current traffic
class for the remain-
der of the current en-
forcement period.

4.21. Quality of Service (QoS) Framework 142

DPDK documentation, Release 16.04.0

Table 4.13: Subport/Pipe Traffic Class Upper Limit Enforcement Operations

Traffic Class Operation Description
1 Initialization tc_credits =

tc_credits_per_period;
tc_time = tc_period;

2 Credit update Update operations:
if (time >= tc_time) {
tc_credits =
tc_credits_per_period;
tc_time = time + tc_period;
}

3 Credit consumption (on
packet scheduling)

As result of packet schedul-
ing, the TC limit is decreased
with the necessary number of
credits. The packet can only
be sent if enough credits are
currently available in the TC
limit to send the full packet
(packet bytes and framing
overhead for the packet).
Scheduling operations:
pkt_credits = pk_len +
frame_overhead;
if (tc_credits >= pkt_credits)
{tc_credits -= pkt_credits;}

Weighted Round Robin (WRR) The evolution of the WRR design solution from simple to
complex is shown in Table 4.14.

4.21. Quality of Service (QoS) Framework 143

DPDK documentation, Release 16.04.0

Table 4.14: Weighted Round Robin (WRR)

All Queues Ac-
tive?

Equal Weights for
All Queues?

All Packets
Equal?

Strategy

1 Yes Yes Yes Byte level round
robin
Next queue
queue #i, i = (i +
1) % n

2 Yes Yes No Packet level
round robin
Consuming one
byte from queue
#i requires con-
suming exactly
one token for
queue #i.
T(i) = Accumu-
lated number of
tokens previously
consumed from
queue #i. Every
time a packet is
consumed from
queue #i, T(i) is
updated as: T(i)
+= pkt_len.
Next queue :
queue with the
smallest T.

3 Yes No No Packet level
weighted round
robin
This case can be
reduced to the
previous case
by introducing
a cost per byte
that is different
for each queue.
Queues with
lower weights
have a higher
cost per byte.
This way, it is
still meaningful
to compare the
consumption
amongst different
queues in order
to select the next
queue.
w(i) = Weight of
queue #i
t(i) = Tokens per
byte for queue
#i, defined as the
inverse weight of
queue #i. For ex-
ample, if w[0..3]
= [1:2:4:8],
then t[0..3] =
[8:4:2:1]; if w[0..3]
= [1:4:15:20],
then t[0..3] =
[60:15:4:3]. Con-
suming one byte
from queue #i
requires consum-
ing t(i) tokens for
queue #i.
T(i) = Accumu-
lated number of
tokens previously
consumed from
queue #i. Every
time a packet is
consumed from
queue #i, T(i)
is updated as:
T(i) += pkt_len *
t(i). Next queue
: queue with the
smallest T.

4 No No No Packet level
weighted round
robin with vari-
able queue
status
Reduce this case
to the previous
case by setting
the consump-
tion of inactive
queues to a
high number, so
that the inactive
queues will never
be selected by
the smallest T
logic.
To prevent T from
overflowing as re-
sult of successive
accumulations,
T(i) is truncated
after each packet
consumption for
all queues. For
example, T[0..3]
= [1000, 1100,
1200, 1300]
is truncated to
T[0..3] = [0, 100,
200, 300] by
subtracting the
min T from T(i), i
= 0..n.
This requires
having at least
one active queue
in the set of input
queues, which
is guaranteed
by the dequeue
state machine
never selecting
an inactive traffic
class.
mask(i) = Satu-
ration mask for
queue #i, defined
as:
mask(i) = (queue
#i is active)? 0 :
0xFFFFFFFF;
w(i) = Weight of
queue #i
t(i) = Tokens per
byte for queue #i,
defined as the in-
verse weight of
queue #i.
T(i) = Accumu-
lated numbers of
tokens previously
consumed from
queue #i.
Next queue
: queue with
smallest T.
Before packet
consumption
from queue #i:
T(i) |= mask(i)
After packet con-
sumption from
queue #i:
T(j) -= T(i), j != i
T(i) = pkt_len * t(i)
Note: T(j) uses
the T(i) value be-
fore T(i) is up-
dated.

4.21. Quality of Service (QoS) Framework 144

DPDK documentation, Release 16.04.0

Subport Traffic Class Oversubscription

Problem Statement Oversubscription for subport traffic class X is a configuration-time event
that occurs when more bandwidth is allocated for traffic class X at the level of subport member
pipes than allocated for the same traffic class at the parent subport level.

The existence of the oversubscription for a specific subport and traffic class is solely the result
of pipe and subport-level configuration as opposed to being created due to dynamic evolution
of the traffic load at run-time (as congestion is).

When the overall demand for traffic class X for the current subport is low, the existence of
the oversubscription condition does not represent a problem, as demand for traffic class X is
completely satisfied for all member pipes. However, this can no longer be achieved when the
aggregated demand for traffic class X for all subport member pipes exceeds the limit configured
at the subport level.

Solution Space summarizes some of the possible approaches for handling this problem,
with the third approach selected for implementation.

4.21. Quality of Service (QoS) Framework 145

DPDK documentation, Release 16.04.0

Table 4.15: Subport Traffic Class Oversubscription

No. Approach Description
1 Don’t care First come, first served.

This approach is not fair
amongst subport member
pipes, as pipes that are
served first will use up as
much bandwidth for TC X
as they need, while pipes
that are served later will
receive poor service due to
bandwidth for TC X at the
subport level being scarce.

2 Scale down all pipes All pipes within the subport
have their bandwidth limit for
TC X scaled down by the
same factor.
This approach is not fair
among subport member
pipes, as the low end pipes
(that is, pipes configured
with low bandwidth) can
potentially experience severe
service degradation that
might render their service un-
usable (if available bandwidth
for these pipes drops below
the minimum requirements
for a workable service), while
the service degradation for
high end pipes might not be
noticeable at all.

3 Cap the high demand pipes Each subport member pipe
receives an equal share of the
bandwidth available at run-
time for TC X at the sub-
port level. Any bandwidth left
unused by the low-demand
pipes is redistributed in equal
portions to the high-demand
pipes. This way, the high-
demand pipes are truncated
while the low-demand pipes
are not impacted.

Typically, the subport TC oversubscription feature is enabled only for the lowest priority traffic
class (TC 3), which is typically used for best effort traffic, with the management plane prevent-
ing this condition from occurring for the other (higher priority) traffic classes.

To ease implementation, it is also assumed that the upper limit for subport TC 3 is set to 100%
of the subport rate, and that the upper limit for pipe TC 3 is set to 100% of pipe rate for all

4.21. Quality of Service (QoS) Framework 146

DPDK documentation, Release 16.04.0

subport member pipes.

Implementation Overview The algorithm computes a watermark, which is periodically up-
dated based on the current demand experienced by the subport member pipes, whose purpose
is to limit the amount of traffic that each pipe is allowed to send for TC 3. The watermark is
computed at the subport level at the beginning of each traffic class upper limit enforcement
period and the same value is used by all the subport member pipes throughout the current
enforcement period. illustrates how the watermark computed as subport level at the beginning
of each period is propagated to all subport member pipes.

At the beginning of the current enforcement period (which coincides with the end of the pre-
vious enforcement period), the value of the watermark is adjusted based on the amount of
bandwidth allocated to TC 3 at the beginning of the previous period that was not left unused
by the subport member pipes at the end of the previous period.

If there was subport TC 3 bandwidth left unused, the value of the watermark for the current
period is increased to encourage the subport member pipes to consume more bandwidth. Oth-
erwise, the value of the watermark is decreased to enforce equality of bandwidth consumption
among subport member pipes for TC 3.

The increase or decrease in the watermark value is done in small increments, so several
enforcement periods might be required to reach the equilibrium state. This state can change
at any moment due to variations in the demand experienced by the subport member pipes for
TC 3, for example, as a result of demand increase (when the watermark needs to be lowered)
or demand decrease (when the watermark needs to be increased).

When demand is low, the watermark is set high to prevent it from impeding the subport member
pipes from consuming more bandwidth. The highest value for the watermark is picked as the
highest rate configured for a subport member pipe. Table 4.16 and Table 4.17 illustrates the
watermark operation.

4.21. Quality of Service (QoS) Framework 147

DPDK documentation, Release 16.04.0

Table 4.16: Watermark Propagation from Subport Level to Member Pipes at the Beginning of
Each Traffic Class Upper Limit Enforcement Period

No. Subport Traffic Class Opera-
tion

Description

1 Initialization Subport level: sub-
port_period_id= 0
Pipe level: pipe_period_id =
0

2 Credit update Subport Level:
if (time>=subport_tc_time)
{ subport_wm = wa-

ter_mark_update();
subport_tc_time = time
+ subport_tc_period;
subport_period_id++;

}
Pipelevel:
if(pipe_period_id != sub-
port_period_id)
{

pipe_ov_credits
= subport_wm *
pipe_weight;
pipe_period_id
= sub-
port_period_id;

}
3 Credit consumption (on

packet scheduling)
Pipe level:
pkt_credits = pk_len +
frame_overhead;
if(pipe_ov_credits >=
pkt_credits{

pipe_ov_credits -
= pkt_credits;

}

4.21. Quality of Service (QoS) Framework 148

DPDK documentation, Release 16.04.0

Table 4.17: Watermark Calculation

No. Subport Traffic Class Opera-
tion

Description

1 Initialization Subport level:
wm = WM_MAX

2 Credit update Subport level (wa-
ter_mark_update):
tc0_cons = sub-
port_tc0_credits_per_period -
subport_tc0_credits;
tc1_cons = sub-
port_tc1_credits_per_period -
subport_tc1_credits;
tc2_cons = sub-
port_tc2_credits_per_period -
subport_tc2_credits;
tc3_cons = sub-
port_tc3_credits_per_period -
subport_tc3_credits;
tc3_cons_max = sub-
port_tc3_credits_per_period
- (tc0_cons + tc1_cons +
tc2_cons);
if(tc3_consumption >
(tc3_consumption_max -
MTU)){

wm -= wm >> 7;
if(wm < WM_MIN)
wm = WM_MIN;

} else {
wm += (wm >> 7)
+ 1;
if(wm >
WM_MAX) wm =
WM_MAX;

}

Worst Case Scenarios for Performance

Lots of Active Queues with Not Enough Credits

The more queues the scheduler has to examine for packets and credits in order to select one
packet, the lower the performance of the scheduler is.

The scheduler maintains the bitmap of active queues, which skips the non-active queues, but
in order to detect whether a specific pipe has enough credits, the pipe has to be drilled down
using the pipe dequeue state machine, which consumes cycles regardless of the scheduling
result (no packets are produced or at least one packet is produced).

This scenario stresses the importance of the policer for the scheduler performance: if the pipe

4.21. Quality of Service (QoS) Framework 149

DPDK documentation, Release 16.04.0

does not have enough credits, its packets should be dropped as soon as possible (before they
reach the hierarchical scheduler), thus rendering the pipe queues as not active, which allows
the dequeue side to skip that pipe with no cycles being spent on investigating the pipe credits
that would result in a “not enough credits” status.

Single Queue with 100% Line Rate

The port scheduler performance is optimized for a large number of queues. If the number of
queues is small, then the performance of the port scheduler for the same level of active traffic
is expected to be worse than the performance of a small set of message passing queues.

4.21.3 Dropper

The purpose of the DPDK dropper is to drop packets arriving at a packet scheduler to avoid
congestion. The dropper supports the Random Early Detection (RED), Weighted Random
Early Detection (WRED) and tail drop algorithms. Fig. 4.46 illustrates how the dropper inte-
grates with the scheduler. The DPDK currently does not support congestion management so
the dropper provides the only method for congestion avoidance.

Fig. 4.46: High-level Block Diagram of the DPDK Dropper

The dropper uses the Random Early Detection (RED) congestion avoidance algorithm as doc-
umented in the reference publication. The purpose of the RED algorithm is to monitor a packet
queue, determine the current congestion level in the queue and decide whether an arriving
packet should be enqueued or dropped. The RED algorithm uses an Exponential Weighted

4.21. Quality of Service (QoS) Framework 150

DPDK documentation, Release 16.04.0

Moving Average (EWMA) filter to compute average queue size which gives an indication of the
current congestion level in the queue.

For each enqueue operation, the RED algorithm compares the average queue size to minimum
and maximum thresholds. Depending on whether the average queue size is below, above or in
between these thresholds, the RED algorithm calculates the probability that an arriving packet
should be dropped and makes a random decision based on this probability.

The dropper also supports Weighted Random Early Detection (WRED) by allowing the sched-
uler to select different RED configurations for the same packet queue at run-time. In the case
of severe congestion, the dropper resorts to tail drop. This occurs when a packet queue has
reached maximum capacity and cannot store any more packets. In this situation, all arriving
packets are dropped.

The flow through the dropper is illustrated in Fig. 4.47. The RED/WRED algorithm is exercised
first and tail drop second.

The use cases supported by the dropper are:

• – Initialize configuration data

• – Initialize run-time data

• – Enqueue (make a decision to enqueue or drop an arriving packet)

• – Mark empty (record the time at which a packet queue becomes empty)

The configuration use case is explained in Section2.23.3.1, the enqueue operation is explained
in Section 2.23.3.2 and the mark empty operation is explained in Section 2.23.3.3.

Configuration

A RED configuration contains the parameters given in Table 4.18.

Table 4.18: RED Configuration Parameters

Parameter Minimum Maximum Typical
Minimum Threshold 0 1022 1/4 x queue size
Maximum Threshold 1 1023 1/2 x queue size
Inverse Mark Probability 1 255 10
EWMA Filter Weight 1 12 9

The meaning of these parameters is explained in more detail in the following sections. The
format of these parameters as specified to the dropper module API corresponds to the format
used by Cisco* in their RED implementation. The minimum and maximum threshold parame-
ters are specified to the dropper module in terms of number of packets. The mark probability
parameter is specified as an inverse value, for example, an inverse mark probability parameter
value of 10 corresponds to a mark probability of 1/10 (that is, 1 in 10 packets will be dropped).
The EWMA filter weight parameter is specified as an inverse log value, for example, a filter
weight parameter value of 9 corresponds to a filter weight of 1/29.

Enqueue Operation

In the example shown in Fig. 4.48, q (actual queue size) is the input value, avg (average
queue size) and count (number of packets since the last drop) are run-time values, decision is

4.21. Quality of Service (QoS) Framework 151

DPDK documentation, Release 16.04.0

Fig. 4.47: Flow Through the Dropper

4.21. Quality of Service (QoS) Framework 152

DPDK documentation, Release 16.04.0

the output value and the remaining values are configuration parameters.

Fig. 4.48: Example Data Flow Through Dropper

EWMA Filter Microblock

The purpose of the EWMA Filter microblock is to filter queue size values to smooth out transient
changes that result from “bursty” traffic. The output value is the average queue size which gives
a more stable view of the current congestion level in the queue.

The EWMA filter has one configuration parameter, filter weight, which determines how quickly
or slowly the average queue size output responds to changes in the actual queue size input.
Higher values of filter weight mean that the average queue size responds more quickly to
changes in actual queue size.

Average Queue Size Calculation when the Queue is not Empty The definition of the
EWMA filter is given in the following equation.

Where:

• avg = average queue size

• wq = filter weight

• q = actual queue size

Note:

The filter weight, wq = 1/2^n, where n is the filter weight parameter value passed to the dropper module
on configuration (see Section2.23.3.1).

4.21. Quality of Service (QoS) Framework 153

DPDK documentation, Release 16.04.0

Average Queue Size Calculation when the Queue is Empty

The EWMA filter does not read time stamps and instead assumes that enqueue operations
will happen quite regularly. Special handling is required when the queue becomes empty as
the queue could be empty for a short time or a long time. When the queue becomes empty,
average queue size should decay gradually to zero instead of dropping suddenly to zero or
remaining stagnant at the last computed value. When a packet is enqueued on an empty
queue, the average queue size is computed using the following formula:

Where:

• m = the number of enqueue operations that could have occurred on this queue while the
queue was empty

In the dropper module, m is defined as:

Where:

• time = current time

• qtime = time the queue became empty

• s = typical time between successive enqueue operations on this queue

The time reference is in units of bytes, where a byte signifies the time duration required by the
physical interface to send out a byte on the transmission medium (see Section Internal Time
Reference). The parameter s is defined in the dropper module as a constant with the value:
s=2^22. This corresponds to the time required by every leaf node in a hierarchy with 64K leaf
nodes to transmit one 64-byte packet onto the wire and represents the worst case scenario.
For much smaller scheduler hierarchies, it may be necessary to reduce the parameter s, which
is defined in the red header source file (rte_red.h) as:

#define RTE_RED_S

Since the time reference is in bytes, the port speed is implied in the expression: time-qtime.
The dropper does not have to be configured with the actual port speed. It adjusts automatically
to low speed and high speed links.

Implementation A numerical method is used to compute the factor (1-wq)^m that appears in
Equation 2.

This method is based on the following identity:

This allows us to express the following:

4.21. Quality of Service (QoS) Framework 154

DPDK documentation, Release 16.04.0

In the dropper module, a look-up table is used to compute log2(1-wq) for each value of wq
supported by the dropper module. The factor (1-wq)^m can then be obtained by multiplying
the table value by m and applying shift operations. To avoid overflow in the multiplication, the
value, m, and the look-up table values are limited to 16 bits. The total size of the look-up table
is 56 bytes. Once the factor (1-wq)^m is obtained using this method, the average queue size
can be calculated from Equation 2.

Alternative Approaches Other methods for calculating the factor (1-wq)^m in the expression
for computing average queue size when the queue is empty (Equation 2) were considered.
These approaches include:

• Floating-point evaluation

• Fixed-point evaluation using a small look-up table (512B) and up to 16 multiplications
(this is the approach used in the FreeBSD* ALTQ RED implementation)

• Fixed-point evaluation using a small look-up table (512B) and 16 SSE multiplications
(SSE optimized version of the approach used in the FreeBSD* ALTQ RED implementa-
tion)

• Large look-up table (76 KB)

The method that was finally selected (described above in Section 26.3.2.2.1) out performs all
of these approaches in terms of run-time performance and memory requirements and also
achieves accuracy comparable to floating-point evaluation. Table 4.19 lists the performance of
each of these alternative approaches relative to the method that is used in the dropper. As can
be seen, the floating-point implementation achieved the worst performance.

Table 4.19: Relative Performance of Alternative Approaches

Method Relative Performance
Current dropper method (see Section 23.3.2.1.3) 100%
Fixed-point method with small (512B) look-up table 148%
SSE method with small (512B) look-up table 114%
Large (76KB) look-up table 118%
Floating-point 595%
Note: In this case, since performance is expressed as time spent executing the operation in a specific condition, any relative performance value above 100% runs slower than the reference method.

Drop Decision Block

The Drop Decision block:

• Compares the average queue size with the minimum and maximum thresholds

• Calculates a packet drop probability

• Makes a random decision to enqueue or drop an arriving packet

The calculation of the drop probability occurs in two stages. An initial drop probability is calcu-
lated based on the average queue size, the minimum and maximum thresholds and the mark
probability. An actual drop probability is then computed from the initial drop probability. The
actual drop probability takes the count run-time value into consideration so that the actual drop
probability increases as more packets arrive to the packet queue since the last packet was
dropped.

4.21. Quality of Service (QoS) Framework 155

DPDK documentation, Release 16.04.0

Initial Packet Drop Probability The initial drop probability is calculated using the following
equation.

Where:

• maxp = mark probability

• avg = average queue size

• minth = minimum threshold

• maxth = maximum threshold

The calculation of the packet drop probability using Equation 3 is illustrated in Fig. 4.49. If the
average queue size is below the minimum threshold, an arriving packet is enqueued. If the
average queue size is at or above the maximum threshold, an arriving packet is dropped. If
the average queue size is between the minimum and maximum thresholds, a drop probability
is calculated to determine if the packet should be enqueued or dropped.

Fig. 4.49: Packet Drop Probability for a Given RED Configuration

Actual Drop Probability If the average queue size is between the minimum and maximum
thresholds, then the actual drop probability is calculated from the following equation.

4.21. Quality of Service (QoS) Framework 156

DPDK documentation, Release 16.04.0

Where:

• Pb = initial drop probability (from Equation 3)

• count = number of packets that have arrived since the last drop

The constant 2, in Equation 4 is the only deviation from the drop probability formulae given in
the reference document where a value of 1 is used instead. It should be noted that the value pa
computed from can be negative or greater than 1. If this is the case, then a value of 1 should
be used instead.

The initial and actual drop probabilities are shown in Fig. 4.50. The actual drop probabil-
ity is shown for the case where the formula given in the reference document1 is used (blue
curve) and also for the case where the formula implemented in the dropper module, is used
(red curve). The formula in the reference document results in a significantly higher drop rate
compared to the mark probability configuration parameter specified by the user. The choice to
deviate from the reference document is simply a design decision and one that has been taken
by other RED implementations, for example, FreeBSD* ALTQ RED.

Fig. 4.50: Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor
1 (Blue Curve) and a Factor 2 (Red Curve)

Queue Empty Operation

The time at which a packet queue becomes empty must be recorded and saved with the RED
run-time data so that the EWMA filter block can calculate the average queue size on the next
enqueue operation. It is the responsibility of the calling application to inform the dropper mod-
ule through the API that a queue has become empty.

4.21. Quality of Service (QoS) Framework 157

DPDK documentation, Release 16.04.0

Source Files Location

The source files for the DPDK dropper are located at:

• DPDK/lib/librte_sched/rte_red.h

• DPDK/lib/librte_sched/rte_red.c

Integration with the DPDK QoS Scheduler

RED functionality in the DPDK QoS scheduler is disabled by default. To enable it, use the
DPDK configuration parameter:

CONFIG_RTE_SCHED_RED=y

This parameter must be set to y. The parameter is found in the build configuration files in
the DPDK/config directory, for example, DPDK/config/common_linuxapp. RED configuration
parameters are specified in the rte_red_params structure within the rte_sched_port_params
structure that is passed to the scheduler on initialization. RED parameters are specified sep-
arately for four traffic classes and three packet colors (green, yellow and red) allowing the
scheduler to implement Weighted Random Early Detection (WRED).

Integration with the DPDK QoS Scheduler Sample Application

The DPDK QoS Scheduler Application reads a configuration file on start-up. The configura-
tion file includes a section containing RED parameters. The format of these parameters is
described in Section2.23.3.1. A sample RED configuration is shown below. In this example,
the queue size is 64 packets.

Note: For correct operation, the same EWMA filter weight parameter (wred weight) should be
used for each packet color (green, yellow, red) in the same traffic class (tc).

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 28 22 16
tc 0 wred max = 32 32 32
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 28 22 16
tc 1 wred max = 32 32 32
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 28 22 16
tc 2 wred max = 32 32 32
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 28 22 16
tc 3 wred max = 32 32 32
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

4.21. Quality of Service (QoS) Framework 158

DPDK documentation, Release 16.04.0

With this configuration file, the RED configuration that applies to green, yellow and red packets
in traffic class 0 is shown in Table 4.20.

Table 4.20: RED Configuration Corresponding to RED Configuration File

RED Parameter Configuration Name Green Yellow Red
Minimum Threshold tc 0 wred min 28 22 16
Maximum Threshold tc 0 wred max 32 32 32
Mark Probability tc 0 wred inv prob 10 10 10
EWMA Filter Weight tc 0 wred weight 9 9 9

Application Programming Interface (API)

Enqueue API

The syntax of the enqueue API is as follows:

int rte_red_enqueue(const struct rte_red_config *red_cfg, struct rte_red *red, const unsigned q, const uint64_t time)

The arguments passed to the enqueue API are configuration data, run-time data, the current
size of the packet queue (in packets) and a value representing the current time. The time
reference is in units of bytes, where a byte signifies the time duration required by the physical
interface to send out a byte on the transmission medium (see Section 26.2.4.5.1 “Internal Time
Reference”). The dropper reuses the scheduler time stamps for performance reasons.

Empty API

The syntax of the empty API is as follows:

void rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)

The arguments passed to the empty API are run-time data and the current time in bytes.

4.21.4 Traffic Metering

The traffic metering component implements the Single Rate Three Color Marker (srTCM) and
Two Rate Three Color Marker (trTCM) algorithms, as defined by IETF RFC 2697 and 2698
respectively. These algorithms meter the stream of incoming packets based on the allowance
defined in advance for each traffic flow. As result, each incoming packet is tagged as green,
yellow or red based on the monitored consumption of the flow the packet belongs to.

Functional Overview

The srTCM algorithm defines two token buckets for each traffic flow, with the two buckets
sharing the same token update rate:

• Committed (C) bucket: fed with tokens at the rate defined by the Committed Information
Rate (CIR) parameter (measured in IP packet bytes per second). The size of the C bucket
is defined by the Committed Burst Size (CBS) parameter (measured in bytes);

• Excess (E) bucket: fed with tokens at the same rate as the C bucket. The size of the E
bucket is defined by the Excess Burst Size (EBS) parameter (measured in bytes).

4.21. Quality of Service (QoS) Framework 159

DPDK documentation, Release 16.04.0

The trTCM algorithm defines two token buckets for each traffic flow, with the two buckets being
updated with tokens at independent rates:

• Committed (C) bucket: fed with tokens at the rate defined by the Committed Information
Rate (CIR) parameter (measured in bytes of IP packet per second). The size of the C
bucket is defined by the Committed Burst Size (CBS) parameter (measured in bytes);

• Peak (P) bucket: fed with tokens at the rate defined by the Peak Information Rate (PIR)
parameter (measured in IP packet bytes per second). The size of the P bucket is defined
by the Peak Burst Size (PBS) parameter (measured in bytes).

Please refer to RFC 2697 (for srTCM) and RFC 2698 (for trTCM) for details on how tokens are
consumed from the buckets and how the packet color is determined.

Color Blind and Color Aware Modes

For both algorithms, the color blind mode is functionally equivalent to the color aware mode
with input color set as green. For color aware mode, a packet with red input color can only get
the red output color, while a packet with yellow input color can only get the yellow or red output
colors.

The reason why the color blind mode is still implemented distinctly than the color aware mode
is that color blind mode can be implemented with fewer operations than the color aware mode.

Implementation Overview

For each input packet, the steps for the srTCM / trTCM algorithms are:

• Update the C and E / P token buckets. This is done by reading the current time (from
the CPU timestamp counter), identifying the amount of time since the last bucket update
and computing the associated number of tokens (according to the pre-configured bucket
rate). The number of tokens in the bucket is limited by the pre-configured bucket size;

• Identify the output color for the current packet based on the size of the IP packet and the
amount of tokens currently available in the C and E / P buckets; for color aware mode
only, the input color of the packet is also considered. When the output color is not red, a
number of tokens equal to the length of the IP packet are subtracted from the C or E /P
or both buckets, depending on the algorithm and the output color of the packet.

4.22 Power Management

The DPDK Power Management feature allows users space applications to save power by dy-
namically adjusting CPU frequency or entering into different C-States.

• Adjusting the CPU frequency dynamically according to the utilization of RX queue.

• Entering into different deeper C-States according to the adaptive algorithms to speculate
brief periods of time suspending the application if no packets are received.

The interfaces for adjusting the operating CPU frequency are in the power management library.
C-State control is implemented in applications according to the different use cases.

4.22. Power Management 160

DPDK documentation, Release 16.04.0

4.22.1 CPU Frequency Scaling

The Linux kernel provides a cpufreq module for CPU frequency scaling for each lcore. For
example, for cpuX, /sys/devices/system/cpu/cpuX/cpufreq/ has the following sys files for fre-
quency scaling:

• affected_cpus

• bios_limit

• cpuinfo_cur_freq

• cpuinfo_max_freq

• cpuinfo_min_freq

• cpuinfo_transition_latency

• related_cpus

• scaling_available_frequencies

• scaling_available_governors

• scaling_cur_freq

• scaling_driver

• scaling_governor

• scaling_max_freq

• scaling_min_freq

• scaling_setspeed

In the DPDK, scaling_governor is configured in user space. Then, a user space application
can prompt the kernel by writing scaling_setspeed to adjust the CPU frequency according to
the strategies defined by the user space application.

4.22.2 Core-load Throttling through C-States

Core state can be altered by speculative sleeps whenever the specified lcore has nothing to
do. In the DPDK, if no packet is received after polling, speculative sleeps can be triggered
according the strategies defined by the user space application.

4.22.3 API Overview of the Power Library

The main methods exported by power library are for CPU frequency scaling and include the
following:

• Freq up: Prompt the kernel to scale up the frequency of the specific lcore.

• Freq down: Prompt the kernel to scale down the frequency of the specific lcore.

• Freq max: Prompt the kernel to scale up the frequency of the specific lcore to the maxi-
mum.

• Freq min: Prompt the kernel to scale down the frequency of the specific lcore to the
minimum.

4.22. Power Management 161

DPDK documentation, Release 16.04.0

• Get available freqs: Read the available frequencies of the specific lcore from the sys
file.

• Freq get: Get the current frequency of the specific lcore.

• Freq set: Prompt the kernel to set the frequency for the specific lcore.

4.22.4 User Cases

The power management mechanism is used to save power when performing L3 forwarding.

4.22.5 References

• l3fwd-power: The sample application in DPDK that performs L3 forwarding with power
management.

• The “L3 Forwarding with Power Management Sample Application” chapter in the DPDK
Sample Application’s User Guide.

4.23 Packet Classification and Access Control

The DPDK provides an Access Control library that gives the ability to classify an input packet
based on a set of classification rules.

The ACL library is used to perform an N-tuple search over a set of rules with multiple categories
and find the best match (highest priority) for each category. The library API provides the
following basic operations:

• Create a new Access Control (AC) context.

• Add rules into the context.

• For all rules in the context, build the runtime structures necessary to perform packet
classification.

• Perform input packet classifications.

• Destroy an AC context and its runtime structures and free the associated memory.

4.23.1 Overview

Rule definition

The current implementation allows the user for each AC context to specify its own rule (set of
fields) over which packet classification will be performed. Though there are few restrictions on
the rule fields layout:

• First field in the rule definition has to be one byte long.

• All subsequent fields has to be grouped into sets of 4 consecutive bytes.

This is done mainly for performance reasons - search function processes the first input byte as
part of the flow setup and then the inner loop of the search function is unrolled to process four
input bytes at a time.

4.23. Packet Classification and Access Control 162

DPDK documentation, Release 16.04.0

To define each field inside an AC rule, the following structure is used:

struct rte_acl_field_def {
uint8_t type; /*< type - ACL_FIELD_TYPE. */
uint8_t size; /*< size of field 1,2,4, or 8. */
uint8_t field_index; /*< index of field inside the rule. */
uint8_t input_index; /*< 0-N input index. */
uint32_t offset; /*< offset to start of field. */

};

• type The field type is one of three choices:

– _MASK - for fields such as IP addresses that have a value and a mask defining the
number of relevant bits.

– _RANGE - for fields such as ports that have a lower and upper value for the field.

– _BITMASK - for fields such as protocol identifiers that have a value and a bit mask.

• size The size parameter defines the length of the field in bytes. Allowable values are 1,
2, 4, or 8 bytes. Note that due to the grouping of input bytes, 1 or 2 byte fields must be
defined as consecutive fields that make up 4 consecutive input bytes. Also, it is best to
define fields of 8 or more bytes as 4 byte fields so that the build processes can eliminate
fields that are all wild.

• field_index A zero-based value that represents the position of the field inside the rule; 0
to N-1 for N fields.

• input_index As mentioned above, all input fields, except the very first one, must be in
groups of 4 consecutive bytes. The input index specifies to which input group that field
belongs to.

• offset The offset field defines the offset for the field. This is the offset from the beginning
of the buffer parameter for the search.

For example, to define classification for the following IPv4 5-tuple structure:

struct ipv4_5tuple {
uint8_t proto;
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;

};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[5] = {
/* first input field - always one byte long. */
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct ipv4_5tuple, proto),
},

/* next input field (IPv4 source address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 1,

.input_index = 1,
.offset = offsetof (struct ipv4_5tuple, ip_src),

4.23. Packet Classification and Access Control 163

DPDK documentation, Release 16.04.0

},

/* next input field (IPv4 destination address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 2,

.input_index = 2,
.offset = offsetof (struct ipv4_5tuple, ip_dst),

},

/*
* Next 2 fields (src & dst ports) form 4 consecutive bytes.

* They share the same input index.

*/
{

.type = RTE_ACL_FIELD_TYPE_RANGE,

.size = sizeof (uint16_t),

.field_index = 3,

.input_index = 3,

.offset = offsetof (struct ipv4_5tuple, port_src),
},

{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof (uint16_t),
.field_index = 4,
.input_index = 3,
.offset = offsetof (struct ipv4_5tuple, port_dst),

},
};

A typical example of such an IPv4 5-tuple rule is a follows:

source addr/mask destination addr/mask source ports dest ports protocol/mask
192.168.1.0/24 192.168.2.31/32 0:65535 1234:1234 17/0xff

Any IPv4 packets with protocol ID 17 (UDP), source address 192.168.1.[0-255], destination
address 192.168.2.31, source port [0-65535] and destination port 1234 matches the above
rule.

To define classification for the IPv6 2-tuple: <protocol, IPv6 source address> over the following
IPv6 header structure:

struct struct ipv6_hdr {
uint32_t vtc_flow; /* IP version, traffic class & flow label. */
uint16_t payload_len; /* IP packet length - includes sizeof(ip_header). */
uint8_t proto; /* Protocol, next header. */
uint8_t hop_limits; /* Hop limits. */
uint8_t src_addr[16]; /* IP address of source host. */
uint8_t dst_addr[16]; /* IP address of destination host(s). */

} __attribute__((__packed__));

The following array of field definitions can be used:

struct struct rte_acl_field_def ipv6_2tuple_defs[5] = {
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct ipv6_hdr, proto),
},

4.23. Packet Classification and Access Control 164

DPDK documentation, Release 16.04.0

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 1,
.input_index = 1,
.offset = offsetof (struct ipv6_hdr, src_addr[0]),

},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 2,
.input_index = 2,
.offset = offsetof (struct ipv6_hdr, src_addr[4]),

},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 3,
.input_index = 3,

.offset = offsetof (struct ipv6_hdr, src_addr[8]),
},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 4,
.input_index = 4,
.offset = offsetof (struct ipv6_hdr, src_addr[12]),

},
};

A typical example of such an IPv6 2-tuple rule is a follows:

source addr/mask protocol/mask
2001:db8:1234:0000:0000:0000:0000:0000/48 6/0xff

Any IPv6 packets with protocol ID 6 (TCP), and source address inside the range
[2001:db8:1234:0000:0000:0000:0000:0000 - 2001:db8:1234:ffff:ffff:ffff:ffff:ffff] matches the
above rule.

In the following example the last element of the search key is 8-bit long. So it is a case
where the 4 consecutive bytes of an input field are not fully occupied. The structure for the
classification is:

struct acl_key {
uint8_t ip_proto;
uint32_t ip_src;
uint32_t ip_dst;
uint8_t tos; /*< This is partially using a 32-bit input element */

};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[4] = {
/* first input field - always one byte long. */
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct acl_key, ip_proto),
},

4.23. Packet Classification and Access Control 165

DPDK documentation, Release 16.04.0

/* next input field (IPv4 source address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 1,

.input_index = 1,
.offset = offsetof (struct acl_key, ip_src),

},

/* next input field (IPv4 destination address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 2,

.input_index = 2,
.offset = offsetof (struct acl_key, ip_dst),

},

/*
* Next element of search key (Type of Service) is indeed 1 byte long.

* Anyway we need to allocate all the 4 consecutive bytes for it.

*/
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint32_t), /* All the 4 consecutive bytes are allocated */

.field_index = 3,

.input_index = 3,

.offset = offsetof (struct acl_key, tos),
},

};

A typical example of such an IPv4 4-tuple rule is as follows:

source addr/mask destination addr/mask tos/mask protocol/mask
192.168.1.0/24 192.168.2.31/32 1/0xff 6/0xff

Any IPv4 packets with protocol ID 6 (TCP), source address 192.168.1.[0-255], destination
address 192.168.2.31, ToS 1 matches the above rule.

When creating a set of rules, for each rule, additional information must be supplied also:

• priority: A weight to measure the priority of the rules (higher is better). If the input tuple
matches more than one rule, then the rule with the higher priority is returned. Note that
if the input tuple matches more than one rule and these rules have equal priority, it is
undefined which rule is returned as a match. It is recommended to assign a unique
priority for each rule.

• category_mask: Each rule uses a bit mask value to select the relevant category(s) for
the rule. When a lookup is performed, the result for each category is returned. This ef-
fectively provides a “parallel lookup” by enabling a single search to return multiple results
if, for example, there were four different sets of ACL rules, one for access control, one for
routing, and so on. Each set could be assigned its own category and by combining them
into a single database, one lookup returns a result for each of the four sets.

• userdata: A user-defined field that could be any value except zero. For each category, a
successful match returns the userdata field of the highest priority matched rule.

Note: When adding new rules into an ACL context, all fields must be in host byte order (LSB).
When the search is performed for an input tuple, all fields in that tuple must be in network byte

4.23. Packet Classification and Access Control 166

DPDK documentation, Release 16.04.0

order (MSB).

RT memory size limit

Build phase (rte_acl_build()) creates for a given set of rules internal structure for further run-
time traversal. With current implementation it is a set of multi-bit tries (with stride == 8).
Depending on the rules set, that could consume significant amount of memory. In attempt
to conserve some space ACL build process tries to split the given rule-set into several non-
intersecting subsets and construct a separate trie for each of them. Depending on the rule-set,
it might reduce RT memory requirements but might increase classification time. There is a
possibility at build-time to specify maximum memory limit for internal RT structures for given
AC context. It could be done via max_size field of the rte_acl_config structure. Setting it to
the value greater than zero, instructs rte_acl_build() to:

• attempt to minimize number of tries in the RT table, but

• make sure that size of RT table wouldn’t exceed given value.

Setting it to zero makes rte_acl_build() to use the default behavior: try to minimize size of the
RT structures, but doesn’t expose any hard limit on it.

That gives the user the ability to decisions about performance/space trade-off. For example:

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/*
* assuming that acx points to already created and

* populated with rules AC context and cfg filled properly.

*/

/* try to build AC context, with RT structures less then 8MB. */
cfg.max_size = 0x800000;
ret = rte_acl_build(acx, &cfg);

/*
* RT structures can't fit into 8MB for given context.

* Try to build without exposing any hard limit.

*/
if (ret == -ERANGE) {

cfg.max_size = 0;
ret = rte_acl_build(acx, &cfg);

}

Classification methods

After rte_acl_build() over given AC context has finished successfully, it can be used to perform
classification - search for a rule with highest priority over the input data. There are several
implementations of classify algorithm:

• RTE_ACL_CLASSIFY_SCALAR: generic implementation, doesn’t require any specific
HW support.

• RTE_ACL_CLASSIFY_SSE: vector implementation, can process up to 8 flows in paral-
lel. Requires SSE 4.1 support.

4.23. Packet Classification and Access Control 167

DPDK documentation, Release 16.04.0

• RTE_ACL_CLASSIFY_AVX2: vector implementation, can process up to 16 flows in par-
allel. Requires AVX2 support.

It is purely a runtime decision which method to choose, there is no build-time difference. All
implementations operates over the same internal RT structures and use similar principles. The
main difference is that vector implementations can manually exploit IA SIMD instructions and
process several input data flows in parallel. At startup ACL library determines the highest
available classify method for the given platform and sets it as default one. Though the user has
an ability to override the default classifier function for a given ACL context or perform particular
search using non-default classify method. In that case it is user responsibility to make sure
that given platform supports selected classify implementation.

4.23.2 Application Programming Interface (API) Usage

Note: For more details about the Access Control API, please refer to the DPDK API Refer-
ence.

The following example demonstrates IPv4, 5-tuple classification for rules defined above with
multiple categories in more detail.

Classify with Multiple Categories

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/* define a structure for the rule with up to 5 fields. */

RTE_ACL_RULE_DEF(acl_ipv4_rule, RTE_DIM(ipv4_defs));

/* AC context creation parameters. */

struct rte_acl_param prm = {
.name = "ACL_example",
.socket_id = SOCKET_ID_ANY,
.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ipv4_defs)),

/* number of fields per rule. */

.max_rule_num = 8, /* maximum number of rules in the AC context. */
};

struct acl_ipv4_rule acl_rules[] = {

/* matches all packets traveling to 192.168.0.0/16, applies for categories: 0,1 */
{

.data = {.userdata = 1, .category_mask = 3, .priority = 1},

/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192,168,0,0),. mask_range.u32 = 16,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */

4.23. Packet Classification and Access Control 168

DPDK documentation, Release 16.04.0

.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
},

/* matches all packets traveling to 192.168.1.0/24, applies for categories: 0 */
{

.data = {.userdata = 2, .category_mask = 1, .priority = 2},

/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192,168,1,0),. mask_range.u32 = 24,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

},

/* matches all packets traveling from 10.1.1.1, applies for categories: 1 */
{

.data = {.userdata = 3, .category_mask = 2, .priority = 3},

/* source IPv4 */
.field[1] = {.value.u32 = IPv4(10,1,1,1),. mask_range.u32 = 32,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

},

};

/* create an empty AC context */

if ((acx = rte_acl_create(&prm)) == NULL) {

/* handle context create failure. */

}

/* add rules to the context */

ret = rte_acl_add_rules(acx, acl_rules, RTE_DIM(acl_rules));
if (ret != 0) {

/* handle error at adding ACL rules. */
}

/* prepare AC build config. */

cfg.num_categories = 2;
cfg.num_fields = RTE_DIM(ipv4_defs);

memcpy(cfg.defs, ipv4_defs, sizeof (ipv4_defs));

/* build the runtime structures for added rules, with 2 categories. */

ret = rte_acl_build(acx, &cfg);
if (ret != 0) {

/* handle error at build runtime structures for ACL context. */
}

4.23. Packet Classification and Access Control 169

DPDK documentation, Release 16.04.0

For a tuple with source IP address: 10.1.1.1 and destination IP address: 192.168.1.15, once
the following lines are executed:

uint32_t results[4]; /* make classify for 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

then the results[] array contains:

results[4] = {2, 3, 0, 0};

• For category 0, both rules 1 and 2 match, but rule 2 has higher priority, therefore results[0]
contains the userdata for rule 2.

• For category 1, both rules 1 and 3 match, but rule 3 has higher priority, therefore results[1]
contains the userdata for rule 3.

• For categories 2 and 3, there are no matches, so results[2] and results[3] contain zero,
which indicates that no matches were found for those categories.

For a tuple with source IP address: 192.168.1.1 and destination IP address: 192.168.2.11,
once the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {1, 1, 0, 0};

• For categories 0 and 1, only rule 1 matches.

• For categories 2 and 3, there are no matches.

For a tuple with source IP address: 10.1.1.1 and destination IP address: 201.212.111.12, once
the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {0, 3, 0, 0};

• For category 1, only rule 3 matches.

• For categories 0, 2 and 3, there are no matches.

4.24 Packet Framework

4.24.1 Design Objectives

The main design objectives for the DPDK Packet Framework are:

• Provide standard methodology to build complex packet processing pipelines. Provide
reusable and extensible templates for the commonly used pipeline functional blocks;

• Provide capability to switch between pure software and hardware-accelerated implemen-
tations for the same pipeline functional block;

4.24. Packet Framework 170

DPDK documentation, Release 16.04.0

• Provide the best trade-off between flexibility and performance. Hardcoded pipelines usu-
ally provide the best performance, but are not flexible, while developing flexible frame-
works is never a problem, but performance is usually low;

• Provide a framework that is logically similar to Open Flow.

4.24.2 Overview

Packet processing applications are frequently structured as pipelines of multiple stages, with
the logic of each stage glued around a lookup table. For each incoming packet, the table
defines the set of actions to be applied to the packet, as well as the next stage to send the
packet to.

The DPDK Packet Framework minimizes the development effort required to build packet pro-
cessing pipelines by defining a standard methodology for pipeline development, as well as
providing libraries of reusable templates for the commonly used pipeline blocks.

The pipeline is constructed by connecting the set of input ports with the set of output ports
through the set of tables in a tree-like topology. As result of lookup operation for the current
packet in the current table, one of the table entries (on lookup hit) or the default table entry (on
lookup miss) provides the set of actions to be applied on the current packet, as well as the next
hop for the packet, which can be either another table, an output port or packet drop.

An example of packet processing pipeline is presented in Fig. 4.51:

Fig. 4.51: Example of Packet Processing Pipeline where Input Ports 0 and 1 are Connected
with Output Ports 0, 1 and 2 through Tables 0 and 1

4.24.3 Port Library Design

Port Types

Table 4.21 is a non-exhaustive list of ports that can be implemented with the Packet Framework.

4.24. Packet Framework 171

DPDK documentation, Release 16.04.0

Table 4.21: Port Types

Port
type

Description

1 SW ring SW circular buffer used for message passing between the application
threads. Uses the DPDK rte_ring primitive. Expected to be the most
commonly used type of port.

2 HW ring Queue of buffer descriptors used to interact with NIC, switch or accelerator
ports. For NIC ports, it uses the DPDK rte_eth_rx_queue or
rte_eth_tx_queue primitives.

3 IP re-
assem-
bly

Input packets are either IP fragments or complete IP datagrams. Output
packets are complete IP datagrams.

4 IP frag-
menta-
tion

Input packets are jumbo (IP datagrams with length bigger than MTU) or
non-jumbo packets. Output packets are non-jumbo packets.

5 Traffic
man-
ager

Traffic manager attached to a specific NIC output port, performing
congestion management and hierarchical scheduling according to
pre-defined SLAs.

6 KNI Send/receive packets to/from Linux kernel space.
7 Source Input port used as packet generator. Similar to Linux kernel /dev/zero

character device.
8 Sink Output port used to drop all input packets. Similar to Linux kernel /dev/null

character device.

Port Interface

Each port is unidirectional, i.e. either input port or output port. Each input/output port is
required to implement an abstract interface that defines the initialization and run-time operation
of the port. The port abstract interface is described in.

Table 4.22: 20 Port Abstract Interface

Port
Operation

Description

1 Create Create the low-level port object (e.g. queue). Can internally allocate
memory.

2 Free Free the resources (e.g. memory) used by the low-level port object.
3 RX Read a burst of input packets. Non-blocking operation. Only defined for

input ports.
4 TX Write a burst of input packets. Non-blocking operation. Only defined for

output ports.
5 Flush Flush the output buffer. Only defined for output ports.

4.24.4 Table Library Design

Table Types

Table 4.23 is a non-exhaustive list of types of tables that can be implemented with the Packet
Framework.

4.24. Packet Framework 172

DPDK documentation, Release 16.04.0

Table 4.23: Table Types

Table Type Description
1 Hash table Lookup key is n-tuple based.

Typically, the lookup key is
hashed to produce a signa-
ture that is used to identify
a bucket of entries where the
lookup key is searched next.
The signature associated with
the lookup key of each in-
put packet is either read from
the packet descriptor (pre-
computed signature) or com-
puted at table lookup time.
The table lookup, add entry
and delete entry operations,
as well as any other pipeline
block that pre-computes the
signature all have to use the
same hashing algorithm to
generate the signature.
Typically used to implement
flow classification tables, ARP
caches, routing table for tun-
nelling protocols, etc.

2 Longest Prefix Match (LPM) Lookup key is the IP address.
Each table entries has an
associated IP prefix (IP and
depth).
The table lookup operation
selects the IP prefix that is
matched by the lookup key; in
case of multiple matches, the
entry with the longest prefix
depth wins.
Typically used to implement
IP routing tables.

3 Access Control List (ACLs) Lookup key is 7-tuple of two
VLAN/MPLS labels, IP desti-
nation address, IP source ad-
dresses, L4 protocol, L4 des-
tination port, L4 source port.
Each table entry has an asso-
ciated ACL and priority. The
ACL contains bit masks for
the VLAN/MPLS labels, IP
prefix for IP destination ad-
dress, IP prefix for IP source
addresses, L4 protocol and
bitmask, L4 destination port
and bit mask, L4 source port
and bit mask.
The table lookup opera-
tion selects the ACL that is
matched by the lookup key; in
case of multiple matches, the
entry with the highest priority
wins.
Typically used to implement
rule databases for firewalls,
etc.

4 Pattern matching search Lookup key is the packet pay-
load.
Table is a database of pat-
terns, with each pattern hav-
ing a priority assigned.
The table lookup operation
selects the patterns that is
matched by the input packet;
in case of multiple matches,
the matching pattern with the
highest priority wins.

5 Array Lookup key is the table entry
index itself.

4.24. Packet Framework 173

DPDK documentation, Release 16.04.0

Table Interface

Each table is required to implement an abstract interface that defines the initialization and
run-time operation of the table. The table abstract interface is described in Table 4.24.

Table 4.24: Table Abstract Interface

Table operation Description
1 Create Create the low-level data

structures of the lookup table.
Can internally allocate mem-
ory.

2 Free Free up all the resources
used by the lookup table.

3 Add entry Add new entry to the lookup
table.

4 Delete entry Delete specific entry from the
lookup table.

5 Lookup Look up a burst of input pack-
ets and return a bit mask
specifying the result of the
lookup operation for each
packet: a set bit signifies
lookup hit for the correspond-
ing packet, while a cleared bit
a lookup miss.
For each lookup hit packet,
the lookup operation also re-
turns a pointer to the table en-
try that was hit, which con-
tains the actions to be applied
on the packet and any associ-
ated metadata.
For each lookup miss packet,
the actions to be applied on
the packet and any associ-
ated metadata are specified
by the default table entry pre-
configured for lookup miss.

Hash Table Design

Hash Table Overview

Hash tables are important because the key lookup operation is optimized for speed: instead of
having to linearly search the lookup key through all the keys in the table, the search is limited
to only the keys stored in a single table bucket.

Associative Arrays

An associative array is a function that can be specified as a set of (key, value) pairs, with each
key from the possible set of input keys present at most once. For a given associative array, the

4.24. Packet Framework 174

DPDK documentation, Release 16.04.0

possible operations are:

1. add (key, value): When no value is currently associated with key, then the (key, value) as-
sociation is created. When key is already associated value value0, then the association
(key, value0) is removed and association (key, value) is created;

2. delete key : When no value is currently associated with key, this operation has no effect.
When key is already associated value, then association (key, value) is removed;

3. lookup key : When no value is currently associated with key, then this operation returns
void value (lookup miss). When key is associated with value, then this operation returns
value. The (key, value) association is not changed.

The matching criterion used to compare the input key against the keys in the associative array
is exact match, as the key size (number of bytes) and the key value (array of bytes) have to
match exactly for the two keys under comparison.

Hash Function

A hash function deterministically maps data of variable length (key) to data of fixed size (hash
value or key signature). Typically, the size of the key is bigger than the size of the key signature.
The hash function basically compresses a long key into a short signature. Several keys can
share the same signature (collisions).

High quality hash functions have uniform distribution. For large number of keys, when dividing
the space of signature values into a fixed number of equal intervals (buckets), it is desirable
to have the key signatures evenly distributed across these intervals (uniform distribution), as
opposed to most of the signatures going into only a few of the intervals and the rest of the
intervals being largely unused (non-uniform distribution).

Hash Table

A hash table is an associative array that uses a hash function for its operation. The reason for
using a hash function is to optimize the performance of the lookup operation by minimizing the
number of table keys that have to be compared against the input key.

Instead of storing the (key, value) pairs in a single list, the hash table maintains multiple lists
(buckets). For any given key, there is a single bucket where that key might exist, and this bucket
is uniquely identified based on the key signature. Once the key signature is computed and the
hash table bucket identified, the key is either located in this bucket or it is not present in the
hash table at all, so the key search can be narrowed down from the full set of keys currently in
the table to just the set of keys currently in the identified table bucket.

The performance of the hash table lookup operation is greatly improved, provided that the table
keys are evenly distributed among the hash table buckets, which can be achieved by using a
hash function with uniform distribution. The rule to map a key to its bucket can simply be to
use the key signature (modulo the number of table buckets) as the table bucket ID:

bucket_id = f_hash(key) % n_buckets;

By selecting the number of buckets to be a power of two, the modulo operator can be replaced
by a bitwise AND logical operation:

bucket_id = f_hash(key) & (n_buckets - 1);

considering n_bits as the number of bits set in bucket_mask = n_buckets - 1, this means that
all the keys that end up in the same hash table bucket have the lower n_bits of their signature
identical. In order to reduce the number of keys in the same bucket (collisions), the number of
hash table buckets needs to be increased.

4.24. Packet Framework 175

DPDK documentation, Release 16.04.0

In packet processing context, the sequence of operations involved in hash table operations is
described in Fig. 4.52:

Fig. 4.52: Sequence of Steps for Hash Table Operations in a Packet Processing Context

Hash Table Use Cases

Flow Classification

Description: The flow classification is executed at least once for each input packet. This oper-
ation maps each incoming packet against one of the known traffic flows in the flow database
that typically contains millions of flows.

Hash table name: Flow classification table

Number of keys: Millions

Key format: n-tuple of packet fields that uniquely identify a traffic flow/connection. Example:
DiffServ 5-tuple of (Source IP address, Destination IP address, L4 protocol, L4 protocol source
port, L4 protocol destination port). For IPv4 protocol and L4 protocols like TCP, UDP or SCTP,
the size of the DiffServ 5-tuple is 13 bytes, while for IPv6 it is 37 bytes.

Key value (key data): actions and action meta-data describing what processing to be applied
for the packets of the current flow. The size of the data associated with each traffic flow can
vary from 8 bytes to kilobytes.

Address Resolution Protocol (ARP)

Description: Once a route has been identified for an IP packet (so the output interface and
the IP address of the next hop station are known), the MAC address of the next hop station is
needed in order to send this packet onto the next leg of the journey towards its destination (as
identified by its destination IP address). The MAC address of the next hop station becomes
the destination MAC address of the outgoing Ethernet frame.

Hash table name: ARP table

Number of keys: Thousands

Key format: The pair of (Output interface, Next Hop IP address), which is typically 5 bytes for
IPv4 and 17 bytes for IPv6.

Key value (key data): MAC address of the next hop station (6 bytes).

Hash Table Types

Table 4.25 lists the hash table configuration parameters shared by all different hash table types.

4.24. Packet Framework 176

DPDK documentation, Release 16.04.0

Table 4.25: Configuration Parameters Common for All Hash Table Types

Parameter Details
1 Key size Measured as number of bytes. All keys have the same size.
2 Key value (key

data) size
Measured as number of bytes.

3 Number of
buckets

Needs to be a power of two.

4 Maximum number
of keys

Needs to be a power of two.

5 Hash function Examples: jhash, CRC hash, etc.
6 Hash function

seed
Parameter to be passed to the hash function.

7 Key offset Offset of the lookup key byte array within the packet meta-data
stored in the packet buffer.

Bucket Full Problem On initialization, each hash table bucket is allocated space for exactly
4 keys. As keys are added to the table, it can happen that a given bucket already has 4 keys
when a new key has to be added to this bucket. The possible options are:

1. Least Recently Used (LRU) Hash Table. One of the existing keys in the bucket is
deleted and the new key is added in its place. The number of keys in each bucket never
grows bigger than 4. The logic to pick the key to be dropped from the bucket is LRU. The
hash table lookup operation maintains the order in which the keys in the same bucket are
hit, so every time a key is hit, it becomes the new Most Recently Used (MRU) key, i.e.
the last candidate for drop. When a key is added to the bucket, it also becomes the new
MRU key. When a key needs to be picked and dropped, the first candidate for drop, i.e.
the current LRU key, is always picked. The LRU logic requires maintaining specific data
structures per each bucket.

2. Extendable Bucket Hash Table. The bucket is extended with space for 4 more keys.
This is done by allocating additional memory at table initialization time, which is used to
create a pool of free keys (the size of this pool is configurable and always a multiple of 4).
On key add operation, the allocation of a group of 4 keys only happens successfully within
the limit of free keys, otherwise the key add operation fails. On key delete operation, a
group of 4 keys is freed back to the pool of free keys when the key to be deleted is the
only key that was used within its group of 4 keys at that time. On key lookup operation,
if the current bucket is in extended state and a match is not found in the first group of 4
keys, the search continues beyond the first group of 4 keys, potentially until all keys in
this bucket are examined. The extendable bucket logic requires maintaining specific data
structures per table and per each bucket.

Table 4.26: Configuration Parameters Specific to Extendable Bucket Hash Table

Parameter Details
1 Number of additional keys Needs to be a power of two, at least equal to 4.

Signature Computation The possible options for key signature computation are:

1. Pre-computed key signature. The key lookup operation is split between two CPU cores.
The first CPU core (typically the CPU core that performs packet RX) extracts the key
from the input packet, computes the key signature and saves both the key and the key

4.24. Packet Framework 177

DPDK documentation, Release 16.04.0

signature in the packet buffer as packet meta-data. The second CPU core reads both
the key and the key signature from the packet meta-data and performs the bucket search
step of the key lookup operation.

2. Key signature computed on lookup (“do-sig” version). The same CPU core reads the
key from the packet meta-data, uses it to compute the key signature and also performs
the bucket search step of the key lookup operation.

Table 4.27: Configuration Parameters Specific to Pre-computed Key Signature Hash Table

Parameter Details
1 Signature

offset
Offset of the pre-computed key signature within the packet
meta-data.

Key Size Optimized Hash Tables For specific key sizes, the data structures and algorithm
of key lookup operation can be specially handcrafted for further performance improvements,
so following options are possible:

1. Implementation supporting configurable key size.

2. Implementation supporting a single key size. Typical key sizes are 8 bytes and 16
bytes.

Bucket Search Logic for Configurable Key Size Hash Tables

The performance of the bucket search logic is one of the main factors influencing the perfor-
mance of the key lookup operation. The data structures and algorithm are designed to make
the best use of Intel CPU architecture resources like: cache memory space, cache memory
bandwidth, external memory bandwidth, multiple execution units working in parallel, out of
order instruction execution, special CPU instructions, etc.

The bucket search logic handles multiple input packets in parallel. It is built as a pipeline of
several stages (3 or 4), with each pipeline stage handling two different packets from the burst
of input packets. On each pipeline iteration, the packets are pushed to the next pipeline stage:
for the 4-stage pipeline, two packets (that just completed stage 3) exit the pipeline, two packets
(that just completed stage 2) are now executing stage 3, two packets (that just completed stage
1) are now executing stage 2, two packets (that just completed stage 0) are now executing
stage 1 and two packets (next two packets to read from the burst of input packets) are entering
the pipeline to execute stage 0. The pipeline iterations continue until all packets from the burst
of input packets execute the last stage of the pipeline.

The bucket search logic is broken into pipeline stages at the boundary of the next memory
access. Each pipeline stage uses data structures that are stored (with high probability) into
the L1 or L2 cache memory of the current CPU core and breaks just before the next memory
access required by the algorithm. The current pipeline stage finalizes by prefetching the data
structures required by the next pipeline stage, so given enough time for the prefetch to com-
plete, when the next pipeline stage eventually gets executed for the same packets, it will read
the data structures it needs from L1 or L2 cache memory and thus avoid the significant penalty
incurred by L2 or L3 cache memory miss.

By prefetching the data structures required by the next pipeline stage in advance (before they
are used) and switching to executing another pipeline stage for different packets, the number of
L2 or L3 cache memory misses is greatly reduced, hence one of the main reasons for improved

4.24. Packet Framework 178

DPDK documentation, Release 16.04.0

performance. This is because the cost of L2/L3 cache memory miss on memory read accesses
is high, as usually due to data dependency between instructions, the CPU execution units have
to stall until the read operation is completed from L3 cache memory or external DRAM memory.
By using prefetch instructions, the latency of memory read accesses is hidden, provided that it
is preformed early enough before the respective data structure is actually used.

By splitting the processing into several stages that are executed on different packets (the pack-
ets from the input burst are interlaced), enough work is created to allow the prefetch instruc-
tions to complete successfully (before the prefetched data structures are actually accessed)
and also the data dependency between instructions is loosened. For example, for the 4-stage
pipeline, stage 0 is executed on packets 0 and 1 and then, before same packets 0 and 1 are
used (i.e. before stage 1 is executed on packets 0 and 1), different packets are used: packets
2 and 3 (executing stage 1), packets 4 and 5 (executing stage 2) and packets 6 and 7 (exe-
cuting stage 3). By executing useful work while the data structures are brought into the L1 or
L2 cache memory, the latency of the read memory accesses is hidden. By increasing the gap
between two consecutive accesses to the same data structure, the data dependency between
instructions is loosened; this allows making the best use of the super-scalar and out-of-order
execution CPU architecture, as the number of CPU core execution units that are active (rather
than idle or stalled due to data dependency constraints between instructions) is maximized.

The bucket search logic is also implemented without using any branch instructions. This avoids
the important cost associated with flushing the CPU core execution pipeline on every instance
of branch misprediction.

Configurable Key Size Hash Table Fig. 4.53, Table 4.28 and Table 4.29 detail the main
data structures used to implement configurable key size hash tables (either LRU or extendable
bucket, either with pre-computed signature or “do-sig”).

Fig. 4.53: Data Structures for Configurable Key Size Hash Tables

4.24. Packet Framework 179

DPDK documentation, Release 16.04.0

Table 4.28: Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

Array name Number of
entries

Entry size
(bytes)

Description

1 Bucket array n_buckets
(configurable)

32 Buckets of the hash table.

2 Bucket
extensions
array

n_buckets_ext
(configurable)

32 This array is only created for
extendable bucket tables.

3 Key array n_keys key_size
(configurable)

Keys added to the hash table.

4 Data array n_keys entry_size
(configurable)

Key values (key data) associated
with the hash table keys.

4.24. Packet Framework 180

DPDK documentation, Release 16.04.0

Table 4.29: Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

Field name Field size (bytes) Description
1 Next Ptr/LRU 8 For LRU tables, this

fields represents the
LRU list for the current
bucket stored as array
of 4 entries of 2 bytes
each. Entry 0 stores
the index (0 .. 3) of the
MRU key, while entry
3 stores the index of
the LRU key.
For extendable bucket
tables, this field repre-
sents the next pointer
(i.e. the pointer to
the next group of 4
keys linked to the cur-
rent bucket). The
next pointer is not
NULL if the bucket is
currently extended or
NULL otherwise. To
help the branchless
implementation, bit 0
(least significant bit) of
this field is set to 1 if
the next pointer is not
NULL and to 0 other-
wise.

2 Sig[0 .. 3] 4 x 2 If key X (X = 0 .. 3)
is valid, then sig X bits
15 .. 1 store the most
significant 15 bits of
key X signature and
sig X bit 0 is set to 1.
If key X is not valid,
then sig X is set to
zero.

3 Key Pos [0 .. 3] 4 x 4 If key X is valid (X
= 0 .. 3), then Key
Pos X represents the
index into the key ar-
ray where key X is
stored, as well as the
index into the data ar-
ray where the value
associated with key X
is stored.
If key X is not valid,
then the value of Key
Pos X is undefined.

4.24. Packet Framework 181

DPDK documentation, Release 16.04.0

Fig. 4.54 and Table 4.30 detail the bucket search pipeline stages (either LRU or extendable
bucket, either with pre-computed signature or “do-sig”). For each pipeline stage, the described
operations are applied to each of the two packets handled by that stage.

Fig. 4.54: Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash
Tables)

4.24. Packet Framework 182

DPDK documentation, Release 16.04.0

Table 4.30: Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash Ta-
bles)

Stage name Description
0 Prefetch packet meta-data Select next two packets from

the burst of input packets.
Prefetch packet meta-data
containing the key and key
signature.

1 Prefetch table bucket Read the key signature from
the packet meta-data (for ex-
tendable bucket hash tables)
or read the key from the
packet meta-data and com-
pute key signature (for LRU
tables).
Identify the bucket ID using
the key signature.
Set bit 0 of the signature to
1 (to match only signatures of
valid keys from the table).
Prefetch the bucket.

2 Prefetch table key Read the key signatures from
the bucket.
Compare the signature of the
input key against the 4 key
signatures from the packet.
As result, the following is ob-
tained:
match = equal to TRUE if
there was at least one sig-
nature match and to FALSE
in the case of no signature
match;
match_many = equal to
TRUE is there were more
than one signature matches
(can be up to 4 signature
matches in the worst case
scenario) and to FALSE
otherwise;
match_pos = the index of the
first key that produced signa-
ture match (only valid if match
is true).
For extendable bucket hash
tables only, set match_many
to TRUE if next pointer is
valid.
Prefetch the bucket key indi-
cated by match_pos (even if
match_pos does not point to
valid key valid).

3 Prefetch table data Read the bucket key indicated
by match_pos.
Compare the bucket key
against the input key. As re-
sult, the following is obtained:
match_key = equal to TRUE
if the two keys match and to
FALSE otherwise.
Report input key as lookup
hit only when both match
and match_key are equal to
TRUE and as lookup miss
otherwise.
For LRU tables only, use
branchless logic to update the
bucket LRU list (the current
key becomes the new MRU)
only on lookup hit.
Prefetch the key value (key
data) associated with the cur-
rent key (to avoid branches,
this is done on both lookup hit
and miss).

4.24. Packet Framework 183

DPDK documentation, Release 16.04.0

Additional notes:

1. The pipelined version of the bucket search algorithm is executed only if there are at least
7 packets in the burst of input packets. If there are less than 7 packets in the burst of input
packets, a non-optimized implementation of the bucket search algorithm is executed.

2. Once the pipelined version of the bucket search algorithm has been executed for all the
packets in the burst of input packets, the non-optimized implementation of the bucket
search algorithm is also executed for any packets that did not produce a lookup hit, but
have the match_many flag set. As result of executing the non-optimized version, some
of these packets may produce a lookup hit or lookup miss. This does not impact the
performance of the key lookup operation, as the probability of matching more than one
signature in the same group of 4 keys or of having the bucket in extended state (for
extendable bucket hash tables only) is relatively small.

Key Signature Comparison Logic

The key signature comparison logic is described in Table 4.31.

Table 4.31: Lookup Tables for Match, Match_Many and Match_Pos

mask match (1 bit) match_many (1 bit) match_pos (2 bits)
0 0000 0 0 00
1 0001 1 0 00
2 0010 1 0 01
3 0011 1 1 00
4 0100 1 0 10
5 0101 1 1 00
6 0110 1 1 01
7 0111 1 1 00
8 1000 1 0 11
9 1001 1 1 00
10 1010 1 1 01
11 1011 1 1 00
12 1100 1 1 10
13 1101 1 1 00
14 1110 1 1 01
15 1111 1 1 00

The input mask hash bit X (X = 0 .. 3) set to 1 if input signature is equal to bucket signature X
and set to 0 otherwise. The outputs match, match_many and match_pos are 1 bit, 1 bit and 2
bits in size respectively and their meaning has been explained above.

As displayed in Table 4.32, the lookup tables for match and match_many can be collapsed into
a single 32-bit value and the lookup table for match_pos can be collapsed into a 64-bit value.
Given the input mask, the values for match, match_many and match_pos can be obtained by
indexing their respective bit array to extract 1 bit, 1 bit and 2 bits respectively with branchless
logic.

Table 4.32: Collapsed Lookup Tables for Match, Match_Many and Match_Pos

Bit array Hexadecimal value
match 1111_1111_1111_1110 0xFFFELLU
match_many 1111_1110_1110_1000 0xFEE8LLU
match_pos 0001_0010_0001_0011__0001_0010_0001_0000 0x12131210LLU

4.24. Packet Framework 184

DPDK documentation, Release 16.04.0

The pseudo-code for match, match_many and match_pos is:

match = (0xFFFELLU >> mask) & 1;

match_many = (0xFEE8LLU >> mask) & 1;

match_pos = (0x12131210LLU >> (mask << 1)) & 3;

Single Key Size Hash Tables Fig. 4.55, Fig. 4.56, Table 4.33 and Table 4.34 detail the
main data structures used to implement 8-byte and 16-byte key hash tables (either LRU or
extendable bucket, either with pre-computed signature or “do-sig”).

Fig. 4.55: Data Structures for 8-byte Key Hash Tables

Fig. 4.56: Data Structures for 16-byte Key Hash Tables

Table 4.33: Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash Tables

Array name Number of entries Entry size (bytes) Description
1 Bucket array n_buckets (con-

figurable)
8-byte key size:
64 + 4 x en-
try_size
16-byte key size:
128 + 4 x en-
try_size

Buckets of the
hash table.

2 Bucket exten-
sions array

n_buckets_ext
(configurable)

8-byte key size:
64 + 4 x en-
try_size
16-byte key size:
128 + 4 x en-
try_size

This array is only
created for ex-
tendable bucket
tables.

4.24. Packet Framework 185

DPDK documentation, Release 16.04.0

Table 4.34: Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

Field name Field size (bytes) Description
1 Valid 8 Bit X (X = 0 .. 3) is set

to 1 if key X is valid or
to 0 otherwise.
Bit 4 is only used for
extendable bucket ta-
bles to help with the
implementation of the
branchless logic. In
this case, bit 4 is set to
1 if next pointer is valid
(not NULL) or to 0 oth-
erwise.

2 Next Ptr/LRU 8 For LRU tables, this
fields represents the
LRU list for the current
bucket stored as array
of 4 entries of 2 bytes
each. Entry 0 stores
the index (0 .. 3) of the
MRU key, while entry
3 stores the index of
the LRU key.
For extendable bucket
tables, this field repre-
sents the next pointer
(i.e. the pointer to
the next group of 4
keys linked to the cur-
rent bucket). The
next pointer is not
NULL if the bucket is
currently extended or
NULL otherwise.

3 Key [0 .. 3] 4 x key_size Full keys.
4 Data [0 .. 3] 4 x entry_size Full key values (key

data) associated with
keys 0 .. 3.

and detail the bucket search pipeline used to implement 8-byte and 16-byte key hash tables
(either LRU or extendable bucket, either with pre-computed signature or “do-sig”). For each
pipeline stage, the described operations are applied to each of the two packets handled by that
stage.

4.24. Packet Framework 186

DPDK documentation, Release 16.04.0

Fig. 4.57: Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash Tables)

Table 4.35: Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash
Tables)

Stage name Description
0 Prefetch packet meta-data

1. Select next two packets
from the burst of input
packets.

2. Prefetch packet meta-
data containing the key
and key signature.

1 Prefetch table bucket
1. Read the key signa-

ture from the packet
meta-data (for extend-
able bucket hash tables)
or read the key from the
packet meta-data and
compute key signature
(for LRU tables).

2. Identify the bucket ID
using the key signature.

3. Prefetch the bucket.

2 Prefetch table data
1. Read the bucket.
2. Compare all 4 bucket

keys against the input
key.

3. Report input key as
lookup hit only when
a match is identified
(more than one key
match is not possible)

4. For LRU tables only, use
branchless logic to up-
date the bucket LRU
list (the current key be-
comes the new MRU)
only on lookup hit.

5. Prefetch the key value
(key data) associated
with the matched key (to
avoid branches, this is
done on both lookup hit
and miss).

4.24. Packet Framework 187

DPDK documentation, Release 16.04.0

Additional notes:

1. The pipelined version of the bucket search algorithm is executed only if there are at least
5 packets in the burst of input packets. If there are less than 5 packets in the burst of input
packets, a non-optimized implementation of the bucket search algorithm is executed.

2. For extendable bucket hash tables only, once the pipelined version of the bucket search
algorithm has been executed for all the packets in the burst of input packets, the non-
optimized implementation of the bucket search algorithm is also executed for any packets
that did not produce a lookup hit, but have the bucket in extended state. As result of
executing the non-optimized version, some of these packets may produce a lookup hit or
lookup miss. This does not impact the performance of the key lookup operation, as the
probability of having the bucket in extended state is relatively small.

4.24.5 Pipeline Library Design

A pipeline is defined by:

1. The set of input ports;

2. The set of output ports;

3. The set of tables;

4. The set of actions.

The input ports are connected with the output ports through tree-like topologies of intercon-
nected tables. The table entries contain the actions defining the operations to be executed on
the input packets and the packet flow within the pipeline.

Connectivity of Ports and Tables

To avoid any dependencies on the order in which pipeline elements are created, the connec-
tivity of pipeline elements is defined after all the pipeline input ports, output ports and tables
have been created.

General connectivity rules:

1. Each input port is connected to a single table. No input port should be left unconnected;

2. The table connectivity to other tables or to output ports is regulated by the next hop
actions of each table entry and the default table entry. The table connectivity is fluid, as
the table entries and the default table entry can be updated during run-time.

• A table can have multiple entries (including the default entry) connected to the same
output port. A table can have different entries connected to different output ports.
Different tables can have entries (including default table entry) connected to the
same output port.

• A table can have multiple entries (including the default entry) connected to another
table, in which case all these entries have to point to the same table. This constraint
is enforced by the API and prevents tree-like topologies from being created (allow-
ing table chaining only), with the purpose of simplifying the implementation of the
pipeline run-time execution engine.

4.24. Packet Framework 188

DPDK documentation, Release 16.04.0

Port Actions

Port Action Handler

An action handler can be assigned to each input/output port to define actions to be executed
on each input packet that is received by the port. Defining the action handler for a specific
input/output port is optional (i.e. the action handler can be disabled).

For input ports, the action handler is executed after RX function. For output ports, the action
handler is executed before the TX function.

The action handler can decide to drop packets.

Table Actions

Table Action Handler

An action handler to be executed on each input packet can be assigned to each table. Defining
the action handler for a specific table is optional (i.e. the action handler can be disabled).

The action handler is executed after the table lookup operation is performed and the table
entry associated with each input packet is identified. The action handler can only handle the
user-defined actions, while the reserved actions (e.g. the next hop actions) are handled by the
Packet Framework. The action handler can decide to drop the input packet.

Reserved Actions

The reserved actions are handled directly by the Packet Framework without the user being able
to change their meaning through the table action handler configuration. A special category of
the reserved actions is represented by the next hop actions, which regulate the packet flow
between input ports, tables and output ports through the pipeline. Table 4.36 lists the next hop
actions.

Table 4.36: Next Hop Actions (Reserved)

Next hop
action

Description

1 Drop Drop the current packet.
2 Send to

output port
Send the current packet to specified output port. The output port ID is
metadata stored in the same table entry.

3 Send to
table

Send the current packet to specified table. The table ID is metadata
stored in the same table entry.

User Actions

For each table, the meaning of user actions is defined through the configuration of the table
action handler. Different tables can be configured with different action handlers, therefore the
meaning of the user actions and their associated meta-data is private to each table. Within
the same table, all the table entries (including the table default entry) share the same definition
for the user actions and their associated meta-data, with each table entry having its own set

4.24. Packet Framework 189

DPDK documentation, Release 16.04.0

of enabled user actions and its own copy of the action meta-data. Table 4.37 contains a non-
exhaustive list of user action examples.

Table 4.37: User Action Examples

User action Description
1 Metering Per flow traffic metering using the srTCM and trTCM algorithms.
2 Statistics Update the statistics counters maintained per flow.
3 App ID Per flow state machine fed by variable length sequence of packets

at the flow initialization with the purpose of identifying the traffic
type and application.

4 Push/pop labels Push/pop VLAN/MPLS labels to/from the current packet.
5 Network

Address
Translation
(NAT)

Translate between the internal (LAN) and external (WAN) IP
destination/source address and/or L4 protocol destination/source
port.

6 TTL update Decrement IP TTL and, in case of IPv4 packets, update the IP
checksum.

4.24.6 Multicore Scaling

A complex application is typically split across multiple cores, with cores communicating through
SW queues. There is usually a performance limit on the number of table lookups and actions
that can be fitted on the same CPU core due to HW constraints like: available CPU cycles,
cache memory size, cache transfer BW, memory transfer BW, etc.

As the application is split across multiple CPU cores, the Packet Framework facilitates the
creation of several pipelines, the assignment of each such pipeline to a different CPU core
and the interconnection of all CPU core-level pipelines into a single application-level complex
pipeline. For example, if CPU core A is assigned to run pipeline P1 and CPU core B pipeline
P2, then the interconnection of P1 with P2 could be achieved by having the same set of SW
queues act like output ports for P1 and input ports for P2.

This approach enables the application development using the pipeline, run-to-completion (clus-
tered) or hybrid (mixed) models.

It is allowed for the same core to run several pipelines, but it is not allowed for several cores to
run the same pipeline.

Shared Data Structures

The threads performing table lookup are actually table writers rather than just readers. Even if
the specific table lookup algorithm is thread-safe for multiple readers (e. g. read-only access
of the search algorithm data structures is enough to conduct the lookup operation), once the
table entry for the current packet is identified, the thread is typically expected to update the
action meta-data stored in the table entry (e.g. increment the counter tracking the number of
packets that hit this table entry), and thus modify the table entry. During the time this thread
is accessing this table entry (either writing or reading; duration is application specific), for data
consistency reasons, no other threads (threads performing table lookup or entry add/delete
operations) are allowed to modify this table entry.

Mechanisms to share the same table between multiple threads:

4.24. Packet Framework 190

DPDK documentation, Release 16.04.0

1. Multiple writer threads. Threads need to use synchronization primitives like
semaphores (distinct semaphore per table entry) or atomic instructions. The cost of
semaphores is usually high, even when the semaphore is free. The cost of atomic in-
structions is normally higher than the cost of regular instructions.

2. Multiple writer threads, with single thread performing table lookup operations and
multiple threads performing table entry add/delete operations. The threads perform-
ing table entry add/delete operations send table update requests to the reader (typically
through message passing queues), which does the actual table updates and then sends
the response back to the request initiator.

3. Single writer thread performing table entry add/delete operations and multiple
reader threads that perform table lookup operations with read-only access to the
table entries. The reader threads use the main table copy while the writer is updating
the mirror copy. Once the writer update is done, the writer can signal to the readers and
busy wait until all readers swaps between the mirror copy (which now becomes the main
copy) and the mirror copy (which now becomes the main copy).

4.24.7 Interfacing with Accelerators

The presence of accelerators is usually detected during the initialization phase by inspecting
the HW devices that are part of the system (e.g. by PCI bus enumeration). Typical devices
with acceleration capabilities are:

• Inline accelerators: NICs, switches, FPGAs, etc;

• Look-aside accelerators: chipsets, FPGAs, etc.

Usually, to support a specific functional block, specific implementation of Packet Framework
tables and/or ports and/or actions has to be provided for each accelerator, with all the imple-
mentations sharing the same API: pure SW implementation (no acceleration), implementation
using accelerator A, implementation using accelerator B, etc. The selection between these
implementations could be done at build time or at run-time (recommended), based on which
accelerators are present in the system, with no application changes required.

4.25 Vhost Library

The vhost library implements a user space vhost driver. It supports both vhost-cuse (cuse: user
space character device) and vhost-user(user space socket server). It also creates, manages
and destroys vhost devices for corresponding virtio devices in the guest. Vhost supported
vSwitch could register callbacks to this library, which will be called when a vhost device is
activated or deactivated by guest virtual machine.

4.25.1 Vhost API Overview

• Vhost driver registration

rte_vhost_driver_register registers the vhost driver into the system. For vhost-
cuse, character device file will be created under the /dev directory. Character
device name is specified as the parameter. For vhost-user, a Unix domain
socket server will be created with the parameter as the local socket path.

4.25. Vhost Library 191

DPDK documentation, Release 16.04.0

• Vhost session start

rte_vhost_driver_session_start starts the vhost session loop. Vhost session is
an infinite blocking loop. Put the session in a dedicate DPDK thread.

• Callback register

Vhost supported vSwitch could call rte_vhost_driver_callback_register to reg-
ister two callbacks, new_destory and destroy_device. When virtio device is
activated or deactivated by guest virtual machine, the callback will be called,
then vSwitch could put the device onto data core or remove the device from
data core by setting or unsetting VIRTIO_DEV_RUNNING on the device flags.

• Read/write packets from/to guest virtual machine

rte_vhost_enqueue_burst transmit host packets to guest.
rte_vhost_dequeue_burst receives packets from guest.

• Feature enable/disable

Now one negotiate-able feature in vhost is merge-able. vSwitch could en-
able/disable this feature for performance consideration.

4.25.2 Vhost Implementation

Vhost cuse implementation

When vSwitch registers the vhost driver, it will register a cuse device driver into the system
and creates a character device file. This cuse driver will receive vhost open/release/IOCTL
message from QEMU simulator.

When the open call is received, vhost driver will create a vhost device for the virtio device in
the guest.

When VHOST_SET_MEM_TABLE IOCTL is received, vhost searches the memory region to
find the starting user space virtual address that maps the memory of guest virtual machine.
Through this virtual address and the QEMU pid, vhost could find the file QEMU uses to map
the guest memory. Vhost maps this file into its address space, in this way vhost could fully
access the guest physical memory, which means vhost could access the shared virtio ring and
the guest physical address specified in the entry of the ring.

The guest virtual machine tells the vhost whether the virtio device is ready for processing or is
de-activated through VHOST_NET_SET_BACKEND message. The registered callback from
vSwitch will be called.

When the release call is released, vhost will destroy the device.

Vhost user implementation

When vSwitch registers a vhost driver, it will create a Unix domain socket server into the
system. This server will listen for a connection and process the vhost message from QEMU
simulator.

When there is a new socket connection, it means a new virtio device has been created in the
guest virtual machine, and the vhost driver will create a vhost device for this virtio device.

4.25. Vhost Library 192

DPDK documentation, Release 16.04.0

For messages with a file descriptor, the file descriptor could be directly used in the vhost
process as it is already installed by Unix domain socket.

• VHOST_SET_MEM_TABLE

• VHOST_SET_VRING_KICK

• VHOST_SET_VRING_CALL

• VHOST_SET_LOG_FD

• VHOST_SET_VRING_ERR

For VHOST_SET_MEM_TABLE message, QEMU will send us information for each memory
region and its file descriptor in the ancillary data of the message. The fd is used to map that
region.

There is no VHOST_NET_SET_BACKEND message as in vhost cuse to signal us whether
virtio device is ready or should be stopped. VHOST_SET_VRING_KICK is used as the signal
to put the vhost device onto data plane. VHOST_GET_VRING_BASE is used as the signal to
remove vhost device from data plane.

When the socket connection is closed, vhost will destroy the device.

4.25.3 Vhost supported vSwitch reference

For more vhost details and how to support vhost in vSwitch, please refer to vhost example in
the DPDK Sample Applications Guide.

4.26 Port Hotplug Framework

The Port Hotplug Framework provides DPDK applications with the ability to attach and detach
ports at runtime. Because the framework depends on PMD implementation, the ports that
PMDs cannot handle are out of scope of this framework. Furthermore, after detaching a port
from a DPDK application, the framework doesn’t provide a way for removing the devices from
the system. For the ports backed by a physical NIC, the kernel will need to support PCI Hotplug
feature.

4.26.1 Overview

The basic requirements of the Port Hotplug Framework are:

• DPDK applications that use the Port Hotplug Framework must manage their own ports.

The Port Hotplug Framework is implemented to allow DPDK applications to manage
ports. For example, when DPDK applications call the port attach function, the attached
port number is returned. DPDK applications can also detach the port by port number.

• Kernel support is needed for attaching or detaching physical device ports.

To attach new physical device ports, the device will be recognized by userspace driver I/O
framework in kernel at first. Then DPDK applications can call the Port Hotplug functions
to attach the ports. For detaching, steps are vice versa.

4.26. Port Hotplug Framework 193

DPDK documentation, Release 16.04.0

• Before detaching, they must be stopped and closed.

DPDK applications must call “rte_eth_dev_stop()” and “rte_eth_dev_close()” APIs before
detaching ports. These functions will start finalization sequence of the PMDs.

• The framework doesn’t affect legacy DPDK applications behavior.

If the Port Hotplug functions aren’t called, all legacy DPDK apps can still work without
modifications.

4.26.2 Port Hotplug API overview

• Attaching a port

“rte_eth_dev_attach()” API attaches a port to DPDK application, and returns the attached
port number. Before calling the API, the device should be recognized by an userspace
driver I/O framework. The API receives a pci address like “0000:01:00.0” or a virtual
device name like “eth_pcap0,iface=eth0”. In the case of virtual device name, the format
is the same as the general “–vdev” option of DPDK.

• Detaching a port

“rte_eth_dev_detach()” API detaches a port from DPDK application, and returns a pci
address of the detached device or a virtual device name of the device.

4.26.3 Reference

“testpmd” supports the Port Hotplug Framework.

4.26.4 Limitations

• The Port Hotplug APIs are not thread safe.

• The framework can only be enabled with Linux. BSD is not supported.

• To detach a port, the port should be backed by a device that igb_uio manages. VFIO is
not supported.

• Not all PMDs support detaching feature. To know whether a PMD can support detaching,
search for the “RTE_PCI_DRV_DETACHABLE” flag in PMD implementation. If the flag
is defined in the PMD, detaching is supported.

Part 2: Development Environment

4.27 Source Organization

This section describes the organization of sources in the DPDK framework.

4.27. Source Organization 194

DPDK documentation, Release 16.04.0

4.27.1 Makefiles and Config

Note: In the following descriptions, RTE_SDK is the environment variable that points to the
base directory into which the tarball was extracted. See Useful Variables Provided by the Build
System for descriptions of other variables.

Makefiles that are provided by the DPDK libraries and applications are located in
$(RTE_SDK)/mk.

Config templates are located in $(RTE_SDK)/config. The templates describe the options
that are enabled for each target. The config file also contains items that can be enabled and
disabled for many of the DPDK libraries, including debug options. The user should look at
the config file and become familiar with these options. The config file is also used to create a
header file, which will be located in the new build directory.

4.27.2 Libraries

Libraries are located in subdirectories of $(RTE_SDK)/lib. By convention a library refers to
any code that provides an API to an application. Typically, it generates an archive file (.a), but
a kernel module would also go in the same directory.

The lib directory contains:

lib
+-- librte_cmdline # Command line interface helper
+-- librte_distributor # Packet distributor
+-- librte_eal # Environment abstraction layer
+-- librte_ether # Generic interface to poll mode driver
+-- librte_hash # Hash library
+-- librte_ip_frag # IP fragmentation library
+-- librte_ivshmem # QEMU IVSHMEM library
+-- librte_kni # Kernel NIC interface
+-- librte_kvargs # Argument parsing library
+-- librte_lpm # Longest prefix match library
+-- librte_mbuf # Packet and control mbuf manipulation
+-- librte_mempool # Memory pool manager (fixed sized objects)
+-- librte_meter # QoS metering library
+-- librte_net # Various IP-related headers
+-- librte_power # Power management library
+-- librte_ring # Software rings (act as lockless FIFOs)
+-- librte_sched # QoS scheduler and dropper library
+-- librte_timer # Timer library

4.27.3 Drivers

Drivers are special libraries which provide poll-mode driver implementations for devices: either
hardware devices or pseudo/virtual devices. They are contained in the drivers subdirectory,
classified by type, and each compiles to a library with the format librte_pmd_X.a where X
is the driver name.

The drivers directory has a net subdirectory which contains:

drivers/net
+-- af_packet # Poll mode driver based on Linux af_packet
+-- bonding # Bonding poll mode driver

4.27. Source Organization 195

DPDK documentation, Release 16.04.0

+-- cxgbe # Chelsio Terminator 10GbE/40GbE poll mode driver
+-- e1000 # 1GbE poll mode drivers (igb and em)
+-- enic # Cisco VIC Ethernet NIC Poll-mode Driver
+-- fm10k # Host interface PMD driver for FM10000 Series
+-- i40e # 40GbE poll mode driver
+-- ixgbe # 10GbE poll mode driver
+-- mlx4 # Mellanox ConnectX-3 poll mode driver
+-- null # NULL poll mode driver for testing
+-- pcap # PCAP poll mode driver
+-- ring # Ring poll mode driver
+-- szedata2 # SZEDATA2 poll mode driver
+-- virtio # Virtio poll mode driver
+-- vmxnet3 # VMXNET3 poll mode driver
+-- xenvirt # Xen virtio poll mode driver

Note: Several of the driver/net directories contain a base sub-directory. The base direc-
tory generally contains code the shouldn’t be modified directly by the user. Any enhancements
should be done via the X_osdep.c and/or X_osdep.h files in that directory. Refer to the local
README in the base directories for driver specific instructions.

4.27.4 Applications

Applications are source files that contain a main() function. They are located in the
$(RTE_SDK)/app and $(RTE_SDK)/examples directories.

The app directory contains sample applications that are used to test DPDK (such as autotests)
or the Poll Mode Drivers (test-pmd):

app
+-- chkincs # Test program to check include dependencies
+-- cmdline_test # Test the commandline library
+-- test # Autotests to validate DPDK features
+-- test-acl # Test the ACL library
+-- test-pipeline # Test the IP Pipeline framework
+-- test-pmd # Test and benchmark poll mode drivers

The examples directory contains sample applications that show how libraries can be used:

examples
+-- cmdline # Example of using the cmdline library
+-- dpdk_qat # Sample integration with Intel QuickAssist
+-- exception_path # Sending packets to and from Linux TAP device
+-- helloworld # Basic Hello World example
+-- ip_reassembly # Example showing IP reassembly
+-- ip_fragmentation # Example showing IPv4 fragmentation
+-- ipv4_multicast # Example showing IPv4 multicast
+-- kni # Kernel NIC Interface (KNI) example
+-- l2fwd # L2 forwarding with and without SR-IOV
+-- l3fwd # L3 forwarding example
+-- l3fwd-power # L3 forwarding example with power management
+-- l3fwd-vf # L3 forwarding example with SR-IOV
+-- link_status_interrupt # Link status change interrupt example
+-- load_balancer # Load balancing across multiple cores/sockets
+-- multi_process # Example apps using multiple DPDK processes
+-- qos_meter # QoS metering example
+-- qos_sched # QoS scheduler and dropper example
+-- timer # Example of using librte_timer library
+-- vmdq_dcb # Example of VMDQ and DCB receiving

4.27. Source Organization 196

DPDK documentation, Release 16.04.0

+-- vmdq # Example of VMDQ receiving
+-- vhost # Example of userspace vhost and switch

Note: The actual examples directory may contain additional sample applications to those
shown above. Check the latest DPDK source files for details.

4.28 Development Kit Build System

The DPDK requires a build system for compilation activities and so on. This section describes
the constraints and the mechanisms used in the DPDK framework.

There are two use-cases for the framework:

• Compilation of the DPDK libraries and sample applications; the framework generates
specific binary libraries, include files and sample applications

• Compilation of an external application or library, using an installed binary DPDK

4.28.1 Building the Development Kit Binary

The following provides details on how to build the DPDK binary.

Build Directory Concept

After installation, a build directory structure is created. Each build directory contains include
files, libraries, and applications:

~/DPDK$ ls
app MAINTAINERS
config Makefile
COPYRIGHT mk
doc scripts
examples lib
tools x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-icc i686-native-linuxapp-gcc
i686-native-linuxapp-icc

...
~/DEV/DPDK$ ls i686-native-linuxapp-gcc

app build hostapp include kmod lib Makefile

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/app/
cmdline_test dump_cfg test testpmd
cmdline_test.map dump_cfg.map test.map

testpmd.map

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/lib/

libethdev.a librte_hash.a librte_mbuf.a librte_pmd_ixgbe.a

librte_cmdline.a librte_lpm.a librte_mempool.a librte_ring.a

4.28. Development Kit Build System 197

DPDK documentation, Release 16.04.0

librte_eal.a librte_pmd_e1000.a librte_timer.a

~/DEV/DPDK$ ls i686-native-linuxapp-gcc/include/
arch rte_cpuflags.h rte_memcpy.h
cmdline_cirbuf.h rte_cycles.h rte_memory.h
cmdline.h rte_debug.h rte_mempool.h
cmdline_parse_etheraddr.h rte_eal.h rte_memzone.h
cmdline_parse.h rte_errno.h rte_pci_dev_ids.h
cmdline_parse_ipaddr.h rte_ethdev.h rte_pci.h
cmdline_parse_num.h rte_ether.h rte_per_lcore.h
cmdline_parse_portlist.h rte_fbk_hash.h rte_prefetch.h
cmdline_parse_string.h rte_hash_crc.h rte_random.h
cmdline_rdline.h rte_hash.h rte_ring.h
cmdline_socket.h rte_interrupts.h rte_rwlock.h
cmdline_vt100.h rte_ip.h rte_sctp.h
exec-env rte_jhash.h rte_spinlock.h
rte_alarm.h rte_launch.h rte_string_fns.h
rte_atomic.h rte_lcore.h rte_tailq.h
rte_branch_prediction.h rte_log.h rte_tcp.h
rte_byteorder.h rte_lpm.h rte_timer.h
rte_common.h rte_malloc.h rte_udp.h
rte_config.h rte_mbuf.h

A build directory is specific to a configuration that includes architecture + execution environ-
ment + toolchain. It is possible to have several build directories sharing the same sources with
different configurations.

For instance, to create a new build directory called my_sdk_build_dir using the default config-
uration template config/defconfig_x86_64-linuxapp, we use:

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc O=my_sdk_build_dir

This creates a new my_sdk_build_dir directory. After that, we can compile by doing:

cd my_sdk_build_dir
make

which is equivalent to:

make O=my_sdk_build_dir

The content of the my_sdk_build_dir is then:

-- .config # used configuration

-- Makefile # wrapper that calls head Makefile
with $PWD as build directory

-- build #All temporary files used during build
+--app # process, including . o, .d, and .cmd files.

| +-- test # For libraries, we have the .a file.
| +-- test.o # For applications, we have the elf file.
| `-- ...
+-- lib

+-- librte_eal
| `-- ...
+-- librte_mempool
| +-- mempool-file1.o
| +-- .mempool-file1.o.cmd
| +-- .mempool-file1.o.d
| +-- mempool-file2.o
| +-- .mempool-file2.o.cmd

4.28. Development Kit Build System 198

DPDK documentation, Release 16.04.0

| +-- .mempool-file2.o.d
| `-- mempool.a
`-- ...

-- include # All include files installed by libraries
+-- librte_mempool.h # and applications are located in this
+-- rte_eal.h # directory. The installed files can depend
+-- rte_spinlock.h # on configuration if needed (environment,
+-- rte_atomic.h # architecture, ..)
`-- *.h ...

-- lib # all compiled libraries are copied in this
+-- librte_eal.a # directory
+-- librte_mempool.a
`-- *.a ...

-- app # All compiled applications are installed
+ --test # here. It includes the binary in elf format

Refer to Development Kit Root Makefile Help for details about make commands that can be
used from the root of DPDK.

4.28.2 Building External Applications

Since DPDK is in essence a development kit, the first objective of end users will be to create
an application using this SDK. To compile an application, the user must set the RTE_SDK and
RTE_TARGET environment variables.

export RTE_SDK=/opt/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc
cd /path/to/my_app

For a new application, the user must create their own Makefile that includes some .mk files,
such as ${RTE_SDK}/mk/rte.vars.mk, and ${RTE_SDK}/mk/ rte.app.mk. This is described in
Building Your Own Application.

Depending on the chosen target (architecture, machine, executive environment, toolchain) de-
fined in the Makefile or as an environment variable, the applications and libraries will com-
pile using the appropriate .h files and will link with the appropriate .a files. These files are
located in ${RTE_SDK}/arch-machine-execenv-toolchain, which is referenced internally by
${RTE_BIN_SDK}.

To compile their application, the user just has to call make. The compilation result will be
located in /path/to/my_app/build directory.

Sample applications are provided in the examples directory.

4.28.3 Makefile Description

General Rules For DPDK Makefiles

In the DPDK, Makefiles always follow the same scheme:

1. Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

2. Define specific variables for RTE build system.

4.28. Development Kit Build System 199

DPDK documentation, Release 16.04.0

3. Include a specific $(RTE_SDK)/mk/rte.XYZ.mk, where XYZ can be app, lib, extapp, extlib,
obj, gnuconfigure, and so on, depending on what kind of object you want to build. See
Makefile Types below.

4. Include user-defined rules and variables.

The following is a very simple example of an external application Makefile:

include $(RTE_SDK)/mk/rte.vars.mk

binary name
APP = helloworld

all source are stored in SRCS-y
SRCS-y := main.c

CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)

include $(RTE_SDK)/mk/rte.extapp.mk

Makefile Types

Depending on the .mk file which is included at the end of the user Makefile, the Makefile will
have a different role. Note that it is not possible to build a library and an application in the
same Makefile. For that, the user must create two separate Makefiles, possibly in two different
directories.

In any case, the rte.vars.mk file must be included in the user Makefile as soon as possible.

Application

These Makefiles generate a binary application.

• rte.app.mk: Application in the development kit framework

• rte.extapp.mk: External application

• rte.hostapp.mk: Host application in the development kit framework

Library

Generate a .a library.

• rte.lib.mk: Library in the development kit framework

• rte.extlib.mk: external library

• rte.hostlib.mk: host library in the development kit framework

Install

• rte.install.mk: Does not build anything, it is only used to create links or copy files to the
installation directory. This is useful for including files in the development kit framework.

4.28. Development Kit Build System 200

DPDK documentation, Release 16.04.0

Kernel Module

• rte.module.mk: Build a kernel module in the development kit framework.

Objects

• rte.obj.mk: Object aggregation (merge several .o in one) in the development kit frame-
work.

• rte.extobj.mk: Object aggregation (merge several .o in one) outside the development kit
framework.

Misc

• rte.doc.mk: Documentation in the development kit framework

• rte.gnuconfigure.mk: Build an application that is configure-based.

• rte.subdir.mk: Build several directories in the development kit framework.

Useful Variables Provided by the Build System

• RTE_SDK: The absolute path to the DPDK sources. When compiling the development
kit, this variable is automatically set by the framework. It has to be defined by the user as
an environment variable if compiling an external application.

• RTE_SRCDIR: The path to the root of the sources. When compiling the development kit,
RTE_SRCDIR = RTE_SDK. When compiling an external application, the variable points
to the root of external application sources.

• RTE_OUTPUT: The path to which output files are written. Typically, it is
$(RTE_SRCDIR)/build, but it can be overridden by the O= option in the make command
line.

• RTE_TARGET: A string identifying the target for which we are building. The format is
arch-machine-execenv-toolchain. When compiling the SDK, the target is deduced by the
build system from the configuration (.config). When building an external application, it
must be specified by the user in the Makefile or as an environment variable.

• RTE_SDK_BIN: References $(RTE_SDK)/$(RTE_TARGET).

• RTE_ARCH: Defines the architecture (i686, x86_64). It is the same value as CON-
FIG_RTE_ARCH but without the double-quotes around the string.

• RTE_MACHINE: Defines the machine. It is the same value as CONFIG_RTE_MACHINE
but without the double-quotes around the string.

• RTE_TOOLCHAIN: Defines the toolchain (gcc , icc). It is the same value as CON-
FIG_RTE_TOOLCHAIN but without the double-quotes around the string.

• RTE_EXEC_ENV: Defines the executive environment (linuxapp). It is the same value as
CONFIG_RTE_EXEC_ENV but without the double-quotes around the string.

4.28. Development Kit Build System 201

DPDK documentation, Release 16.04.0

• RTE_KERNELDIR: This variable contains the absolute path to the kernel sources that
will be used to compile the kernel modules. The kernel headers must be the same as the
ones that will be used on the target machine (the machine that will run the application).
By default, the variable is set to /lib/modules/$(shell uname -r)/build, which is correct
when the target machine is also the build machine.

• RTE_DEVEL_BUILD: Stricter options (stop on warning). It defaults to y in a git tree.

Variables that Can be Set/Overridden in a Makefile Only

• VPATH: The path list that the build system will search for sources. By default,
RTE_SRCDIR will be included in VPATH.

• CFLAGS: Flags to use for C compilation. The user should use += to append data in this
variable.

• LDFLAGS: Flags to use for linking. The user should use += to append data in this vari-
able.

• ASFLAGS: Flags to use for assembly. The user should use += to append data in this
variable.

• CPPFLAGS: Flags to use to give flags to C preprocessor (only useful when assembling
.S files). The user should use += to append data in this variable.

• LDLIBS: In an application, the list of libraries to link with (for example, -L /path/to/libfoo
-lfoo). The user should use += to append data in this variable.

• SRC-y: A list of source files (.c, .S, or .o if the source is a binary) in case of application,
library or object Makefiles. The sources must be available from VPATH.

• INSTALL-y-$(INSTPATH): A list of files to be installed in $(INSTPATH). The files must be
available from VPATH and will be copied in $(RTE_OUTPUT)/$(INSTPATH). Can be used
in almost any RTE Makefile.

• SYMLINK-y-$(INSTPATH): A list of files to be installed in $(INSTPATH). The files must be
available from VPATH and will be linked (symbolically) in $(RTE_OUTPUT)/$(INSTPATH).
This variable can be used in almost any DPDK Makefile.

• PREBUILD: A list of prerequisite actions to be taken before building. The user should
use += to append data in this variable.

• POSTBUILD: A list of actions to be taken after the main build. The user should use += to
append data in this variable.

• PREINSTALL: A list of prerequisite actions to be taken before installing. The user should
use += to append data in this variable.

• POSTINSTALL: A list of actions to be taken after installing. The user should use += to
append data in this variable.

• PRECLEAN: A list of prerequisite actions to be taken before cleaning. The user should
use += to append data in this variable.

• POSTCLEAN: A list of actions to be taken after cleaning. The user should use += to
append data in this variable.

4.28. Development Kit Build System 202

DPDK documentation, Release 16.04.0

• DEPDIR-y: Only used in the development kit framework to specify if the build of the
current directory depends on build of another one. This is needed to support parallel
builds correctly.

Variables that can be Set/Overridden by the User on the Command Line Only

Some variables can be used to configure the build system behavior. They are documented in
Development Kit Root Makefile Help and External Application/Library Makefile Help

• WERROR_CFLAGS: By default, this is set to a specific value that depends on the com-
piler. Users are encouraged to use this variable as follows:

CFLAGS += $(WERROR_CFLAGS)

This avoids the use of different cases depending on the compiler (icc or gcc). Also, this variable
can be overridden from the command line, which allows bypassing of the flags for testing
purposes.

Variables that Can be Set/Overridden by the User in a Makefile or Command Line

• CFLAGS_my_file.o: Specific flags to add for C compilation of my_file.c.

• LDFLAGS_my_app: Specific flags to add when linking my_app.

• EXTRA_CFLAGS: The content of this variable is appended after CFLAGS when compil-
ing.

• EXTRA_LDFLAGS: The content of this variable is appended after LDFLAGS when link-
ing.

• EXTRA_LDLIBS: The content of this variable is appended after LDLIBS when linking.

• EXTRA_ASFLAGS: The content of this variable is appended after ASFLAGS when as-
sembling.

• EXTRA_CPPFLAGS: The content of this variable is appended after CPPFLAGS when
using a C preprocessor on assembly files.

4.29 Development Kit Root Makefile Help

The DPDK provides a root level Makefile with targets for configuration, building, cleaning, test-
ing, installation and others. These targets are explained in the following sections.

4.29.1 Configuration Targets

The configuration target requires the name of the target, which is specified using T=mytarget
and it is mandatory. The list of available targets are in $(RTE_SDK)/config (remove the def-
config _ prefix).

Configuration targets also support the specification of the name of the output directory, using
O=mybuilddir. This is an optional parameter, the default output directory is build.

4.29. Development Kit Root Makefile Help 203

DPDK documentation, Release 16.04.0

• Config

This will create a build directory, and generates a configuration from a template. A Make-
file is also created in the new build directory.

Example:

make config O=mybuild T=x86_64-native-linuxapp-gcc

4.29.2 Build Targets

Build targets support the optional specification of the name of the output directory, using
O=mybuilddir. The default output directory is build.

• all, build or just make

Build the DPDK in the output directory previously created by a make config.

Example:

make O=mybuild

• clean

Clean all objects created using make build.

Example:

make clean O=mybuild

• %_sub

Build a subdirectory only, without managing dependencies on other directories.

Example:

make lib/librte_eal_sub O=mybuild

• %_clean

Clean a subdirectory only.

Example:

make lib/librte_eal_clean O=mybuild

4.29.3 Install Targets

• Install

The list of available targets are in $(RTE_SDK)/config (remove the defconfig_ prefix).

The GNU standards variables may be used: http://gnu.org/prep/standards/html_node/Directory-
Variables.html and http://gnu.org/prep/standards/html_node/DESTDIR.html

Example:

make install DESTDIR=myinstall prefix=/usr

4.29. Development Kit Root Makefile Help 204

http://gnu.org/prep/standards/html_node/Directory-Variables.html
http://gnu.org/prep/standards/html_node/Directory-Variables.html
http://gnu.org/prep/standards/html_node/DESTDIR.html

DPDK documentation, Release 16.04.0

4.29.4 Test Targets

• test

Launch automatic tests for a build directory specified using O=mybuilddir. It is optional,
the default output directory is build.

Example:

make test O=mybuild

4.29.5 Documentation Targets

• doc

Generate the documentation (API and guides).

• doc-api-html

Generate the Doxygen API documentation in html.

• doc-guides-html

Generate the guides documentation in html.

• doc-guides-pdf

Generate the guides documentation in pdf.

4.29.6 Deps Targets

• depdirs

This target is implicitly called by make config. Typically, there is no need for a user to call
it, except if DEPDIRS-y variables have been updated in Makefiles. It will generate the file
$(RTE_OUTPUT)/.depdirs.

Example:

make depdirs O=mybuild

• depgraph

This command generates a dot graph of dependencies. It can be displayed to debug
circular dependency issues, or just to understand the dependencies.

Example:

make depgraph O=mybuild > /tmp/graph.dot && dotty /tmp/ graph.dot

4.29.7 Misc Targets

• help

Show a quick help.

4.29. Development Kit Root Makefile Help 205

DPDK documentation, Release 16.04.0

4.29.8 Other Useful Command-line Variables

The following variables can be specified on the command line:

• V=

Enable verbose build (show full compilation command line, and some intermediate com-
mands).

• D=

Enable dependency debugging. This provides some useful information about why a tar-
get is built or not.

• EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_LDLIBS=, EXTRA_ASFLAGS=, EX-
TRA_CPPFLAGS=

Append specific compilation, link or asm flags.

• CROSS=

Specify a cross toolchain header that will prefix all gcc/binutils applications. This only
works when using gcc.

4.29.9 Make in a Build Directory

All targets described above are called from the SDK root $(RTE_SDK). It is possible to run the
same Makefile targets inside the build directory. For instance, the following command:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linuxapp-gcc
make O=mybuild

is equivalent to:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linuxapp-gcc
cd mybuild

no need to specify O= now
make

4.29.10 Compiling for Debug

To compile the DPDK and sample applications with debugging information included and the
optimization level set to 0, the EXTRA_CFLAGS environment variable should be set before
compiling as follows:

export EXTRA_CFLAGS='-O0 -g'

4.30 Extending the DPDK

This chapter describes how a developer can extend the DPDK to provide a new library, a new
target, or support a new target.

4.30. Extending the DPDK 206

DPDK documentation, Release 16.04.0

4.30.1 Example: Adding a New Library libfoo

To add a new library to the DPDK, proceed as follows:

1. Add a new configuration option:

for f in config/*; do \
echo CONFIG_RTE_LIBFOO=y >> $f; done

1. Create a new directory with sources:

mkdir ${RTE_SDK}/lib/libfoo
touch ${RTE_SDK}/lib/libfoo/foo.c
touch ${RTE_SDK}/lib/libfoo/foo.h

1. Add a foo() function in libfoo.

Definition is in foo.c:

void foo(void)
{
}

Declaration is in foo.h:

extern void foo(void);

2. Update lib/Makefile:

vi ${RTE_SDK}/lib/Makefile
add:
DIRS-$(CONFIG_RTE_LIBFOO) += libfoo

3. Create a new Makefile for this library, for example, derived from mempool Makefile:

cp ${RTE_SDK}/lib/librte_mempool/Makefile ${RTE_SDK}/lib/libfoo/

vi ${RTE_SDK}/lib/libfoo/Makefile
replace:
librte_mempool -> libfoo
rte_mempool -> foo

4. Update mk/DPDK.app.mk, and add -lfoo in LDLIBS variable when the option is enabled.
This will automatically add this flag when linking a DPDK application.

5. Build the DPDK with the new library (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make

6. Check that the library is installed:

ls build/lib
ls build/include

Example: Using libfoo in the Test Application

The test application is used to validate all functionality of the DPDK. Once you have added a
library, a new test case should be added in the test application.

• A new test_foo.c file should be added, that includes foo.h and calls the foo() function from
test_foo(). When the test passes, the test_foo() function should return 0.

• Makefile, test.h and commands.c must be updated also, to handle the new test case.

4.30. Extending the DPDK 207

DPDK documentation, Release 16.04.0

• Test report generation: autotest.py is a script that is used to generate the test re-
port that is available in the ${RTE_SDK}/doc/rst/test_report/autotests directory. This
script must be updated also. If libfoo is in a new test family, the links in
${RTE_SDK}/doc/rst/test_report/test_report.rst must be updated.

• Build the DPDK with the updated test application (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make

4.31 Building Your Own Application

4.31.1 Compiling a Sample Application in the Development Kit Directory

When compiling a sample application (for example, hello world), the following variables must
be exported: RTE_SDK and RTE_TARGET.

~/DPDK$ cd examples/helloworld/
~/DPDK/examples/helloworld$ export RTE_SDK=/home/user/DPDK
~/DPDK/examples/helloworld$ export RTE_TARGET=x86_64-native-linuxapp-gcc
~/DPDK/examples/helloworld$ make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

The binary is generated in the build directory by default:

~/DPDK/examples/helloworld$ ls build/app
helloworld helloworld.map

4.31.2 Build Your Own Application Outside the Development Kit

The sample application (Hello World) can be duplicated in a new directory as a starting point
for your development:

~$ cp -r DPDK/examples/helloworld my_rte_app
~$ cd my_rte_app/
~/my_rte_app$ export RTE_SDK=/home/user/DPDK
~/my_rte_app$ export RTE_TARGET=x86_64-native-linuxapp-gcc
~/my_rte_app$ make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

4.31.3 Customizing Makefiles

Application Makefile

The default makefile provided with the Hello World sample application is a good starting point.
It includes:

• $(RTE_SDK)/mk/rte.vars.mk at the beginning

4.31. Building Your Own Application 208

DPDK documentation, Release 16.04.0

• $(RTE_SDK)/mk/rte.extapp.mk at the end

The user must define several variables:

• APP: Contains the name of the application.

• SRCS-y: List of source files (*.c, *.S).

Library Makefile

It is also possible to build a library in the same way:

• Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

• Include $(RTE_SDK)/mk/rte.extlib.mk at the end.

The only difference is that APP should be replaced by LIB, which contains the name of the
library. For example, libfoo.a.

Customize Makefile Actions

Some variables can be defined to customize Makefile actions. The most common are listed
below. Refer to Makefile Description section in Development Kit Build System

chapter for details.

• VPATH: The path list where the build system will search for sources. By default,
RTE_SRCDIR will be included in VPATH.

• CFLAGS_my_file.o: The specific flags to add for C compilation of my_file.c.

• CFLAGS: The flags to use for C compilation.

• LDFLAGS: The flags to use for linking.

• CPPFLAGS: The flags to use to provide flags to the C preprocessor (only useful when
assembling .S files)

• LDLIBS: A list of libraries to link with (for example, -L /path/to/libfoo - lfoo)

4.32 External Application/Library Makefile help

External applications or libraries should include specific Makefiles from RTE_SDK, located in
mk directory. These Makefiles are:

• ${RTE_SDK}/mk/rte.extapp.mk: Build an application

• ${RTE_SDK}/mk/rte.extlib.mk: Build a static library

• ${RTE_SDK}/mk/rte.extobj.mk: Build objects (.o)

4.32.1 Prerequisites

The following variables must be defined:

• ${RTE_SDK}: Points to the root directory of the DPDK.

4.32. External Application/Library Makefile help 209

DPDK documentation, Release 16.04.0

• ${RTE_TARGET}: Reference the target to be used for compilation (for example, x86_64-
native-linuxapp-gcc).

4.32.2 Build Targets

Build targets support the specification of the name of the output directory, using O=mybuilddir.
This is optional; the default output directory is build.

• all, “nothing” (meaning just make)

Build the application or the library in the specified output directory.

Example:

make O=mybuild

• clean

Clean all objects created using make build.

Example:

make clean O=mybuild

4.32.3 Help Targets

• help

Show this help.

4.32.4 Other Useful Command-line Variables

The following variables can be specified at the command line:

• S=

Specify the directory in which the sources are located. By default, it is the current direc-
tory.

• M=

Specify the Makefile to call once the output directory is created. By default, it uses
$(S)/Makefile.

• V=

Enable verbose build (show full compilation command line and some intermediate com-
mands).

• D=

Enable dependency debugging. This provides some useful information about why a tar-
get must be rebuilt or not.

• EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

4.32. External Application/Library Makefile help 210

DPDK documentation, Release 16.04.0

• CROSS=

Specify a cross-toolchain header that will prefix all gcc/binutils applications. This only
works when using gcc.

4.32.5 Make from Another Directory

It is possible to run the Makefile from another directory, by specifying the output and the source
dir. For example:

export RTE_SDK=/path/to/DPDK
export RTE_TARGET=x86_64-native-linuxapp-icc
make -f /path/to/my_app/Makefile S=/path/to/my_app O=/path/to/build_dir

Part 3: Performance Optimization

4.33 Performance Optimization Guidelines

4.33.1 Introduction

The following sections describe optimizations used in the DPDK and optimizations that should
be considered for a new applications.

They also highlight the performance-impacting coding techniques that should, and should not
be, used when developing an application using the DPDK.

And finally, they give an introduction to application profiling using a Performance Analyzer from
Intel to optimize the software.

4.34 Writing Efficient Code

This chapter provides some tips for developing efficient code using the DPDK. For additional
and more general information, please refer to the Intel® 64 and IA-32 Architectures Optimiza-
tion Reference Manual which is a valuable reference to writing efficient code.

4.34.1 Memory

This section describes some key memory considerations when developing applications in the
DPDK environment.

Memory Copy: Do not Use libc in the Data Plane

Many libc functions are available in the DPDK, via the Linux* application environment. This
can ease the porting of applications and the development of the configuration plane. However,
many of these functions are not designed for performance. Functions such as memcpy() or
strcpy() should not be used in the data plane. To copy small structures, the preference is for
a simpler technique that can be optimized by the compiler. Refer to the VTune™ Performance
Analyzer Essentials publication from Intel Press for recommendations.

4.33. Performance Optimization Guidelines 211

DPDK documentation, Release 16.04.0

For specific functions that are called often, it is also a good idea to provide a self-made opti-
mized function, which should be declared as static inline.

The DPDK API provides an optimized rte_memcpy() function.

Memory Allocation

Other functions of libc, such as malloc(), provide a flexible way to allocate and free memory. In
some cases, using dynamic allocation is necessary, but it is really not advised to use malloc-
like functions in the data plane because managing a fragmented heap can be costly and the
allocator may not be optimized for parallel allocation.

If you really need dynamic allocation in the data plane, it is better to use a memory pool of
fixed-size objects. This API is provided by librte_mempool. This data structure provides several
services that increase performance, such as memory alignment of objects, lockless access to
objects, NUMA awareness, bulk get/put and per-lcore cache. The rte_malloc () function uses
a similar concept to mempools.

Concurrent Access to the Same Memory Area

Read-Write (RW) access operations by several lcores to the same memory area can generate
a lot of data cache misses, which are very costly. It is often possible to use per-lcore variables,
for example, in the case of statistics. There are at least two solutions for this:

• Use RTE_PER_LCORE variables. Note that in this case, data on lcore X is not available
to lcore Y.

• Use a table of structures (one per lcore). In this case, each structure must be cache-
aligned.

Read-mostly variables can be shared among lcores without performance losses if there are no
RW variables in the same cache line.

NUMA

On a NUMA system, it is preferable to access local memory since remote memory access
is slower. In the DPDK, the memzone, ring, rte_malloc and mempool APIs provide a way to
create a pool on a specific socket.

Sometimes, it can be a good idea to duplicate data to optimize speed. For read-mostly vari-
ables that are often accessed, it should not be a problem to keep them in one socket only,
since data will be present in cache.

Distribution Across Memory Channels

Modern memory controllers have several memory channels that can load or store data in par-
allel. Depending on the memory controller and its configuration, the number of channels and
the way the memory is distributed across the channels varies. Each channel has a bandwidth
limit, meaning that if all memory access operations are done on the first channel only, there is
a potential bottleneck.

By default, the Mempool Library spreads the addresses of objects among memory channels.

4.34. Writing Efficient Code 212

DPDK documentation, Release 16.04.0

4.34.2 Communication Between lcores

To provide a message-based communication between lcores, it is advised to use the DPDK
ring API, which provides a lockless ring implementation.

The ring supports bulk and burst access, meaning that it is possible to read several elements
from the ring with only one costly atomic operation (see Ring Library). Performance is greatly
improved when using bulk access operations.

The code algorithm that dequeues messages may be something similar to the following:

#define MAX_BULK 32

while (1) {
/* Process as many elements as can be dequeued. */
count = rte_ring_dequeue_burst(ring, obj_table, MAX_BULK);
if (unlikely(count == 0))

continue;

my_process_bulk(obj_table, count);
}

4.34.3 PMD Driver

The DPDK Poll Mode Driver (PMD) is also able to work in bulk/burst mode, allowing the factor-
ization of some code for each call in the send or receive function.

Avoid partial writes. When PCI devices write to system memory through DMA, it costs less if
the write operation is on a full cache line as opposed to part of it. In the PMD code, actions
have been taken to avoid partial writes as much as possible.

Lower Packet Latency

Traditionally, there is a trade-off between throughput and latency. An application can be tuned
to achieve a high throughput, but the end-to-end latency of an average packet will typically
increase as a result. Similarly, the application can be tuned to have, on average, a low end-to-
end latency, at the cost of lower throughput.

In order to achieve higher throughput, the DPDK attempts to aggregate the cost of processing
each packet individually by processing packets in bursts.

Using the testpmd application as an example, the burst size can be set on the command line
to a value of 16 (also the default value). This allows the application to request 16 packets at
a time from the PMD. The testpmd application then immediately attempts to transmit all the
packets that were received, in this case, all 16 packets.

The packets are not transmitted until the tail pointer is updated on the corresponding TX queue
of the network port. This behavior is desirable when tuning for high throughput because the
cost of tail pointer updates to both the RX and TX queues can be spread across 16 packets,
effectively hiding the relatively slow MMIO cost of writing to the PCIe* device. However, this
is not very desirable when tuning for low latency because the first packet that was received
must also wait for another 15 packets to be received. It cannot be transmitted until the other
15 packets have also been processed because the NIC will not know to transmit the packets
until the TX tail pointer has been updated, which is not done until all 16 packets have been
processed for transmission.

4.34. Writing Efficient Code 213

DPDK documentation, Release 16.04.0

To consistently achieve low latency, even under heavy system load, the application developer
should avoid processing packets in bunches. The testpmd application can be configured from
the command line to use a burst value of 1. This will allow a single packet to be processed at
a time, providing lower latency, but with the added cost of lower throughput.

4.34.4 Locks and Atomic Operations

Atomic operations imply a lock prefix before the instruction, causing the processor’s LOCK#
signal to be asserted during execution of the following instruction. This has a big impact on
performance in a multicore environment.

Performance can be improved by avoiding lock mechanisms in the data plane. It can often be
replaced by other solutions like per-lcore variables. Also, some locking techniques are more
efficient than others. For instance, the Read-Copy-Update (RCU) algorithm can frequently
replace simple rwlocks.

4.34.5 Coding Considerations

Inline Functions

Small functions can be declared as static inline in the header file. This avoids the cost of a call
instruction (and the associated context saving). However, this technique is not always efficient;
it depends on many factors including the compiler.

Branch Prediction

The Intel® C/C++ Compiler (icc)/gcc built-in helper functions likely() and unlikely() allow the
developer to indicate if a code branch is likely to be taken or not. For instance:

if (likely(x > 1))
do_stuff();

4.34.6 Setting the Target CPU Type

The DPDK supports CPU microarchitecture-specific optimizations by means of CON-
FIG_RTE_MACHINE option in the DPDK configuration file. The degree of optimization de-
pends on the compiler’s ability to optimize for a specific microarchitecture, therefore it is prefer-
able to use the latest compiler versions whenever possible.

If the compiler version does not support the specific feature set (for example, the Intel® AVX in-
struction set), the build process gracefully degrades to whatever latest feature set is supported
by the compiler.

Since the build and runtime targets may not be the same, the resulting binary also contains
a platform check that runs before the main() function and checks if the current machine is
suitable for running the binary.

Along with compiler optimizations, a set of preprocessor defines are automatically added to the
build process (regardless of the compiler version). These defines correspond to the instruc-
tion sets that the target CPU should be able to support. For example, a binary compiled for
any SSE4.2-capable processor will have RTE_MACHINE_CPUFLAG_SSE4_2 defined, thus
enabling compile-time code path selection for different platforms.

4.34. Writing Efficient Code 214

DPDK documentation, Release 16.04.0

4.35 Profile Your Application

Intel processors provide performance counters to monitor events. Some tools provided by Intel
can be used to profile and benchmark an application. See the VTune Performance Analyzer
Essentials publication from Intel Press for more information.

For a DPDK application, this can be done in a Linux* application environment only.

The main situations that should be monitored through event counters are:

• Cache misses

• Branch mis-predicts

• DTLB misses

• Long latency instructions and exceptions

Refer to the Intel Performance Analysis Guide for details about application profiling.

4.36 Glossary

ACL Access Control List

API Application Programming Interface

ASLR Linux* kernel Address-Space Layout Randomization

BSD Berkeley Software Distribution

Clr Clear

CIDR Classless Inter-Domain Routing

Control Plane The control plane is concerned with the routing of packets and with providing
a start or end point.

Core A core may include several lcores or threads if the processor supports hyperthreading.

Core Components A set of libraries provided by the DPDK, including eal, ring, mempool,
mbuf, timers, and so on.

CPU Central Processing Unit

CRC Cyclic Redundancy Check

ctrlmbuf An mbuf carrying control data.

Data Plane In contrast to the control plane, the data plane in a network architecture are the lay-
ers involved when forwarding packets. These layers must be highly optimized to achieve
good performance.

DIMM Dual In-line Memory Module

Doxygen A documentation generator used in the DPDK to generate the API reference.

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

4.35. Profile Your Application 215

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

DPDK documentation, Release 16.04.0

EAL The Environment Abstraction Layer (EAL) provides a generic interface that hides the
environment specifics from the applications and libraries. The services expected from the
EAL are: development kit loading and launching, core affinity/ assignment procedures,
system memory allocation/description, PCI bus access, inter-partition communication.

FIFO First In First Out

FPGA Field Programmable Gate Array

GbE Gigabit Ethernet

HW Hardware

HPET High Precision Event Timer; a hardware timer that provides a precise time reference on
x86 platforms.

ID Identifier

IOCTL Input/Output Control

I/O Input/Output

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

lcore A logical execution unit of the processor, sometimes called a hardware thread.

KNI Kernel Network Interface

L1 Layer 1

L2 Layer 2

L3 Layer 3

L4 Layer 4

LAN Local Area Network

LPM Longest Prefix Match

master lcore The execution unit that executes the main() function and that launches other
lcores.

mbuf An mbuf is a data structure used internally to carry messages (mainly network packets).
The name is derived from BSD stacks. To understand the concepts of packet buffers or
mbuf, refer to TCP/IP Illustrated, Volume 2: The Implementation.

MESI Modified Exclusive Shared Invalid (CPU cache coherency protocol)

MTU Maximum Transfer Unit

NIC Network Interface Card

OOO Out Of Order (execution of instructions within the CPU pipeline)

NUMA Non-uniform Memory Access

PCI Peripheral Connect Interface

PHY An abbreviation for the physical layer of the OSI model.

pktmbuf An mbuf carrying a network packet.

4.36. Glossary 216

DPDK documentation, Release 16.04.0

PMD Poll Mode Driver

QoS Quality of Service

RCU Read-Copy-Update algorithm, an alternative to simple rwlocks.

Rd Read

RED Random Early Detection

RSS Receive Side Scaling

RTE Run Time Environment. Provides a fast and simple framework for fast packet processing,
in a lightweight environment as a Linux* application and using Poll Mode Drivers (PMDs)
to increase speed.

Rx Reception

Slave lcore Any lcore that is not the master lcore.

Socket A physical CPU, that includes several cores.

SLA Service Level Agreement

srTCM Single Rate Three Color Marking

SRTD Scheduler Round Trip Delay

SW Software

Target In the DPDK, the target is a combination of architecture, machine, executive environ-
ment and toolchain. For example: i686-native-linuxapp-gcc.

TCP Transmission Control Protocol

TC Traffic Class

TLB Translation Lookaside Buffer

TLS Thread Local Storage

trTCM Two Rate Three Color Marking

TSC Time Stamp Counter

Tx Transmission

TUN/TAP TUN and TAP are virtual network kernel devices.

VLAN Virtual Local Area Network

Wr Write

WRED Weighted Random Early Detection

WRR Weighted Round Robin

Figures

Fig. 4.1 Core Components Architecture

Fig. 4.2 EAL Initialization in a Linux Application Environment

Fig. 4.3 Example of a malloc heap and malloc elements within the malloc library

Fig. 4.4 Ring Structure

4.36. Glossary 217

DPDK documentation, Release 16.04.0

Fig. 4.5 Enqueue first step

Fig. 4.6 Enqueue second step

Fig. 4.7 Enqueue last step

Fig. 4.8 Dequeue last step

Fig. 4.9 Dequeue second step

Fig. 4.10 Dequeue last step

Fig. 4.11 Multiple consumer enqueue first step

Fig. 4.12 Multiple consumer enqueue second step

Fig. 4.13 Multiple consumer enqueue third step

Fig. 4.14 Multiple consumer enqueue fourth step

Fig. 4.15 Multiple consumer enqueue last step

Fig. 4.16 Modulo 32-bit indexes - Example 1

Fig. 4.17 Modulo 32-bit indexes - Example 2

Fig. 4.18 Two Channels and Quad-ranked DIMM Example

Fig. 4.19 Three Channels and Two Dual-ranked DIMM Example

Fig. 4.20 A mempool in Memory with its Associated Ring

Fig. 4.21 An mbuf with One Segment

Fig. 4.22 An mbuf with Three Segments

Fig. 4.35 Memory Sharing in the DPDK Multi-process Sample Application

Fig. 4.36 Components of a DPDK KNI Application

Fig. 4.37 Packet Flow via mbufs in the DPDK KNI

Fig. 4.38 vHost-net Architecture Overview

Fig. 4.39 KNI Traffic Flow

Fig. 4.40 Complex Packet Processing Pipeline with QoS Support

Fig. 4.41 Hierarchical Scheduler Block Internal Diagram

Fig. 4.42 Scheduling Hierarchy per Port

Fig. 4.43 Internal Data Structures per Port

Fig. 4.44 Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

Fig. 4.45 Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation

Fig. 4.46 High-level Block Diagram of the DPDK Dropper

Fig. 4.47 Flow Through the Dropper

Fig. 4.48 Example Data Flow Through Dropper

Fig. 4.49 Packet Drop Probability for a Given RED Configuration

Fig. 4.50 Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1
(Blue Curve) and a Factor 2 (Red Curve)

4.36. Glossary 218

DPDK documentation, Release 16.04.0

Fig. 4.51 Example of Packet Processing Pipeline where Input Ports 0 and 1 are Connected
with Output Ports 0, 1 and 2 through Tables 0 and 1

Fig. 4.52 Sequence of Steps for Hash Table Operations in a Packet Processing Context

Fig. 4.53 Data Structures for Configurable Key Size Hash Tables

Fig. 4.54 Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash
Tables)

Fig. 4.55 Data Structures for 8-byte Key Hash Tables

Fig. 4.56 Data Structures for 16-byte Key Hash Tables

Fig. 4.57 Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash Tables)

Tables

Table 4.3 Packet Processing Pipeline Implementing QoS

Table 4.4 Infrastructure Blocks Used by the Packet Processing Pipeline

Table 4.5 Port Scheduling Hierarchy

Table 4.6 Scheduler Internal Data Structures per Port

Table 4.7 Ethernet Frame Overhead Fields

Table 4.8 Token Bucket Generic Operations

Table 4.9 Token Bucket Generic Parameters

Table 4.10 Token Bucket Persistent Data Structure

Table 4.11 Token Bucket Operations

Table 4.12 Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

Table 4.13 Subport/Pipe Traffic Class Upper Limit Enforcement Operations

Table 4.14 Weighted Round Robin (WRR)

Table 4.15 Subport Traffic Class Oversubscription

Table 4.16 Watermark Propagation from Subport Level to Member Pipes at the Beginning of
Each Traffic Class Upper Limit Enforcement Period

Table 4.17 Watermark Calculation

Table 4.18 RED Configuration Parameters

Table 4.19 Relative Performance of Alternative Approaches

Table 4.20 RED Configuration Corresponding to RED Configuration File

Table 4.21 Port Types

Table 4.22 20 Port Abstract Interface

Table 4.23 Table Types

Table 4.25 Configuration Parameters Common for All Hash Table Types

Table 4.26 Configuration Parameters Specific to Extendable Bucket Hash Table

Table 4.27 Configuration Parameters Specific to Pre-computed Key Signature Hash Table

4.36. Glossary 219

DPDK documentation, Release 16.04.0

Table 4.28 Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

Table 4.29 Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

Table 4.30 Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash
Tables)

Table 4.31 Lookup Tables for Match, Match_Many and Match_Pos

Table 4.32 Collapsed Lookup Tables for Match, Match_Many and Match_Pos

Table 4.33 Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash
Tables

Table 4.34 Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

Table 4.35 Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash
Tables)

Table 4.36 Next Hop Actions (Reserved)

Table 4.37 User Action Examples

Table 4.1 Entry distribution measured with an example table with 1024 random entries using
jhash algorithm

Table 4.2 Entry distribution measured with an example table with 1 million random entries using
jhash algorithm

4.36. Glossary 220

CHAPTER 5

Network Interface Controller Drivers

5.1 Overview of Networking Drivers

The networking drivers may be classified in two categories:

• physical for real devices

• virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for SR-IOV. The interface
seen in the virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions of these devices. The bottom
half part of ethdev is implemented by the drivers. Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties, portability or
even documentation availability. Most of these differences are summarized below.

Table 5.1: Features availability in networking drivers

Feature a f p a c k e t b n x 2 x b n x 2 x v f b o n d i n g c x g b e e 1 0 0 0 e n a e n i c i 4 0 e i 4 0 e . . . v e c i 4 0 e v f i 4 0 e v f . v e c i g b i g b v f i x g b e i x g b e . . v e c i x g b e v f i x g b e v f v e c f m 1 0 k f m 1 0 k . . v e c f m 1 0 k v f f m 1 0 k v f v e c m l x 4 m l x 5 m p i p e n f p n u l l p c a p r i n g s z e d a t a 2 v h o s t v i r t i o v i r t i o . v e c v m x n e t 3 x e n v i r t
speed capabilities
link status X X X X X X X X X X X X X X X X X X
link status event X X X X X X X X X X X
queue status event X
Rx interrupt X X X X X X X X X X X X X X X
queue start/stop X X X X X X X X X X X X X X X X X X
MTU update X X X X X X X X X X
jumbo frame X
scattered Rx X
LRO X X X X
TSO X X X X X X X X X X X X X X X X
promiscuous mode X
allmulticast mode X X X X X X X X X X X X X X X X X X X
unicast MAC filter X
multicast MAC filter X X X X X X X X X X X X X
RSS hash X X X X X X X X X X X X X X X X X X
RSS key update X X X X X X X X X X X X X X X
RSS reta update X X X X X X X X X X X X X X X

Continued on next page

221

DPDK documentation, Release 16.04.0

Table 5.1 – continued from previous page
Feature a f p a c k e t b n x 2 x b n x 2 x v f b o n d i n g c x g b e e 1 0 0 0 e n a e n i c i 4 0 e i 4 0 e . . . v e c i 4 0 e v f i 4 0 e v f . v e c i g b i g b v f i x g b e i x g b e . . v e c i x g b e v f i x g b e v f v e c f m 1 0 k f m 1 0 k . . v e c f m 1 0 k v f f m 1 0 k v f v e c m l x 4 m l x 5 m p i p e n f p n u l l p c a p r i n g s z e d a t a 2 v h o s t v i r t i o v i r t i o . v e c v m x n e t 3 x e n v i r t
VMDq X X X X X X X
SR-IOV X X X X X X X X X
DCB X X X X X
VLAN filter X X X X X X X X X X X X X X X X X X
ethertype filter X X X X X
n-tuple filter X X X
SYN filter X X X
tunnel filter X X X X
flexible filter X
hash filter X X X X
flow director X X X X X
flow control X X X X X X X
rate limitation X X
traffic mirroring X X X X
CRC offload X X X X X X X X X X X X X X X
VLAN offload X X X X X X X X X X X X X X X
QinQ offload X X X X X X X
L3 checksum offload X X X X X X X X X X X X X X X X
L4 checksum offload X X X X X X X X X X X X X X X X
inner L3 checksum X X X X X X
inner L4 checksum X X X X X X
packet type parsing X X X X X X X X X X X X X X
timesync X X X X X
basic stats X
extended stats X X X X X X X X X X X X X X X X X
stats per queue X X X X X X X X X X X X
EEPROM dump X X X
registers dump X X X X X X
multiprocess aware X X X X X X X X X X X X X X X
BSD nic_uio X X X X X X X X X X X X X X X X X X X
Linux UIO X
Linux VFIO X X X X X X X X X X X X X X X X X X X
other kdrv X X X
ARMv7 X X X
ARMv8 X X X
Power8 X X X
TILE-Gx X
x86-32 X
x86-64 X
usage doc X X X X X X X X X
design doc
perf doc

5.1. Overview of Networking Drivers 222

DPDK documentation, Release 16.04.0

5.2 BNX2X Poll Mode Driver

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support for QLogic
578xx 10/20 Gbps family of adapters as well as their virtual functions (VF) in SR-IOV con-
text. It is supported on several standard Linux distros like Red Hat 7.x and SLES12 OS. It is
compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website.

5.2.1 Supported Features

BNX2X PMD has support for:

• Base L2 features

• Unicast/multicast filtering

• Promiscuous mode

• Port hardware statistics

• SR-IOV VF

5.2.2 Non-supported Features

The features not yet supported include:

• TSS (Transmit Side Scaling)

• RSS (Receive Side Scaling)

• LRO/TSO offload

• Checksum offload

• SR-IOV PF

• Rx TX scatter gather

5.2.3 Co-existence considerations

• BCM578xx being a CNA can have both NIC and Storage personalities. However, coex-
istence with storage protocol drivers (cnic, bnx2fc and bnx2fi) is not supported on the
same adapter. So storage personality has to be disabled on that adapter when used in
DPDK applications.

• For SR-IOV case, bnx2x PMD will be used to bind to SR-IOV VF device and Linux native
kernel driver (bnx2x) will be attached to SR-IOV PF.

5.2.4 Supported QLogic NICs

• 578xx

5.2. BNX2X Poll Mode Driver 223

http://www.qlogic.com

DPDK documentation, Release 16.04.0

5.2.5 Prerequisites

• Requires firmware version 7.2.51.0. It is included in most of the standard Linux distros.
If it is not available visit QLogic Driver Download Center to get the required firmware.

5.2.6 Pre-Installation Configuration

Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_BNX2X_PMD (default y)

Toggle compilation of bnx2x driver.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_INIT (default n)

Toggle display of initialization related messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

Driver Compilation

BNX2X PMD for Linux x86_64 gcc target, run the following “make” command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-gcc install

To compile BNX2X PMD for Linux x86_64 clang target, run the following “make” command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-clang install

To compile BNX2X PMD for Linux i686 gcc target, run the following “make” command:

cd <DPDK-source-directory>
make config T=i686-native-linuxapp-gcc install

To compile BNX2X PMD for Linux i686 gcc target, run the following “make” command:

cd <DPDK-source-directory>
make config T=i686-native-linuxapp-gcc install

To compile BNX2X PMD for FreeBSD x86_64 clang target, run the following “gmake” com-
mand:

5.2. BNX2X Poll Mode Driver 224

http://driverdownloads.qlogic.com

DPDK documentation, Release 16.04.0

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-clang install

To compile BNX2X PMD for FreeBSD x86_64 gcc target, run the following “gmake” command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-gcc install -Wl,-rpath=/usr/local/lib/gcc48 CC=gcc48

To compile BNX2X PMD for FreeBSD x86_64 gcc target, run the following “gmake” command:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-gcc install -Wl,-rpath=/usr/local/lib/gcc48 CC=gcc48

5.2.7 Linux

Linux Installation

Sample Application Notes

This section demonstrates how to launch testpmd with QLogic 578xx devices managed by
librte_pmd_bnx2x in Linux operating system.

1. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

2. Load igb_uio or vfio-pci driver:

insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

3. Bind the QLogic adapters to igb_uio or vfio-pci loaded in the previous step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:84:00.0 0000:84:00.1

or

Setup VFIO permissions for regular users and then bind to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:84:00.0 0000:84:00.1

4. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000

5.2. BNX2X Poll Mode Driver 225

DPDK documentation, Release 16.04.0

Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,

usable_bd=1020, total_bd=1024,
tx_pages=4

PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,
usable_bd=510, total_bd=512,

rx_pages=1, cq_pages=8
PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is: ip link set <PF iface>
vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

5.2. BNX2X Poll Mode Driver 226

DPDK documentation, Release 16.04.0

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh etc.
bnx2x PMD should be used to bind the VF devices in the guest VM using the instructions
outlined in the Application notes below.

5.3 CXGBE Poll Mode Driver

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support for Chelsio T5 10/40
Gbps family of adapters. CXGBE PMD has support for the latest Linux and FreeBSD operating
systems.

More information can be found at Chelsio Communications Official Website.

5.3.1 Features

CXGBE PMD has support for:

• Multiple queues for TX and RX

• Receiver Side Steering (RSS)

• VLAN filtering

• Checksum offload

• Promiscuous mode

• All multicast mode

• Port hardware statistics

• Jumbo frames

5.3.2 Limitations

The Chelsio T5 devices provide two/four ports but expose a single PCI bus address, thus, li-
brte_pmd_cxgbe registers itself as a PCI driver that allocates one Ethernet device per detected
port.

For this reason, one cannot whitelist/blacklist a single port without whitelisting/blacklisting the
other ports on the same device.

5.3.3 Supported Chelsio T5 NICs

• 1G NICs: T502-BT

• 10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

• 40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

• Other T5 NICs: T522-CR

5.3. CXGBE Poll Mode Driver 227

http://www.chelsio.com

DPDK documentation, Release 16.04.0

5.3.4 Prerequisites

• Requires firmware version 1.13.32.0 and higher. Visit Chelsio Download Center to get
latest firmware bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the Chelsio Unified
Wire package should get you the latest firmware. More information can be obtained from
the User Guide that is bundled with the Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire package must
be manually flashed via cxgbetool available in FreeBSD source repository.

Instructions on how to manually flash the firmware are given in section Linux Installation
for Linux and section FreeBSD Installation for FreeBSD.

5.3.5 Pre-Installation Configuration

Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_REG (default n)

Toggle display of registers related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_MBOX (default n)

Toggle display of firmware mailbox related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_TX (default n)

Toggle display of transmission data path run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_RX (default n)

Toggle display of receiving data path run-time check messages.

Driver Compilation

To compile CXGBE PMD for Linux x86_64 gcc target, run the following “make” command:

cd <DPDK-source-directory>
make config T=x86_64-native-linuxapp-gcc install

To compile CXGBE PMD for FreeBSD x86_64 clang target, run the following “gmake” com-
mand:

cd <DPDK-source-directory>
gmake config T=x86_64-native-bsdapp-clang install

5.3. CXGBE Poll Mode Driver 228

http://service.chelsio.com

DPDK documentation, Release 16.04.0

5.3.6 Linux

Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for Linux operating system are as follows:

1. Load the kernel module:

modprobe cxgb4

2. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

3. Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

4. Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

5. Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

6. Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

7. Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.13.32.0, TP 0.1.4.8

Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5 devices managed by li-
brte_pmd_cxgbe in Linux operating system.

1. Change to DPDK source directory where the target has been compiled in section Driver
Compilation:

cd <DPDK-source-directory>

2. Load the kernel module:

modprobe cxgb4

3. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

5.3. CXGBE Poll Mode Driver 229

DPDK documentation, Release 16.04.0

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note: Both the interfaces of a Chelsio T5 2-port adapter are bound to the same PCI bus
address.

4. Unload the kernel module:

modprobe -ar cxgb4 csiostor

5. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

6. Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

7. Load igb_uio or vfio-pci driver:

insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

8. Bind the Chelsio T5 adapters to igb_uio or vfio-pci loaded in the previous step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:02:00.4

or

Setup VFIO permissions for regular users and then bind to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:02:00.4

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

9. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...

5.3. CXGBE Poll Mode Driver 230

DPDK documentation, Release 16.04.0

PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer
section Enable/Disable Flow Control for more details.

5.3.7 FreeBSD

FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for FreeBSD operating system are as follows:

1. Load the kernel module:

kldload if_cxgbe

2. Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

Example output:

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

3. Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

4. Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

5. Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

6. Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.13.32.0

Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5 devices managed by li-
brte_pmd_cxgbe in FreeBSD operating system.

5.3. CXGBE Poll Mode Driver 231

DPDK documentation, Release 16.04.0

1. Change to DPDK source directory where the target has been compiled in section Driver
Compilation:

cd <DPDK-source-directory>

2. Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-bsdapp-clang/kmod/contigmem.ko /boot/kernel/

3. Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and allocate 2 x
1G blocks of contiguous memory to be used for DPDK later on. This is to avoid issues
with potential memory fragmentation during later system up time, which may result in
failure of allocating the contiguous memory required for the contigmem kernel module.

4. Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

5. Repeat step 1 to ensure that you are in the DPDK source directory.

6. Load the cxgbe kernel module:

kldload if_cxgbe

7. Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note: Both the interfaces of a Chelsio T5 2-port adapter are bound to the same PCI bus
address.

8. Unload the kernel module:

kldunload if_cxgbe

9. Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in the next step.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

10. Load nic_uio kernel driver:

5.3. CXGBE Poll Mode Driver 232

DPDK documentation, Release 16.04.0

kldload ./x86_64-native-bsdapp-clang/kmod/nic_uio.ko

11. Start testpmd with basic parameters:

./x86_64-native-bsdapp-clang/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer
section Enable/Disable Flow Control for more details.

5.3.8 Sample Application Notes

Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd. One method
involves using the mtu command, which changes the mtu of an individual port without having
to stop the selected port. Another method involves stopping all the ports first and then running
max-pkt-len command to configure the mtu of all the ports with a single command.

• To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

5.3. CXGBE Poll Mode Driver 233

DPDK documentation, Release 16.04.0

• To configure all the ports at once, stop all the ports first and run the max-pkt-len command
as follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

5.4 Driver for VM Emulated Devices

The DPDK EM poll mode driver supports the following emulated devices:

• qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

• VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

• VMware emulated Intel® 8274L Gigabit Ethernet Controller.

5.4.1 Validated Hypervisors

The validated hypervisors are:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

• KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

• VMware ESXi 5.0, Update 1

5.4.2 Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

• Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

5.4.3 Setting Up a KVM Virtual Machine

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: testpmd

The setup procedure is as follows:

1. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

5.4. Driver for VM Emulated Devices 234

http://sourceforge.net/projects/kvm/files/qemu-kvm/

DPDK documentation, Release 16.04.0

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to: http://www.linux-
kvm.org/page/HOWTO1.

2. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

3. Start the Virtual Machine with at least one emulated e1000 device.

Note: The Qemu provides several choices for the emulated network device backend.
Most commonly used is a TAP networking backend that uses a TAP networking device in
the host. For more information about Qemu supported networking backends and different
options for configuring networking at Qemu, please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following com-
mand:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices, backed
up with two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

4. Configure your TAP networking interfaces using ip/ifconfig tools.

5.4. Driver for VM Emulated Devices 235

http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/Networking
http://wiki.qemu.org/Documentation/Networking
http://qemu.weilnetz.de/qemu-doc.html

DPDK documentation, Release 16.04.0

5. Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

6. Install the DPDK and run testpmd.

5.4.4 Known Limitations of Emulated Devices

The following are known limitations:

1. The Qemu e1000 RX path does not support multiple descriptors/buffers per packet.
Therefore, rte_mbuf should be big enough to hold the whole packet. For example, to
allow testpmd to receive jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

2. Qemu e1000 does not validate the checksum of incoming packets.

3. Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be ex-
clusive.

4. Qemu e1000 does not support interrupt auto-clear, application should disable interrupt
immediately when woken up.

5.5 ENA Poll Mode Driver

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic Network Adapter (ENA)
family.

5.5.1 Overview

The ENA driver exposes a lightweight management interface with a minimal set of memory
mapped registers and an extendable command set through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed independent (i.e., the same
driver is used for 10GbE, 25GbE, 40GbE, etc.), and it negotiates and supports an extendable
feature set.

ENA adapters allow high speed and low overhead Ethernet traffic processing by providing a
dedicated Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such as checksum offload
and TCP transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency Queue (LLQ), which
saves several more microseconds.

5.5.2 Management Interface

ENA management interface is exposed by means of:

5.5. ENA Poll Mode Driver 236

DPDK documentation, Release 16.04.0

• Device Registers

• Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers) are accessed only
during driver initialization and are not involved in further normal device operation.

AQ is used for submitting management commands, and the results/responses are reported
asynchronously through ACQ.

ENA introduces a very small set of management commands with room for vendor-specific
extensions. Most of the management operations are framed in a generic Get/Set feature com-
mand.

The following admin queue commands are supported:

• Create I/O submission queue

• Create I/O completion queue

• Destroy I/O submission queue

• Destroy I/O completion queue

• Get feature

• Set feature

• Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature properties.

5.5.3 Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx SQ correspond-
ingly). Each SQ has a completion queue (CQ) associated with it.

The SQs and CQs are implemented as descriptor rings in contiguous physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

5.5.4 Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

• CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion
of the ENA PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_INIT (default y): Enables or disables
debug logging of device initialization within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables
debug logging of RX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables
debug logging of TX logic within the ENA PMD driver.

5.5. ENA Poll Mode Driver 237

DPDK documentation, Release 16.04.0

• CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables
debug logging of low level tx/rx logic in ena_com(base) within the ENA PMD
driver.

ENA Configuration Parameters

• Number of Queues

This is the requested number of queues upon initialization, however, the actual number
of receive and transmit queues to be created will be the minimum between the maximal
number supported by the device and number of queues requested.

• Size of Queues

This is the requested size of receive/transmit queues, while the actual size will be the
minimum between the requested size and the maximal receive/transmit supported by the
device.

5.5.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that
comes with DPDK suite.

5.5.6 Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

• 1d0f:ec20 - ENA VF

• 1d0f:ec21 - ENA VF with LLQ support

5.5.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes.

5.5.8 Supported features

• Jumbo frames up to 9K

• Port Hardware Statistics

• IPv4/TCP/UDP checksum offload

• TSO offload

• Multiple receive and transmit queues

• RSS

• Low Latency Queue for Tx

5.5. ENA Poll Mode Driver 238

DPDK documentation, Release 16.04.0

5.5.9 Unsupported features

The features supported by the device and not yet supported by this PMD include:

• Asynchronous Event Notification Queue (AENQ)

5.5.10 Prerequisites

1. Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

2. Insert igb_uio kernel module using the command ‘modprobe igb_uio’

3. Bind the intended ENA device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the ENA can be detached from igb_uio if necessary.

5.5.11 Usage example

This section demonstrates how to launch testpmd with Amazon ENA devices managed by
librte_pmd_ena.

1. Load the kernel modules:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

Note: Currently Amazon ENA PMD driver depends on igb_uio user space I/O kernel
module

2. Mount and request huge pages:

mount -t hugetlbfs nodev /mnt/hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

3. Bind UIO driver to ENA device (using provided by DPDK binding tool):

./tools/dpdk_nic_bind.py --bind=igb_uio 0000:02:00.1

4. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.1 on NUMA socket -1
EAL: probe driver: 1d0f:ec20 rte_ena_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ena_dev_init(): Initializing 0:2:0.1
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

5.5. ENA Poll Mode Driver 239

DPDK documentation, Release 16.04.0

5.6 ENIC Poll Mode Driver

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet NICs. These
adapters are also referred to as vNICs below. If you are running or would like to run DPDK soft-
ware applications on Cisco UCS servers using Cisco VIC adapters the following documentation
is relevant.

5.6.1 Version Information

The version of the ENIC PMD driver is 1.0.0.6 and will be printed by ENIC PMD during the
initialization.

5.6.2 How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz should be down-
loaded from http://dpdk.org

5.6.3 Configuration information

• DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

– CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion of
the ENIC PMD driver in the DPDK compilation.

– CONFIG_RTE_LIBRTE_ENIC_DEBUG (default n): Enables or disables debug log-
ging within the ENIC PMD driver.

• vNIC Configuration Parameters

– Number of Queues

The maximum number of receive and transmit queues are configurable on a per
vNIC basis through the Cisco UCS Manager (CIMC or UCSM). These values should
be configured to be greater than or equal to the nb_rx_q and nb_tx_q parameters
expected to used in the call to the rte_eth_dev_configure() function.

– Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on a
per vNIC bases via the UCS Manager and should be greater than or equal to
the nb_rx_desc and nb_tx_desc parameters expected to be used in the calls to
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() respectively.

– Interrupts

Only one interrupt per vNIC interface should be configured in the UCS manager re-
gardless of the number receive/transmit queues. The ENIC PMD uses this interrupt
to get information about errors in the fast path.

5.6. ENIC Poll Mode Driver 240

http://dpdk.org

DPDK documentation, Release 16.04.0

5.6.4 Limitations

• VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will priority tag
egress packets according to 802.1Q if they were not already VLAN tagged by software.
If the adapter is connected to a properly configured switch, there will be no unexpected
behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is connected
point-to-point to another adapter port or connected though a router instead of a switch,
all ingress packets will be VLAN tagged. Programs such as l3fwd which do not account
for VLAN tags in packets will misbehave. The solution is to enable VLAN stripping on
ingress. The follow code fragment is example of how to accomplish this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

5.6.5 How to build the suite?

The build instructions for the DPDK suite should be followed. By default the ENIC PMD library
will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please refer the documentation that
comes with DPDK suite.

5.6.6 Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

• VIC 1280

• VIC 1240

• VIC 1225

• VIC 1285

• VIC 1225T

• VIC 1227

• VIC 1227T

• VIC 1380

• VIC 1340

• VIC 1385

• VIC 1387

• Flow director features are not supported on generation 1 Cisco VIC adapters
(M81KR and P81E)

5.6. ENIC Poll Mode Driver 241

DPDK documentation, Release 16.04.0

5.6.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies section of DPDK doc-
umentation.

5.6.8 Supported features

• Unicast, multicast and broadcast transmission and reception

• Receive queue polling

• Port Hardware Statistics

• Hardware VLAN acceleration

• IP checksum offload

• Receive side VLAN stripping

• Multiple receive and transmit queues

• Flow Director ADD, UPDATE, DELETE, STATS operation support for IPV4 5-TUPLE flows

• Promiscuous mode

• Setting RX VLAN (supported via UCSM/CIMC only)

• VLAN filtering (supported via UCSM/CIMC only)

• Execution of application by unprivileged system users

• IPV4, IPV6 and TCP RSS hashing

5.6.9 Known bugs and Unsupported features in this release

• Signature or flex byte based flow direction

• Drop feature of flow direction

• VLAN based flow direction

• non-IPV4 flow direction

• Setting of extended VLAN

• UDP RSS hashing

5.6.10 Prerequisites

• Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

• Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the user wants to
use VFIO framework

• Insert uio kernel module using the command ‘modprobe uio’ if the user wants to use UIO
framework

5.6. ENIC Poll Mode Driver 242

DPDK documentation, Release 16.04.0

• DPDK suite should be configured based on the user’s decision to use VFIO or UIO frame-
work

• If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver (enic), use
‘ifconfig’ to bring the interface down. The dpdk_nic_bind.py tool can then be used to
unbind the device’s bus id from the enic kernel mode driver.

• Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use VFIO frame-
work using dpdk_nic_bind.py.

• Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use UIO frame-
work using dpdk_nic_bind.py.

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the vNIC can be detached from vfio-pci or igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO. VFIO framework helps
an unprivileged user to run the applications. For an unprivileged user to run the applications
on DPDK and ENIC PMD, it may be necessary to increase the maximum locked memory of
the user. The following command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

The value depends on the memory configuration of the application, DPDK and PMD. Typically,
the limit has to be raised to higher than 2GB. e.g., 2621440

The compilation of any unused drivers can be disabled using the configuration file in config/
directory (e.g., config/common_linuxapp). This would help in bringing down the time taken for
building the libraries and the initialization time of the application.

5.6.11 Additional Reference

• http://www.cisco.com/c/en/us/products/servers-unified-computing

5.6.12 Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD main-
tainers:

• John Daley <johndale@cisco.com>

• Nelson Escobar <neescoba@cisco.com>

5.7 FM10K Poll Mode Driver

The FM10K poll mode driver library provides support for the Intel FM10000 (FM10K) family of
40GbE/100GbE adapters.

5.7.1 FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs support
the addition of a Fabric Tag (FTAG) to carry special information. The FTAG is placed at the
beginning of the frame, it contains information such as where the packet comes from and goes,

5.7. FM10K Poll Mode Driver 243

http://www.cisco.com/c/en/us/products/servers-unified-computing
mailto:johndale@cisco.com
mailto:neescoba@cisco.com

DPDK documentation, Release 16.04.0

and the vlan tag. In FTAG based forwarding mode, the switch logic forwards packets according
to glort (global resource tag) information, rather than the mac and vlan table. Currently this
feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal like “-w 84:00.0,en-
able_ftag=1”, and the application should make sure an appropriate FTAG is inserted for every
frame on TX side.

5.7.2 Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O. It improves
load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX ‘’register (1)’‘.
The wider register gives space to hold multiple packet buffers so as to save on the number of
instructions when bulk processing packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for vPMD
packet I/O. They are transparently registered at runtime RX/TX execution if all required condi-
tions are met.

1. To date, only an SSE version of FM10K vPMD is available. To ensure that vPMD is in the
binary code, set CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

RX Constraints

Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this
pre-condition, the ring pointer can easily scroll back to the head after hitting the tail without
a conditional check. In addition Vector RX can use this assumption to do a bit mask using
ring_size - 1.

Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• Flow director

• Header split

• RX checksum offload

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

5.7. FM10K Poll Mode Driver 244

DPDK documentation, Release 16.04.0

To guarantee the constraint, the following configuration flags in dev_conf.rxmode will be
checked:

• hw_vlan_extend

• hw_ip_checksum

• header_split

• fdir_conf->mode

RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes that
the RX burst should be greater than 4 packets per burst. It returns zero if using nb_pkt < 4 in
the receive handler. If nb_pkt is not a multiple of 4, a floor alignment will be applied.

TX Constraint

Features not Supported by TX Vector PMD

TX vPMD only works when txq_flags is set to FM10K_SIMPLE_TX_FLAG. This means that it
does not support TX multi-segment, VLAN offload or TX csum offload. The following MACROs
are used for these three features:

• ETH_TXQ_FLAGS_NOMULTSEGS

• ETH_TXQ_FLAGS_NOVLANOFFL

• ETH_TXQ_FLAGS_NOXSUMSCTP

• ETH_TXQ_FLAGS_NOXSUMUDP

• ETH_TXQ_FLAGS_NOXSUMTCP

5.7.3 Limitations

Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host interfaces.
The FM10000 PMD driver only manages host interfaces. For the switch component another
switch driver has to be loaded prior to to the FM10000 PMD driver. The switch driver can be
acquired for Intel support or from the Match Interface project. Only Testpoint is validated with
DPDK, the latest version that has been validated with DPDK2.2 is 4.1.6.

CRC striping

The FM10000 family of NICs strip the CRC for every packets coming into the host interface. So,
CRC will be stripped even when the rxmode.hw_strip_crc member is set to 0 in struct
rte_eth_conf.

5.7. FM10K Poll Mode Driver 245

https://github.com/match-interface

DPDK documentation, Release 16.04.0

Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 15364, frames up to 15364 bytes can still reach
the host interface.

Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics are read
from the hardware registers when rte_eth_stats_get() or rte_eth_xstats_get() is
called. The packet counting registers are 32 bits while the byte counting registers are 48 bits.
As a result, the statistics must be polled regularly in order to ensure the consistency of the
returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets this gives
almost 100 million packets/second, causing 32 bit integer overflow after approx 40 seconds.
To ensure these overflows are detected and accounted for in the statistics, it is necessary to
read statistic regularly. It is suggested to read stats every 20 seconds, which will ensure the
statistics are accurate.

Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only drivers which
support multiple interrupt vectors e.g. vfio-pci can work for fm10k interrupt mode.

5.8 I40E Poll Mode Driver

The I40E PMD (librte_pmd_i40e) provides poll mode driver support for the Intel
X710/XL710/X722 10/40 Gbps family of adapters.

5.8.1 Features

Features of the I40E PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Flow director

• Cloud filter

• Checksum offload

• VLAN/QinQ stripping and inserting

• TSO offload

5.8. I40E Poll Mode Driver 246

DPDK documentation, Release 16.04.0

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Link flow control

• Mirror on port, VLAN and VSI

• Interrupt mode for RX

• Scattered and gather for TX and RX

• Vector Poll mode driver

• DCB

• VMDQ

• SR-IOV VF

• Hot plug

• IEEE1588/802.1AS timestamping

5.8.2 Prerequisites

• Identifying your adapter using Intel Support and get the latest NVM/FW images.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best perfor-
mance with NICs on Intel platforms” section of the Getting Started Guide for Linux .

5.8.3 Pre-Installation Configuration

Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

• CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

• CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

Toggle the use of Vector PMD instead of normal RX/TX path. To enable vPMD for RX,
bulk allocation for Rx must be allowed.

5.8. I40E Poll Mode Driver 247

http://www.intel.com/support

DPDK documentation, Release 16.04.0

• CONFIG_RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE (default y)

Toggle to enable RX olflags. This is only meaningful when Vector PMD is used.

• CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF (default 4)

Number of queues reserved for each SR-IOV VF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

• CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL (default -1)

Interrupt Throttling interval.

Driver Compilation

To compile the I40E PMD see Getting Started Guide for Linux or Getting Started Guide for
FreeBSD depending on your platform.

5.8.4 Linux

Running testpmd

This section demonstrates how to launch testpmd with Intel XL710/X710 devices managed
by librte_pmd_i40e in the Linux operating system.

1. Load igb_uio or vfio-pci driver:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

2. Bind the XL710/X710 adapters to igb_uio or vfio-pci loaded in the previous step:

./tools/dpdk_nic_bind.py --bind igb_uio 0000:83:00.0

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./tools/dpdk_nic_bind.py --bind vfio-pci 0000:83:00.0

3. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 83:00.0 -- -i

Example output:

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000

5.8. I40E Poll Mode Driver 248

DPDK documentation, Release 16.04.0

EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

SR-IOV: Prerequisites and sample Application Notes

1. Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

2. Bring up the PF ports:

ifconfig ens802f0 up

3. Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry of the parent
PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

4. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

5. Assign VF to VM, and bring up the VM. Please see the documentation for the
I40E/IXGBE/IGB Virtual Function Driver.

5.8.5 Sample Application Notes

Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

5.8. I40E Poll Mode Driver 249

DPDK documentation, Release 16.04.0

./app/testpmd -c ffff -n 4 -- -i --forward-mode=mac

...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues. The Flow Director filters can match the different fields for different
type of packet: flow type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked
out from matching.

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -c ffff -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5, src_ip=2.2.2.3,
src_port=32, dst_port=32 to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
fwd pf queue 1 fd_id 1

Check the flow director status:

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
MODE: PERFECT
SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other

ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
l2_payload

FLEX PAYLOAD INFO:
max_len: 16 payload_limit: 480
payload_unit: 2 payload_seg: 3
bitmask_unit: 2 bitmask_num: 2
MASK:
vlan_tci: 0x0000,
src_ipv4: 0x00000000,
dst_ipv4: 0x00000000,
src_port: 0x0000,
dst_port: 0x0000
src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,

5.8. I40E Poll Mode Driver 250

DPDK documentation, Release 16.04.0

dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000
FLEX PAYLOAD SRC OFFSET:
L2_PAYLOAD: 0 1 2 3 4 5 6 ...
L3_PAYLOAD: 0 1 2 3 4 5 6 ...
L4_PAYLOAD: 0 1 2 3 4 5 6 ...

FLEX MASK CFG:
ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

guarant_count: 1 best_count: 0
guarant_space: 512 best_space: 7168
collision: 0 free: 0
maxhash: 0 maxlen: 0
add: 0 remove: 0
f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

5.9 IXGBE Driver

5.9.1 Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O. It improves load/store band-
width efficiency of L1 data cache by using a wider SSE/AVX register 1 (1). The wider register
gives space to hold multiple packet buffers so as to save instruction number when processing
bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet
I/O. They are transparently registered at runtime RX/TX execution if all condition checks pass.

1. To date, only an SSE version of IX GBE vPMD is available. To ensure that vPMD is in
the binary code, ensure that the option CONFIG_RTE_IXGBE_INC_VECTOR=y is in the
configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

RX Constraints

Prerequisites and Pre-conditions

The following prerequisites apply:

• To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

5.9. IXGBE Driver 251

DPDK documentation, Release 16.04.0

• rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

• rxq->rx_free_thresh < rxq->nb_rx_desc

• (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

• rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode. If an incoming packet is greater than the
maximum acceptable length of one “mbuf” data size (by default, the size is 2 KB), vPMD for
RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and
RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• FDIR

• Header split

• RX checksum off load

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• HW extend dual VLAN

• Enabled by RX_OLFLAGS (RTE_IXGBE_RX_OLFLAGS_ENABLE=y)

To guarantee the constraint, configuration flags in dev_conf.rxmode will be checked:

• hw_vlan_strip

• hw_vlan_extend

• hw_ip_checksum

• header_split

• dev_conf

fdir_conf->mode will also be checked.

RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater
than 32 per burst. It returns zero if using nb_pkt < 32 as the expected packet number in the
receive handler.

5.9. IXGBE Driver 252

DPDK documentation, Release 16.04.0

TX Constraint

Prerequisite

The only prerequisite is related to tx_rs_thresh. The tx_rs_thresh value must be
greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST, but less or equal to
RTE_IXGBE_TX_MAX_FREE_BUF_SZ. Consequently, by default the tx_rs_thresh value is
in the range 32 to 64.

Feature not Supported by RX Vector PMD

TX vPMD only works when txq_flags is set to IXGBE_SIMPLE_FLAGS.

This means that it does not support TX multi-segment, VLAN offload and TX csum offload.
The following MACROs are used for these three features:

• ETH_TXQ_FLAGS_NOMULTSEGS

• ETH_TXQ_FLAGS_NOVLANOFFL

• ETH_TXQ_FLAGS_NOXSUMSCTP

• ETH_TXQ_FLAGS_NOXSUMUDP

• ETH_TXQ_FLAGS_NOXSUMTCP

Sample Application Notes

testpmd

By default, using CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=y:

./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01

When CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=n, better performance can be
achieved:

./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01 --disable-hw-vlan

l3fwd

When running l3fwd with vPMD, there is one thing to note. In the configuration, ensure that
port_conf.rxmode.hw_ip_checksum=0. Otherwise, by default, RX vPMD is disabled.

load_balancer

As in the case of l3fwd, set configure port_conf.rxmode.hw_ip_checksum=0 to enable vPMD.
In addition, for improved performance, use -bsz “(32,32),(64,64),(32,32)” in load_balancer to
avoid using the default burst size of 144.

5.9. IXGBE Driver 253

DPDK documentation, Release 16.04.0

5.9.2 Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious Driver Detection) which
checks the behavior of the VF driver. If this feature is enabled, the VF must use the advanced
context descriptor correctly and set the CC (Check Context) bit. DPDK PF doesn’t support
MDD, but kernel PF does. We may hit problem in this scenario kernel PF + DPDK VF. If
user enables MDD in kernel PF, DPDK VF will not work. Because kernel PF thinks the VF is
malicious. But actually it’s not. The only reason is the VF doesn’t act as MDD required. There’s
significant performance impact to support MDD. DPDK should check if the advanced context
descriptor should be set and set it. And DPDK has to ask the info about the header length from
the upper layer, because parsing the packet itself is not acceptable. So, it’s too expensive to
support MDD. When using kernel PF + DPDK VF on x550, please make sure using the kernel
driver that disables MDD or can disable MDD. (Some kernel driver can use this CLI ‘insmod
ixgbe.ko MDD=0,0’ to disable MDD. Some kernel driver disables it by default.)

5.9.3 Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to remain consistent.
Running a DPDK application without polling the statistics will cause registers on hardware to
count to the maximum value, and “stick” at that value.

In order to avoid statistic registers every reaching the maximum value, read the statistics from
the hardware using rte_eth_stats_get() or rte_eth_xstats_get().

The maximum time between statistics polls that ensures consistent results can be calculated
as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

5.10 I40E/IXGBE/IGB Virtual Function Driver

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details) support the
following modes of operation in a virtualized environment:

• SR-IOV mode: Involves direct assignment of part of the port resources to different guest
operating systems using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard,
also known as “native mode” or “pass-through” mode. In this chapter, this mode is re-
ferred to as IOV mode.

• VMDq mode: Involves central management of the networking resources by an IO Virtual
Machine (IOVM) or a Virtual Machine Monitor (VMM), also known as software switch
acceleration mode. In this chapter, this mode is referred to as the Next Generation VMDq
mode.

5.10. I40E/IXGBE/IGB Virtual Function Driver 254

DPDK documentation, Release 16.04.0

5.10.1 SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode. Therefore,
it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and
expose them to a virtual machine as a separate PCI function called a “Virtual Function”. Refer
to Fig. 5.1.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig. 5.1),
while still having global data in common to share with the Physical Function and other Virtual
Functions. The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD) serves
for the Intel® 82576 Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family, Intel®
82599 10 Gigabit Ethernet Controller NIC, Intel® Fortville 10/40 Gigabit Ethernet Controller
NIC’s virtual PCI function, or PCIe host-interface of the Intel Ethernet Switch FM10000 Series.
Meanwhile the DPDK Poll Mode Driver (PMD) also supports “Physical Function” of such NIC’s
on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit
Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet
Controller, and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose
it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

• SR-IOV provides hardware based I/O sharing

• PCI-SIG-Single Root I/O Virtualization Support on IA

• Scalable I/O Virtualized Servers

Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the sup-
ported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and
therefore have no access to the global NIC resources that are shared between other functions
for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the
queues assigned to it. For global resource access, a Virtual Function has to send a request to
the Physical Function for that port, and the Physical Function operates on the global resources
on behalf of the Virtual Function. For this out-of-band communication, an SR-IOV enabled NIC
provides a memory buffer for each Virtual Function, which is called a “Mailbox”.

The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions
(VF) globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device.
Each VF can have a maximum of 16 queue pairs. The Physical Function in host could be only
configured by the Linux* fm10k driver (in the case of the Linux Kernel-based Virtual Machine
[KVM]), DPDK PMD PF driver doesn’t support it yet.

For example,

• Using Linux* fm10k driver:

5.10. I40E/IXGBE/IGB Virtual Function Driver 255

http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html
http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html

DPDK documentation, Release 16.04.0

Fig. 5.1: Virtualization for a Single Port NIC in SR-IOV Mode

5.10. I40E/IXGBE/IGB Virtual Function Driver 256

DPDK documentation, Release 16.04.0

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® Fortville 10/40 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128 Virtual Functions
(VF) globally per Intel® Fortville 10/40 Gigabit Ethernet Controller NIC device. Each VF can
have a maximum of 16 queue pairs. The Physical Function in host could be either configured
by the Linux* i40e driver (in the case of the Linux Kernel-based Virtual Machine [KVM]) or by
DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers, the whole NIC will be
taken over by DPDK based application.

For example,

• Using Linux* i40e driver:

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

• Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI
device, and launch the DPDK testpmd/example or your own host daemon application
using the DPDK PMD library.

The available queue number(at most 4) per VF depends on the total number of pool,
which is determined by the max number of VF at PF initialization stage and the number
of queue specified in config:

– If the max number of VF is set in the range of 1 to 32:

If the number of rxq is specified as 4(e.g. ‘–rxq 4’ in testpmd), then there are totally
32 pools(ETH_32_POOLS), and each VF could have 4 or less(e.g. 2) queues;

5.10. I40E/IXGBE/IGB Virtual Function Driver 257

DPDK documentation, Release 16.04.0

If the number of rxq is specified as 2(e.g. ‘–rxq 2’ in testpmd), then there are totally
32 pools(ETH_32_POOLS), and each VF could have 2 queues;

– If the max number of VF is in the range of 33 to 64:

If the number of rxq is 4 (‘–rxq 4’ in testpmd), then error message is expected as rxq
is not correct at this case;

If the number of rxq is 2 (‘–rxq 2’ in testpmd), then there is totally 64
pools(ETH_64_POOLS), and each VF have 2 queues;

On host, to enable VF RSS functionality, rx mq mode should be set as
ETH_MQ_RX_VMDQ_RSS or ETH_MQ_RX_RSS mode, and SRIOV mode should be
activated(max_vfs >= 1). It also needs config VF RSS information like hash function,
RSS key, RSS key length.

testpmd -c 0xffff -n 4 -- --coremask=<core-mask> --rxq=4 --txq=4 -i

The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is: The hash
and key are shared among PF and all VF, the RETA table with 128 entries is also shared
among PF and all VF; So it could not to provide a method to query the hash and reta
content per VF on guest, while, if possible, please query them on host(PF) for the shared
RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Phys-
ical Function per Intel® 82599 10 Gigabit Ethernet Controller NIC port. The reason for this is
that the device allows for a maximum of 128 queues per port and a virtual/physical function
has to have at least one queue pair (RX/TX). The current implementation of the DPDK ixgbevf
driver supports a single queue pair (RX/TX) per Virtual Function. The Physical Function in host
could be either configured by the Linux* ixgbe driver (in the case of the Linux Kernel-based Vir-
tual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers,
the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

5.10. I40E/IXGBE/IGB Virtual Function Driver 258

DPDK documentation, Release 16.04.0

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF Infras-
tructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight
virtual machines (VMs). The controller has 16 TX and 16 RX queues. They are generally
referred to (or thought of) as queue pairs (one TX and one RX queue). This gives the controller
16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive
operations. The controller has eight pools, with each pool containing two queue pairs, that is,
two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight
virtual machines (VMs) per port. The eight queues can be accessed by eight different VMs if
configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues), that means,
one Transmit and one Receive queue assigned to each VF.

For example,

• Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

• Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK
PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a four-port NIC. When you enable the four Virtual Functions with the above command, the four

5.10. I40E/IXGBE/IGB Virtual Function Driver 259

DPDK documentation, Release 16.04.0

enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence,
starting from 0 to 7. However:

• Virtual Functions 0 and 4 belong to Physical Function 0

• Virtual Functions 1 and 5 belong to Physical Function 1

• Virtual Functions 2 and 6 belong to Physical Function 2

• Virtual Functions 3 and 7 belong to Physical Function 3

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Validated Hypervisors

The validated hypervisor is:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mail-
box interface, the solution is hypervisor-agnostic. Xen* and VMware* (when SR- IOV is sup-
ported) will also be able to support the DPDK with Virtual Function driver support.

Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

• Fedora* 14 (64-bit)

• Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

5.10.2 Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

1. Before booting the Host OS, open BIOS setup and enable Intel® VT features.

2. While booting the Host OS kernel, pass the intel_iommu=on kernel command line ar-
gument using GRUB. When using DPDK PF driver on host, pass the iommu=pt kernel
command line argument in GRUB.

5.10. I40E/IXGBE/IGB Virtual Function Driver 260

DPDK documentation, Release 16.04.0

3. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

4. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

5. Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

6. In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the
max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the num-
ber of VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note: You need to explicitly specify number of vfs for each port, for example, in the
command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

5.10. I40E/IXGBE/IGB Virtual Function Driver 261

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

DPDK documentation, Release 16.04.0

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

7. List the PCI devices connected and notice that the Host OS shows two Physical Functions
(traditional ports) and four Virtual Functions (two for each port). This is the result of the
previous step.

8. Insert the pci_stub module to hold the PCI devices that are freed from
the default driver using the following command (see http://www.linux-
kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more in-
formation):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions. A
script to perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

9. Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

—-smp = number of smp cores

— -boot = boot option

—-hda = virtual disk image

— -device = device to attach

Note: — The pci-assign,host=08:10.0 alue indicates that you want to attach a PCI
device to a Virtual Machine and the respective (Bus:Device.Function) numbers should
be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM, but this
is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI
devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the
cpu_model to emulate in a Virtual Machine. Therefore, it can be used as:

5.10. I40E/IXGBE/IGB Virtual Function Driver 262

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM

DPDK documentation, Release 16.04.0

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

10. Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linuxapp-gcc
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 -- -i

11. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the
lspci command output in the Guest OS. The virtual functions will be listed as available for
use.

12. Configure and install the DPDK with an x86_64-native-linuxapp-gcc configuration on the
Guest OS as normal, that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linuxapp-gcc O=x86_64-native-linuxapp-gcc
cd x86_64-native-linuxapp-gcc
make

Note: If you are unable to compile the DPDK and you are getting “error: CPU you selected
does not support x86-64 instruction set”, power off the Guest OS and start the virtual machine
with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9. You
must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note: Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled. For
the expected benchmark performance, you must pin the cores from the Guest OS to the Host
OS (taskset can be used to do this) and you must also look at the PCI Bus layout on the board
to ensure you are not running the traffic over the QPI Interface.

Note:

• The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility
for virtual machine management that can also be used to create, start, stop and delete
virtual machines. If this option is used, step 2 and 6 in the instructions provided will be
different.

• virsh, a command line utility for virtual machine management, can also be used to bind
and unbind devices to a virtual machine in Ubuntu. If this option is used, step 6 in the
instructions provided will be different.

• The Virtual Machine Monitor (see Fig. 5.2) is equivalent to a Host OS with KVM installed
as described in the instructions.

5.10. I40E/IXGBE/IGB Virtual Function Driver 263

http://wiki.qemu.org/Features/CPUModels

DPDK documentation, Release 16.04.0

Fig. 5.2: Performance Benchmark Setup

5.10.3 DPDK SR-IOV PMD PF/VF Driver Usage Model

Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling. In a
virtualization environment, the DPDK VF PMD driver performs the same throughput result as
a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS, DPI can
be offloaded on the host fast path.

Fig. 5.3 shows the scenario where some VMs directly communicate externally via a VFs, while
others connect to a virtual switch and share the same uplink bandwidth.

5.10.4 SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms. SR-
IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in
the NIC. So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware accel-
eration. However, when VF crosses physical ports (VM0<->VM2), there is no such hardware
bridge. In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 5.4 shows an example. In this case an update of the MAC address lookup tables in both
the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to
the PF specific pool. So when a packet comes in, its destination MAC address will match and
forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding, that is, the packet is
forwarded to the correct PF pool. The SR-IOV NIC switch forwards the packet to a specific VM
according to the MAC destination address which belongs to the destination VF on the VM.

5.10. I40E/IXGBE/IGB Virtual Function Driver 264

DPDK documentation, Release 16.04.0

Fig. 5.3: Fast Host-based Packet Processing

Fig. 5.4: Inter-VM Communication

5.10. I40E/IXGBE/IGB Virtual Function Driver 265

DPDK documentation, Release 16.04.0

5.11 MLX4 poll mode driver library

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support for Mellanox
ConnectX-3 and Mellanox ConnectX-3 Pro 10/40 Gbps adapters as well as their virtual func-
tions (VF) in SR-IOV context.

Information and documentation about this family of adapters can be found on the Mellanox
website. Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and recompiling DPDK.

5.11.1 Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI bus address,
thus unlike most drivers, librte_pmd_mlx4 registers itself as a PCI driver that allocates one
Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also white/blacklisting the oth-
ers on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated kernel support), li-
brte_pmd_mlx4 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

5.11.2 Features

• RSS, also known as RCA, is supported. In this mode the number of configured RX
queues must be a power of two.

• VLAN filtering is supported.

• Link state information is provided.

• Promiscuous mode is supported.

• All multicast mode is supported.

• Multiple MAC addresses (unicast, multicast) can be configured.

• Scattered packets are supported for TX and RX.

5.11. MLX4 poll mode driver library 266

http://www.mellanox.com
http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

DPDK documentation, Release 16.04.0

• Inner L3/L4 (IP, TCP and UDP) TX/RX checksum offloading and validation.

• Outer L3 (IP) TX/RX checksum offloading and validation for VXLAN frames.

• Secondary process TX is supported.

5.11.3 Limitations

• RSS hash key cannot be modified.

• RSS RETA cannot be configured

• RSS always includes L3 (IPv4/IPv6) and L4 (UDP/TCP). They cannot be dissociated.

• Hardware counters are not implemented (they are software counters).

• Secondary process RX is not supported.

5.11.4 Configuration

Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

• CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

• CONFIG_RTE_LIBRTE_MLX4_SGE_WR_N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering this number
improves performance but also limits the ability to receive scattered packets (packets that
do not fit a single mbuf). The default value is a safe tradeoff.

• CONFIG_RTE_LIBRTE_MLX4_MAX_INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency but lowers through-
put.

• CONFIG_RTE_LIBRTE_MLX4_TX_MP_CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from which
buffers are to be transmitted must be associated to memory regions (MRs). This is a
slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

• CONFIG_RTE_LIBRTE_MLX4_SOFT_COUNTERS (default 1)

Toggle software counters. No counters are available if this option is disabled since hard-
ware counters are not supported.

5.11. MLX4 poll mode driver library 267

DPDK documentation, Release 16.04.0

Environment variables

• MLX4_INLINE_RECV_SIZE

A nonzero value enables inline receive for packets up to that size. May significantly
improve performance in some cases but lower it in others. Requires careful testing.

Run-time configuration

• The only constraint when RSS mode is requested is to make sure the number of RX
queues is a power of two. This is a hardware requirement.

• librte_pmd_mlx4 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

Kernel module parameters

The mlx4_core kernel module has several parameters that affect the behavior and/or the per-
formance of librte_pmd_mlx4. Some of them are described below.

• num_vfs (integer or triplet, optionally prefixed by device address strings)

Create the given number of VFs on the specified devices.

• log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is enabled
by using a negative value, the last four bits of which have a special meaning.

– -1: force device-managed flow steering (DMFS).

– -7: configure optimized steering mode to improve performance with the following
limitation: VLAN filtering is not supported with this mode. This is the recommended
mode in case VLAN filter is not needed.

5.11.5 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space verbs framework used by librte_pmd_mlx4. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx4.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx4

Low-level user space driver library for Mellanox ConnectX-3 devices, it is automatically
loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

5.11. MLX4 poll mode driver library 268

DPDK documentation, Release 16.04.0

• Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

– mlx4_en: Ethernet device driver that provides kernel network interfaces.

– mlx4_ib: InifiniBand device driver.

– ib_uverbs: user space driver for verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Currently supported by DPDK:

• Mellanox OFED 3.1.

• Firmware version 2.35.5100 and higher.

• Supported architectures: x86_64 and POWER8.

Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and
provided by package managers on most distributions, this PMD requires Ethernet extensions
that may not be supported at the moment (this is a work in progress).

Mellanox OFED includes the necessary support and should be used in the meantime. For
DPDK, only libibverbs, libmlx4, mlnx-ofed-kernel packages and firmware updates are required
from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

5.11.6 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3 devices man-
aged by librte_pmd_mlx4.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

5.11. MLX4 poll mode driver library 269

https://www.openfabrics.org/
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

DPDK documentation, Release 16.04.0

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

Note: There are only two distinct PCI bus addresses because the Mellanox ConnectX-3
adapters installed on this system are dual port.

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -c 0xff00 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)

5.11. MLX4 poll mode driver library 270

DPDK documentation, Release 16.04.0

PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

5.12 MLX5 poll mode driver

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support for Mellanox
ConnectX-4 and Mellanox ConnectX-4 Lx families of 10/25/40/50/100 Gb/s adapters as well
as their virtual functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the Mellanox website.
Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX5_PMD=y and recompiling DPDK.

5.12.1 Implementation details

Besides its dependency on libibverbs (that implies libmlx5 and associated kernel support), li-
brte_pmd_mlx5 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address.

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against libibverbs.

5.12. MLX5 poll mode driver 271

http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

DPDK documentation, Release 16.04.0

5.12.2 Features

• Multiple TX and RX queues.

• Support for scattered TX and RX frames.

• IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

• Several RSS hash keys, one for each flow type.

• Configurable RETA table.

• Support for multiple MAC addresses.

• VLAN filtering.

• RX VLAN stripping.

• TX VLAN insertion.

• RX CRC stripping configuration.

• Promiscuous mode.

• Multicast promiscuous mode.

• Hardware checksum offloads.

• Flow director (RTE_FDIR_MODE_PERFECT and RTE_FDIR_MODE_PERFECT_MAC_VLAN).

• Secondary process TX is supported.

5.12.3 Limitations

• KVM and VMware ESX SR-IOV modes are not supported yet.

• Inner RSS for VXLAN frames is not supported yet.

• Port statistics through software counters only.

• Hardware checksum offloads for VXLAN inner header are not supported yet.

• Secondary process RX is not supported.

5.12.4 Configuration

Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

• CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

5.12. MLX5 poll mode driver 272

DPDK documentation, Release 16.04.0

• CONFIG_RTE_LIBRTE_MLX5_SGE_WR_N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering this number
improves performance but also limits the ability to receive scattered packets (packets that
do not fit a single mbuf). The default value is a safe tradeoff.

• CONFIG_RTE_LIBRTE_MLX5_MAX_INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency. Can improve
PPS performance when PCI backpressure is detected and may be useful for scenarios
involving heavy traffic on many queues.

Since the additional software logic necessary to handle this mode can lower performance
when there is no backpressure, it is not enabled by default.

• CONFIG_RTE_LIBRTE_MLX5_TX_MP_CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from which
buffers are to be transmitted must be associated to memory regions (MRs). This is a
slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

Environment variables

• MLX5_ENABLE_CQE_COMPRESSION

A nonzero value lets ConnectX-4 return smaller completion entries to improve perfor-
mance when PCI backpressure is detected. It is most useful for scenarios involving
heavy traffic on many queues.

Since the additional software logic necessary to handle this mode can lower performance
when there is no backpressure, it is not enabled by default.

• MLX5_PMD_ENABLE_PADDING

Enables HW packet padding in PCI bus transactions.

When packet size is cache aligned and CRC stripping is enabled, 4 fewer bytes are
written to the PCI bus. Enabling padding makes such packets aligned again.

In cases where PCI bandwidth is the bottleneck, padding can improve performance by
10%.

This is disabled by default since this can also decrease performance for unaligned packet
sizes.

Run-time configuration

• librte_pmd_mlx5 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

5.12. MLX5 poll mode driver 273

DPDK documentation, Release 16.04.0

5.12.5 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx5.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx5

Low-level user space driver library for Mellanox ConnectX-4 devices, it is automatically
loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side Verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx5_core: hardware driver managing Mellanox ConnectX-4 devices and related
Ethernet kernel network devices.

– mlx5_ib: InifiniBand device driver.

– ib_uverbs: user space driver for Verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-4 adapters.

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Currently supported by DPDK:

• Mellanox OFED 3.1-1.0.3, 3.1-1.5.7.1 or 3.2-2.0.0.0 depending on usage.

The following features are supported with version 3.1-1.5.7.1 and above only:

– IPv6, UPDv6, TCPv6 RSS.

– RX checksum offloads.

– IBM POWER8.

The following features are supported with version 3.2-2.0.0.0 and above only:

– Flow director.

– RX VLAN stripping.

– TX VLAN insertion.

5.12. MLX5 poll mode driver 274

DPDK documentation, Release 16.04.0

– RX CRC stripping configuration.

• Minimum firmware version:

With MLNX_OFED 3.1-1.0.3:

– ConnectX-4: 12.12.1240

– ConnectX-4 Lx: 14.12.1100

With MLNX_OFED 3.1-1.5.7.1:

– ConnectX-4: 12.13.0144

– ConnectX-4 Lx: 14.13.0144

With MLNX_OFED 3.2-2.0.0.0:

– ConnectX-4: 12.14.2036

– ConnectX-4 Lx: 14.14.2036

Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and
provided by package managers on most distributions, this PMD requires Ethernet extensions
that may not be supported at the moment (this is a work in progress).

Mellanox OFED includes the necessary support and should be used in the meantime. For
DPDK, only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are required
from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

5.12.6 Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per port, li-
brte_pmd_mlx5 supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no command-line parameter
to enable additional protocols (UDP and TCP as well as IP), the following commands must be
entered from its CLI to get the same behavior as librte_pmd_mlx4:

> port stop all
> port config all rss all
> port start all

5.12.7 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-4 devices man-
aged by librte_pmd_mlx5.

1. Load the kernel modules:

5.12. MLX5 poll mode driver 275

https://www.openfabrics.org/
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux

DPDK documentation, Release 16.04.0

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth30
eth31
eth32
eth33

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -c 0xff00 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0

5.12. MLX5 poll mode driver 276

DPDK documentation, Release 16.04.0

EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

5.13 NFP poll mode driver library

Netronome’s sixth generation of flow processors pack 216 programmable cores and over 100
hardware accelerators that uniquely combine packet, flow, security and content processing in
a single device that scales up to 400 Gbps.

This document explains how to use DPDK with the Netronome Poll Mode Driver (PMD) sup-
porting Netronome’s Network Flow Processor 6xxx (NFP-6xxx).

Currently the driver supports virtual functions (VFs) only.

5.13.1 Dependencies

Before using the Netronome’s DPDK PMD some NFP-6xxx configuration, which is not related
to DPDK, is required. The system requires installation of Netronome’s BSP (Board Support
Package) which includes Linux drivers, programs and libraries.

If you have a NFP-6xxx device you should already have the code and documentation for doing
this configuration. Contact support@netronome.com to obtain the latest available firmware.

The NFP Linux kernel drivers (including the required PF driver for the NFP) are available on
Github at https://github.com/Netronome/nfp-drv-kmods along with build instructions.

DPDK runs in userspace and PMDs uses the Linux kernel UIO interface to allow access to
physical devices from userspace. The NFP PMD requires a separate UIO driver, nfp_uio, to
perform correct initialization. This driver is part of Netronome´s BSP and it is equivalent to
Intel’s igb_uio driver.

5.13. NFP poll mode driver library 277

DPDK documentation, Release 16.04.0

5.13.2 Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory. Because Netronome´s
BSP dependencies the driver is disabled by default in DPDK build using common_linuxapp
configuration file. Enabling the driver or if you use another configuration file and want to have
NFP support, this variable is needed:

• CONFIG_RTE_LIBRTE_NFP_PMD=y

Once DPDK is built all the DPDK apps and examples include support for the NFP PMD.

5.13.3 System configuration

Using the NFP PMD is not different to using other PMDs. Usual steps are:

1. Configure hugepages: All major Linux distributions have the hugepages functionality
enabled by default. By default this allows the system uses for working with transparent
hugepages. But in this case some hugepages need to be created/reserved for use with
the DPDK through the hugetlbfs file system. First the virtual file system need to be
mounted:

mount -t hugetlbfs none /mnt/hugetlbfs

The command uses the common mount point for this file system and it needs to be
created if necessary.

Configuring hugepages is performed via sysfs:

/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

This sysfs file is used to specify the number of hugepages to reserve. For example:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

This will reserve 2GB of memory using 1024 2MB hugepages. The file may be read to
see if the operation was performed correctly:

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

The number of unused hugepages may also be inspected.

Before executing the DPDK app it should match the value of nr_hugepages.

cat /sys/kernel/mm/hugepages/hugepages-2048kB/free_hugepages

The hugepages reservation should be performed at system initialization and it is usual to
use a kernel parameter for configuration. If the reservation is attempted on a busy system
it will likely fail. Reserving memory for hugepages may be done adding the following to
the grub kernel command line:

default_hugepagesz=1M hugepagesz=2M hugepages=1024

This will reserve 2GBytes of memory using 2Mbytes huge pages.

Finally, for a NUMA system the allocation needs to be made on the correct NUMA node.
In a DPDK app there is a master core which will (usually) perform memory allocation. It is
important that some of the hugepages are reserved on the NUMA memory node where
the network device is attached. This is because of a restriction in DPDK by which TX and
RX descriptors rings must be created on the master code.

5.13. NFP poll mode driver library 278

DPDK documentation, Release 16.04.0

Per-node allocation of hugepages may be inspected and controlled using sysfs. For
example:

cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

For a NUMA system there will be a specific hugepage directory per node allowing control
of hugepage reservation. A common problem may occur when hugepages reservation
is performed after the system has been working for some time. Configuration using
the global sysfs hugepage interface will succeed but the per-node allocations may be
unsatisfactory.

The number of hugepages that need to be reserved depends on how the app uses TX
and RX descriptors, and packets mbufs.

2. Enable SR-IOV on the NFP-6xxx device: The current NFP PMD works with Virtual
Functions (VFs) on a NFP device. Make sure that one of the Physical Function (PF)
drivers from the above Github repository is installed and loaded.

Virtual Functions need to be enabled before they can be used with the PMD. Before
enabling the VFs it is useful to obtain information about the current NFP PCI device
detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device whose PCI sys-
tem identity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The -k option
shows the device driver, if any, that devices are bound to. Depending on the modules
loaded at this point the new PCI devices may be bound to nfp_netvf driver.

3. To install the uio kernel module (manually): All major Linux distributions have support
for this kernel module so it is straightforward to install it:

modprobe uio

The module should now be listed by the lsmod command.

4. To install the nfp_uio kernel module (manually): This module supports NFP-6xxx
devices through the UIO interface.

This module is part of Netronome´s BSP and it should be available when the BSP is
installed.

modprobe nfp_uio.ko

The module should now be listed by the lsmod command.

Depending on which NFP modules are loaded, nfp_uio may be automatically bound to
the NFP PCI devices by the system. Otherwise the binding needs to be done explicitly.
This is the case when nfp_netvf, the Linux kernel driver for NFP VFs, was loaded when
VFs were created. As described later in this document this configuration may also be
performed using scripts provided by the Netronome´s BSP.

First the device needs to be unbound, for example from the nfp_netvf driver:

5.13. NFP poll mode driver library 279

DPDK documentation, Release 16.04.0

echo 0000:03:08.0 > /sys/bus/pci/devices/0000:03:08.0/driver/unbind

lspci -d19ee: -k

The output of lspci should now show that 0000:03:08.0 is not bound to any driver.

The next step is to add the NFP PCI ID to the NFP UIO driver:

echo 19ee 6003 > /sys/bus/pci/drivers/nfp_uio/new_id

And then to bind the device to the nfp_uio driver:

echo 0000:03:08.0 > /sys/bus/pci/drivers/nfp_uio/bind

lspci -d19ee: -k

lspci should show that device bound to nfp_uio driver.

5. Using tools from Netronome´s BSP to install and bind modules: DPDK provides
scripts which are useful for installing the UIO modules and for binding the right device to
those modules avoiding doing so manually. However, these scripts have not support for
Netronome´s UIO driver. Along with drivers, the BSP installs those DPDK scripts slightly
modified with support for Netronome´s UIO driver.

Those specific scripts can be found in Netronome´s BSP installation directory. Refer to
BSP documentation for more information.

• setup.sh

• dpdk_nic_bind.py

Configuration may be performed by running setup.sh which invokes dpdk_nic_bind.py as
needed. Executing setup.sh will display a menu of configuration options.

5.14 SZEDATA2 poll mode driver library

The SZEDATA2 poll mode driver library implements support for cards from COMBO family
(COMBO-80G, COMBO-100G). The SZEDATA2 PMD uses interface provided by libsze2 li-
brary to communicate with COMBO cards over sze2 layer.

More information about family of COMBO cards and used technology (NetCOPE platform) can
be found on the Liberouter website.

Note: This driver has external dependencies. Therefore it is disabled in default configuration
files. It can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y and recompiling.

Note: Currently the driver is supported only on x86_64 architectures. Only x86_64 versions
of the external libraries are provided.

5.14.1 Prerequisites

This PMD requires kernel modules which are responsible for initialization and allocation of
resources needed for sze2 layer function. Communication between PMD and kernel modules

5.14. SZEDATA2 poll mode driver library 280

https://www.liberouter.org/technologies/cards/
https://www.liberouter.org/technologies/netcope/
https://www.liberouter.org/

DPDK documentation, Release 16.04.0

is mediated by libsze2 library. These kernel modules and library are not part of DPDK and
must be installed separately:

• libsze2 library

The library provides API for initialization of sze2 transfers, receiving and transmitting data
segments.

• Kernel modules

– combov3

– szedata2_cv3

Kernel modules manage initialization of hardware, allocation and sharing of resources
for user space applications.

Information about getting the dependencies can be found here.

5.14.2 Configuration

These configuration options can be modified before compilation in the .config file:

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2_AS default value: 0

This option defines type of firmware address space. Currently supported value is:

– 0 for firmwares:

* NIC_100G1_LR4

* HANIC_100G1_LR4

* HANIC_100G1_SR10

5.14.3 Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV. SZEDATA2
device is automatically recognized during EAL initialization. No special command line options
are needed.

Kernel modules have to be loaded before running the DPDK application.

5.14.4 Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1. transmit channel:

$RTE_TARGET/app/testpmd -c 0xf -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)

5.14. SZEDATA2 poll mode driver library 281

https://www.liberouter.org/technologies/netcope/access-to-libsze2-library/

DPDK documentation, Release 16.04.0

PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=2 - nb forwarding ports=1
RX queues=2 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX queues=2 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd>

5.15 Poll Mode Driver for Emulated Virtio NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor.
In the Data Plane Development Kit (DPDK), we provide a virtio Poll Mode Driver (PMD) as
a software solution, comparing to SRIOV hardware solution, for fast guest VM to guest VM
communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend. The DPDK extends kni to
support vhost raw socket interface, which enables vhost to directly read/ write packets from/to
a physical port. With this enhancement, virtio could achieve quite promising performance.

In future release, we will also make enhancement to vhost backend, releasing peak perfor-
mance of virtio PMD driver.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM, please refer
to Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends, standard
qemu vhost back end and vhost kni back end.

5.15.1 Virtio Implementation in DPDK

For details about the virtio spec, refer to Virtio PCI Card Specification written by Rusty Russell.

As a PMD, virtio provides packet reception and transmission callbacks virtio_recv_pkts and
virtio_xmit_pkts.

In virtio_recv_pkts, index in range [vq->vq_used_cons_idx , vq->vq_ring.used->idx) in vring is
available for virtio to burst out.

In virtio_xmit_pkts, same index range in vring is available for virtio to clean. Virtio will enqueue
to be transmitted packets into vring, advance the vq->vq_ring.avail->idx, and then notify the
host back end if necessary.

5.15. Poll Mode Driver for Emulated Virtio NIC 282

DPDK documentation, Release 16.04.0

5.15.2 Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and
transmission.

• It supports merge-able buffers per packet when receiving packets and scattered buffer
per packet when transmitting packets. The packet size supported is from 64 to 1518.

• It supports multicast packets and promiscuous mode.

• The descriptor number for the RX/TX queue is hard-coded to be 256 by qemu. If given a
different descriptor number by the upper application, the virtio PMD generates a warning
and fall back to the hard-coded value.

• Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to
support them. When backend can’t support vlan filter, virtio app on guest should disable
vlan filter to make sure the virtio port is configured correctly. E.g. specify ‘–disable-hw-
vlan’ in testpmd command line.

• RTE_PKTMBUF_HEADROOM should be defined larger than sizeof(struct vir-
tio_net_hdr), which is 10 bytes.

• Virtio does not support runtime configuration.

• Virtio supports Link State interrupt.

• Virtio supports software vlan stripping and inserting.

• Virtio supports using port IO to get PCI resource when uio/igb_uio module is not avail-
able.

5.15.3 Prerequisites

The following prerequisites apply:

• In the BIOS, turn VT-x and VT-d on

• Linux kernel with KVM module; vhost module loaded and ioeventfd supported. Qemu
standard backend without vhost support isn’t tested, and probably isn’t supported.

5.15.4 Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

Host2VM communication example

1. Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed
here. Please refer to the DPDK Getting Started Guide for detailed instructions.

2. Launch the kni user application:

examples/kni/build/app/kni -c 0xf -n 4 -- -p 0x1 -P --config="(0,1,3)"

5.15. Poll Mode Driver for Emulated Virtio NIC 283

DPDK documentation, Release 16.04.0

Fig. 5.5: Host2VM Communication Example Using kni vhost Back End

5.15. Poll Mode Driver for Emulated Virtio NIC 284

DPDK documentation, Release 16.04.0

This command generates one network device vEth0 for physical port. If specify more
physical ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads. One thread loops to fetch packets
from the physical NIC port into the kni receive queue. The other user thread loops to
send packets in the kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni
receive queue, place them onto kni’s raw socket’s queue and wake up the vhost kernel
thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to Kernel NIC Interface.

3. Enable the kni raw socket functionality for the specified physical NIC port, get the gener-
ated file descriptor and set it in the qemu command line parameter. Always remember to
set ioeventfd_on and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which
in turns corresponds to a physical port, which means received packets come from vEth0,
and transmitted packets is sent to vEth0.

4. In the guest, bind the virtio device to the uio_pci_generic kernel module and start the
forwarding application. When the virtio port in guest bursts rx, it is getting packets from
the raw socket’s receive queue. When the virtio port bursts tx, it is sending packet to the
tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

Fig. 5.6: Running testpmd

5. Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

5.15. Poll Mode Driver for Emulated Virtio NIC 285

DPDK documentation, Release 16.04.0

IXIA packet generator->82599 PF->KNI rx queue->KNI raw socket queue->Guest VM
virtio port 0 rx burst->Guest VM virtio port 0 tx burst-> KNI tx queue->82599 PF-> IXIA
packet generator

5.15.5 Virtio with qemu virtio Back End

Fig. 5.7: Host2VM Communication Example Using qemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on
-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest
VM virtio port 0 rx burst-> Guest VM 82599 VF port1 tx burst-> IXIA packet gener-
ator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 rx burst-> Guest VM virtio port
0 tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

5.15. Poll Mode Driver for Emulated Virtio NIC 286

DPDK documentation, Release 16.04.0

5.16 Poll Mode Driver that wraps vhost library

This PMD is a thin wrapper of the DPDK vhost library. The user can handle virtqueues as one
of normal DPDK port.

5.16.1 Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

5.16.2 Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and
event handling.

• It has multiple queues support.

• It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

• It supports Port Hotplug functionality.

• Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on
guest.

5.16.3 Vhost PMD arguments

The user can specify below arguments in –vdev option.

1. iface:

It is used to specify a path to connect to a QEMU virtio-net device.

2. queues:

It is used to specify the number of queues virtio-net device has. (Default: 1)

5.16.4 Vhost PMD event handling

This section describes how to handle vhost PMD events.

The user can register an event callback handler with
rte_eth_dev_callback_register(). The registered callback handler will be invoked
with one of below event types.

1. RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

2. RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call
rte_eth_vhost_get_queue_event() in the callback handler. Because chang-
ing multiple statuses may occur only one event, call the function repeatedly as long as it
doesn’t return negative value.

5.16. Poll Mode Driver that wraps vhost library 287

DPDK documentation, Release 16.04.0

5.16.5 Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

1. Launch the testpmd with vhost PMD:

./testpmd -c f -n 4 --vdev 'eth_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here. Please refer to the DPDK
Getting Started Guide for detailed instructions.

2. Launch the QEMU:

qemu-system-x86_64 <snip>
-chardev socket,id=chr0,path=/tmp/sock0 \
-netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
-device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest. After initialization pro-
cesses between QEMU and DPDK vhost library are done, status of the port will be linked
up.

5.17 Poll Mode Driver for Paravirtual VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware*
ESXi. It is designed for performance and is not related to VMXNET or VMXENET2. It offers all
the features available in VMXNET2, and adds several new features such as, multi-queue sup-
port (also known as Receive Side Scaling, RSS), IPv6 offloads, and MSI/MSI-X interrupt de-
livery. Because operating system vendors do not provide built-in drivers for this card, VMware
Tools must be installed to have a driver for the VMXNET3 network adapter available. One can
use the same device in a DPDK application with VMXNET3 PMD introduced in DPDK API.

Currently, the driver provides basic support for using the device in a DPDK application running
on a guest OS. Optimization is needed on the backend, that is, the VMware* ESXi vmkernel
switch, to achieve optimal performance end-to-end.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

1. Vmxnet3 with a native NIC connected to a vSwitch

2. Vmxnet3 chaining VMs connected to a vSwitch

5.17.1 VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and
support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks,
vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as
part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet
reception as part of the device operations supported.

5.17. Poll Mode Driver for Paravirtual VMXNET3 NIC 288

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

DPDK documentation, Release 16.04.0

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest
address space and it is solely responsible to free that memory when not needed. The packet
buffers and features to be supported are made available to hypervisor via VMXNET3 PCI
configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs,
and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch
in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that
of the other PMDs available in the DPDK API. The driver pre-allocates the packet buffers and
loads the command ring descriptors in advance. The hypervisor fills those packet buffers on
packet arrival and write completion ring descriptors, which are eventually pulled by the PMD.
After reception, the DPDK application frees the descriptors and loads new packet buffers for
the coming packets. The interrupts are disabled and there is no notification required. This
keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of
the command ring and notifies the hypervisor. In response the hypervisor takes packets and
passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read
by the PMD in the next transmit routine call and the buffers and descriptors are freed from
memory.

5.17.2 Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and
transmission. There are several options available for filtering packets at VMXNET3 device level
including:

1. MAC Address based filtering:

• Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

• Multicast with Multicast Filter table - NOT SUPPORTED

• Promiscuous mode - SUPPORTED

• RSS based load balancing between queues - SUPPORTED

2. VLAN filtering:

• VLAN tag based filtering without load balancing - SUPPORTED

Note:

• Release 1.6.0 does not support separate headers and body receive cmd_ring and hence,
multiple segment buffers are not supported. Only cmd_ring_0 is used for packet buffers,
one for each descriptor.

• Receive and transmit of scattered packets is not supported.

• Multicast with Multicast Filter table is not supported.

5.17.3 Prerequisites

The following prerequisites apply:

5.17. Poll Mode Driver for Paravirtual VMXNET3 NIC 289

DPDK documentation, Release 16.04.0

• Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client
must be assigned. This is shown in the figure below.

Fig. 5.8: Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Note: Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet
adaptors while adding an Ethernet device. Ensure that the VM type used offers a VMXNET3
device. Refer to the VMware documentation for a listed of VMs.

Note: Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note: Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3
device.

5.17.4 VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

Note: Other instructions on preparing to use DPDK such as, hugepage enabling, uio port
binding are not listed here. Please refer to DPDK Getting Started Guide and DPDK Sample
Application’s User Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 0 tx burst
-> 82599 VF
-> Packet generator

5.17. Poll Mode Driver for Paravirtual VMXNET3 NIC 290

DPDK documentation, Release 16.04.0

Fig. 5.9: VMXNET3 with a Native NIC Connected to a vSwitch

5.17. Poll Mode Driver for Paravirtual VMXNET3 NIC 291

DPDK documentation, Release 16.04.0

5.17.5 VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-
Phy communication channel.

Fig. 5.10: VMXNET3 Chaining VMs Connected to a vSwitch

Note: When using the L2 Forwarding or L3 Forwarding applications, a destination MAC
address needs to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
-> Guest VM 82599 port 0 rx burst
-> Guest VM VMXNET3 port 1 tx burst
-> VMXNET3 device
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 1 tx burst
-> 82599 VF
-> Packet generator

5.17. Poll Mode Driver for Paravirtual VMXNET3 NIC 292

DPDK documentation, Release 16.04.0

5.18 Libpcap and Ring Based Poll Mode Drivers

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, the DPDK also
includes two pure-software PMDs. These two drivers are:

• A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap, -
both from files on disk, as well as from physical NIC devices using standard Linux kernel
drivers.

• A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring)
to be accessed using the PMD APIs, as though they were physical NICs.

Note: The libpcap -based PMD is disabled by default in the build configuration files, owing
to an external dependency on the libpcap development files which must be installed on the
board. Once the libpcap development files are installed, the library can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

5.18.1 Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices,
using one or more of these drivers, to be created at application startup time during EAL initial-
ization.

To do so, the –vdev= parameter must be passed to the EAL. This takes take options to allow
ring and pcap-based Ethernet to be allocated and used transparently by the application. This
can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option. The device name
must start with the eth_pcap prefix followed by numbers or letters. The name is unique for
each device. Each device can have multiple stream options and multiple devices can be used.
Multiple device definitions can be arranged using multiple –vdev. Device name and stream
options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'eth_pcap0,stream_opt0=..,stream_opt1=..' --vdev='eth_pcap1,stream_opt0=..'

Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following
two rules are respected:

• A device is provided with two different streams - reception and transmission.

• A device is provided with one network interface name used for reading and writing pack-
ets.

The different stream types are:

• rx_pcap: Defines a reception stream based on a pcap file. The driver reads each packet
within the given pcap file as if it was receiving it from the wire. The value is a path to a
valid pcap file.

5.18. Libpcap and Ring Based Poll Mode Drivers 293

DPDK documentation, Release 16.04.0

rx_pcap=/path/to/file.pcap

• tx_pcap: Defines a transmission stream based on a pcap file. The driver writes each
received packet to the given pcap file. The value is a path to a pcap file. The file is
overwritten if it already exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

• rx_iface: Defines a reception stream based on a network interface name. The driver
reads packets coming from the given interface using the Linux kernel driver for that inter-
face. The value is an interface name.

rx_iface=eth0

• tx_iface: Defines a transmission stream based on a network interface name. The driver
sends packets to the given interface using the Linux kernel driver for that interface. The
value is an interface name.

tx_iface=eth0

• iface: Defines a device mapping a network interface. The driver both reads and writes
packets from and to the given interface. The value is an interface name.

iface=eth0

Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_iface=eth0,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_iface=eth1' -- --port-topology=chained

Forward packets through two network interfaces:

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,iface=eth0' --vdev='eth_pcap1;iface=eth1'

Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX
streams by reading the first 512 packets on every RX stream and discarding them. When using
a libpcap-based PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be
discarded. Otherwise, the first 512 packets from the input pcap file will be discarded by the RX
flushing operation.

$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_pcap=/path/to/file_tx.pcap' -- --port-topology=chained --no-flush-rx

5.18. Libpcap and Ring Based Poll Mode Drivers 294

DPDK documentation, Release 16.04.0

Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based
rte_ethdevs can be used as below. The device names passed to the –vdev option must start
with eth_ring and take no additional parameters. Multiple devices may be specified, separated
by commas.

./testpmd -c E -n 4 --vdev=eth_ring0 --vdev=eth_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is, rte_ethdev
structure, instances at run-time in the end-application, for example, using rte_eth_from_rings()
or rte_eth_from_pcaps() APIs. For the rings-based PMD, this functionality could be used, for
example, to allow data exchange between cores using rings to be done in exactly the same
way as sending or receiving packets from an Ethernet device. For the libpcap-based PMD, it
allows an application to open one or more pcap files and use these as a source of packet input
to the application.

5.18. Libpcap and Ring Based Poll Mode Drivers 295

DPDK documentation, Release 16.04.0

Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back for reception
on the same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2
#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("eth_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("eth_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them, that is, traffic
sent to port 0 is read back from port 1 and vice-versa, the final two lines could be changed as
below:

port0 = rte_eth_from_rings("eth_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("eth_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example, where one may
want to have inter-core communication using pseudo Ethernet devices rather than raw rings,
for reasons of API consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower
than using the native rings API. This is because DPDK Ethernet drivers make use of func-
tion pointers to call the appropriate enqueue or dequeue functions, while the rte_ring specific
functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD, it should
be configured and started in the same way as a regular Ethernet device, that is, by
calling rte_eth_dev_configure() to set the number of receive and transmit queues,
then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues
and finally calling rte_eth_dev_start() to allow transmission and reception of pack-
ets to begin.

Figures

Fig. 5.1 Virtualization for a Single Port NIC in SR-IOV Mode

Fig. 5.2 Performance Benchmark Setup

Fig. 5.3 Fast Host-based Packet Processing

Fig. 5.4 Inter-VM Communication

Fig. 5.5 Host2VM Communication Example Using kni vhost Back End

Fig. 5.7 Host2VM Communication Example Using qemu vhost Back End

Fig. 5.8 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Fig. 5.9 VMXNET3 with a Native NIC Connected to a vSwitch

Fig. 5.10 VMXNET3 Chaining VMs Connected to a vSwitch

5.18. Libpcap and Ring Based Poll Mode Drivers 296

CHAPTER 6

Crypto Device Drivers

6.1 Crypto Device Supported Functionality Matrices

Supported Feature Flags

Feature Flags qat null aesni_mb aesni_gcm snow3g
RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO x x
RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAININGx x x x x
RTE_CRYPTODEV_FF_CPU_SSE x x x
RTE_CRYPTODEV_FF_CPU_AVX x x x
RTE_CRYPTODEV_FF_CPU_AVX2 x x
RTE_CRYPTODEV_FF_CPU_AESNI x x
RTE_CRYPTODEV_FF_HW_ACCELERATED x

Supported Cipher Algorithms

Cipher Algorithms qat null aesni_mb aesni_gcm snow3g
NULL x
AES_CBC_128 x x
AES_CBC_192 x x
AES_CBC_256 x x
AES_CTR_128
AES_CTR_192
AES_CTR_256
SNOW3G_UEA2 x x

Supported Authentication Algorithms

297

DPDK documentation, Release 16.04.0

Cipher Algorithms qat null aesni_mb aesni_gcm snow3g
NONE x
MD5
MD5_HMAC x
SHA1
SHA1_HMAC x x
SHA224
SHA224_HMAC x
SHA256
SHA256_HMAC x x
SHA384
SHA384_HMAC x
SHA512
SHA512_HMAC x x
AES_XCBC x x
SNOW3G_UIA2 x x

Supported AEAD Algorithms

AEAD Algorithms qat null aesni_mb aesni_gcm snow3g
AES_GCM_128 x x
AES_GCM_192 x
AES_GCM_256 x

6.2 AESN-NI Multi Buffer Crytpo Poll Mode Driver

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver support for
utilizing Intel multi buffer library, see the white paper Fast Multi-buffer IPsec Implementations
on Intel® Architecture Processors.

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

6.2.1 Features

AESNI MB PMD has support for:

Cipher algorithms:

• RTE_CRYPTO_SYM_CIPHER_AES128_CBC

• RTE_CRYPTO_SYM_CIPHER_AES256_CBC

• RTE_CRYPTO_SYM_CIPHER_AES512_CBC

Hash algorithms:

• RTE_CRYPTO_SYM_HASH_SHA1_HMAC

• RTE_CRYPTO_SYM_HASH_SHA256_HMAC

• RTE_CRYPTO_SYM_HASH_SHA512_HMAC

6.2. AESN-NI Multi Buffer Crytpo Poll Mode Driver 298

https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer

DPDK documentation, Release 16.04.0

6.2.2 Limitations

• Chained mbufs are not supported.

• Hash only is not supported.

• Cipher only is not supported.

• Only in-place is currently supported (destination address is the same as source address).

• Only supports session-oriented API implementation (session-less APIs are not sup-
ported).

• Not performance tuned.

6.2.3 Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the mult- buffer
library from here and compile it on their user system before building DPDK. When building
the multi-buffer library it is necessary to have YASM package installed and also requires the
overriding of YASM path when building, as a path is hard coded in the Makefile of the release
package.

make YASM=/usr/bin/yasm

6.2.4 Initialization

In order to enable this virtual crypto PMD, user must:

• Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

• Build the multi buffer library (explained in Installation section).

• Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_base.

To use the PMD in an application, user must:

• Call rte_eal_vdev_init(“cryptodev_aesni_mb_pmd”) within the application.

• Use –vdev=”cryptodev_aesni_mb_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

• socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

• max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

• max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_aesni_mb_pmd,socket_id=1,max_nb_sessions=128"

6.2. AESN-NI Multi Buffer Crytpo Poll Mode Driver 299

https://downloadcenter.intel.com/download/22972

DPDK documentation, Release 16.04.0

6.3 AES-NI GCM Crypto Poll Mode Driver

The AES-NI GCM PMD (librte_pmd_aesni_gcm) provides poll mode crypto driver support
for utilizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation to learn more
about it, including installation).

The AES-NI GCM PMD has current only been tested on Fedora 21 64-bit with gcc.

6.3.1 Features

AESNI GCM PMD has support for:

Cipher algorithms:

• RTE_CRYPTO_CIPHER_AES_GCM

Authentication algorithms:

• RTE_CRYPTO_AUTH_AES_GCM

6.3.2 Initialization

In order to enable this virtual crypto PMD, user must:

• Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

• Build the multi buffer library (go to Installation section in AES-NI MB PMD documenta-
tion).

• Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=y in config/common_base.

To use the PMD in an application, user must:

• Call rte_eal_vdev_init(“cryptodev_aesni_gcm_pmd”) within the application.

• Use –vdev=”cryptodev_aesni_gcm_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

• socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

• max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

• max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_aesni_gcm_pmd,socket_id=1,max_nb_sessions=128"

6.3. AES-NI GCM Crypto Poll Mode Driver 300

DPDK documentation, Release 16.04.0

6.3.3 Limitations

• Chained mbufs are not supported.

• Hash only is not supported.

• Cipher only is not supported.

• Only in-place is currently supported (destination address is the same as source address).

• Only supports session-oriented API implementation (session-less APIs are not sup-
ported).

• Not performance tuned.

6.4 Null Crypto Poll Mode Driver

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode driver which
provides a minimal implementation for a software crypto device. As a null device it does not
modify the data in the mbuf on which the crypto operation is to operate and it only has support
for a single cipher and authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then each mbuf in the
burst will be enqueued in an internal buffer for collection on a dequeue call as long as the mbuf
has a valid rte_mbuf_offload operation with a valid rte_cryptodev_session or rte_crypto_xform
chain of operations.

6.4.1 Features

Modes:

• RTE_CRYPTO_XFORM_CIPHER ONLY

• RTE_CRYPTO_XFORM_AUTH ONLY

• RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH

• RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER

Cipher algorithms:

• RTE_CRYPTO_CIPHER_NULL

Authentication algorithms:

• RTE_CRYPTO_AUTH_NULL

6.4.2 Limitations

• Only in-place is currently supported (destination address is the same as source address).

6.4.3 Installation

The Null Crypto PMD is enabled and built by default in both the Linux and FreeBSD builds.

6.4. Null Crypto Poll Mode Driver 301

DPDK documentation, Release 16.04.0

6.4.4 Initialization

To use the PMD in an application, user must:

• Call rte_eal_vdev_init(“cryptodev_null_pmd”) within the application.

• Use –vdev=”cryptodev_null_pmd” in the EAL options, which will call rte_eal_vdev_init()
internally.

The following parameters (all optional) can be provided in the previous two calls:

• socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

• max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

• max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_null_pmd,socket_id=1,max_nb_sessions=128"

6.5 SNOW 3G Crypto Poll Mode Driver

The SNOW 3G PMD (librte_pmd_snow3g) provides poll mode crypto driver support for utiliz-
ing Intel Libsso library, which implements F8 and F9 functions for SNOW 3G UEA2 cipher and
UIA2 hash algorithms.

6.5.1 Features

SNOW 3G PMD has support for:

Cipher algorithm:

• RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA2

Authentication algorithm:

• RTE_CRYPTO_SYM_AUTH_SNOW3G_UIA2

6.5.2 Limitations

• Chained mbufs are not supported.

• Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.

• Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.

6.5. SNOW 3G Crypto Poll Mode Driver 302

DPDK documentation, Release 16.04.0

6.5.3 Installation

To build DPDK with the SNOW3G_PMD the user is required to download the export
controlled libsso library, by requesting it from https://networkbuilders.intel.com/network-
technologies/dpdk, and compiling it on their system before building DPDK:

make -f Makefile_snow3g

Note: If using a gcc version higher than 5.0, and compilation fails, apply the following patch:

/libsso/src/snow3g/sso_snow3g.c

static inline void ClockFSM_4(sso_snow3gKeyState4_t *pCtx, __m128i *data)
{

__m128i F, R;
- uint32_t K, L;
+ uint32_t K;
+ /* Declare unused if SNOW3G_WSM/SNB are defined */
+ uint32_t L __attribute__ ((unused)) = 0;

F = _mm_add_epi32(pCtx->LFSR_X[15], pCtx->FSM_X[0]);
R = _mm_xor_si128(pCtx->LFSR_X[5], pCtx->FSM_X[2]);

/libsso/include/sso_snow3g_internal.h

-inline void ClockFSM_1(sso_snow3gKeyState1_t *pCtx, uint32_t *data);
-inline void ClockLFSR_1(sso_snow3gKeyState1_t *pCtx);
-inline void sso_snow3gStateInitialize_1(sso_snow3gKeyState1_t * pCtx, sso_snow3g_key_schedule_t *pKeySched, uint8_t *pIV);
+void ClockFSM_1(sso_snow3gKeyState1_t *pCtx, uint32_t *data);
+void ClockLFSR_1(sso_snow3gKeyState1_t *pCtx);
+void sso_snow3gStateInitialize_1(sso_snow3gKeyState1_t * pCtx, sso_snow3g_key_schedule_t *pKeySched, uint8_t *pIV);

6.5.4 Initialization

In order to enable this virtual crypto PMD, user must:

• Export the environmental variable LIBSSO_PATH with the path where the library was
extracted.

• Build the LIBSSO library (explained in Installation section).

• Set CONFIG_RTE_LIBRTE_PMD_SNOW3G=y in config/common_base.

To use the PMD in an application, user must:

• Call rte_eal_vdev_init(“cryptodev_snow3g_pmd”) within the application.

• Use –vdev=”cryptodev_snow3g_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

• socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

• max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

• max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

6.5. SNOW 3G Crypto Poll Mode Driver 303

https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/network-technologies/dpdk

DPDK documentation, Release 16.04.0

Example:

./l2fwd-crypto -c 40 -n 4 --vdev="cryptodev_snow3g_pmd,socket_id=1,max_nb_sessions=128"

6.6 Quick Assist Crypto Poll Mode Driver

The QAT PMD provides poll mode crypto driver support for Intel QuickAssist Technology
DH895xxC hardware accelerator.

6.6.1 Features

The QAT PMD has support for:

Cipher algorithms:

• RTE_CRYPTO_SYM_CIPHER_AES128_CBC

• RTE_CRYPTO_SYM_CIPHER_AES192_CBC

• RTE_CRYPTO_SYM_CIPHER_AES256_CBC

• RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA2

• RTE_CRYPTO_CIPHER_AES_GCM

Hash algorithms:

• RTE_CRYPTO_AUTH_SHA1_HMAC

• RTE_CRYPTO_AUTH_SHA256_HMAC

• RTE_CRYPTO_AUTH_SHA512_HMAC

• RTE_CRYPTO_AUTH_AES_XCBC_MAC

• RTE_CRYPTO_AUTH_SNOW3G_UIA2

6.6.2 Limitations

• Chained mbufs are not supported.

• Hash only is not supported except Snow3G UIA2.

• Cipher only is not supported except Snow3G UEA2.

• Only supports the session-oriented API implementation (session-less APIs are not sup-
ported).

• Not performance tuned.

• Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.

• Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.

• No BSD support as BSD QAT kernel driver not available.

6.6. Quick Assist Crypto Poll Mode Driver 304

DPDK documentation, Release 16.04.0

6.6.3 Installation

To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The VF devices
exposed by this driver will be used by QAT PMD.

If you are running on kernel 4.4 or greater, see instructions for Installation using kernel.org
driver below. If you are on a kernel earlier than 4.4, see Installation using 01.org QAT driver .

6.6.4 Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org Consult the Getting Started
Guide at the same URL for further information.

The steps below assume you are:

• Building on a platform with one DH895xCC device.

• Using package qatmux.l.2.3.0-34.tgz.

• On Fedora21 kernel 3.17.4-301.fc21.x86_64.

In the BIOS ensure that SRIOV is enabled and VT-d is disabled.

Uninstall any existing QAT driver, for example by running:

• ./installer.sh uninstall in the directory where originally installed.

• or rmmod qat_dh895xcc; rmmod intel_qat.

Build and install the SRIOV-enabled QAT driver:

mkdir /QAT
cd /QAT
copy qatmux.l.2.3.0-34.tgz to this location
tar zxof qatmux.l.2.3.0-34.tgz

export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host

You can use cat /proc/icp_dh895xcc_dev0/version to confirm the driver is correctly
installed. You can use lspci -d:443 to confirm the bdf of the 32 VF devices are available
per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver .

Note: If using a later kernel and the build fails with an error relating to strict_stroul not
being available apply the following patch:

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5)
+ #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64(str, base, num, endPtr) \

do { \
if (str[0] == '-') \

6.6. Quick Assist Crypto Poll Mode Driver 305

https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

DPDK documentation, Release 16.04.0

{ \

*(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \
}else { \

*(num) = simple_strtoull((str), &(endPtr), (base)); \
} \

} while(0)
+ #endif
#endif
#endif

If the build fails due to missing header files you may need to do following:

• sudo yum install zlib-devel

• sudo yum install openssl-devel

If the build or install fails due to mismatching kernel sources you may need to do the following:

• sudo yum install kernel-headers-‘uname -r‘

• sudo yum install kernel-src-‘uname -r‘

• sudo yum install kernel-devel-‘uname -r‘

6.6.5 Installation using kernel.org driver

Assuming you are running on at least a 4.4 kernel, you can use the stock kernel.org QAT driver
to start the QAT hardware.

The steps below assume you are:

• Running DPDK on a platform with one DH895xCC device.

• On a kernel at least version 4.4.

In BIOS ensure that SRIOV is enabled and VT-d is disabled.

Ensure the QAT driver is loaded on your system, by executing:

lsmod | grep qat

You should see the following output:

qat_dh895xcc 5626 0
intel_qat 82336 1 qat_dh895xcc

Next, you need to expose the VFs using the sysfs file system.

First find the bdf of the DH895xCC device:

lspci -d : 435

You should see output similar to:

03:00.0 Co-processor: Intel Corporation Coleto Creek PCIe Endpoint

Using the sysfs, enable the VFs:

echo 32 > /sys/bus/pci/drivers/dh895xcc/0000\:03\:00.0/sriov_numvfs

If you get an error, it’s likely you’re using a QAT kernel driver earlier than kernel 4.4.

To verify that the VFs are available for use - use lspci -d:443 to confirm the bdf of the 32
VF devices are available per DH895xCC device.

6.6. Quick Assist Crypto Poll Mode Driver 306

DPDK documentation, Release 16.04.0

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver .

Note: If the QAT kernel modules are not loaded and you see an error like Failed to
load MMP firmware qat_895xcc_mmp.bin this may be as a result of not using a
distribution, but just updating the kernel directly.

Download firmware from the kernel firmware repo at: http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-
firmware.git/tree/

Copy qat binaries to /lib/firmware: * cp qat_895xcc.bin /lib/firmware * cp
qat_895xcc_mmp.bin /lib/firmware

cd to your linux source root directory and start the qat kernel modules: *
insmod ./drivers/crypto/qat/qat_common/intel_qat.ko * insmod
./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko

Note:The following warning in /var/log/messages can be ignored: IOMMU should be
enabled for SR-IOV to work correctly

6.6.6 Binding the available VFs to the DPDK UIO driver

The unbind command below assumes bdfs of 03:01.00-03:04.07, if yours are different
adjust the unbind command below:

cd $RTE_SDK
modprobe uio
insmod ./build/kmod/igb_uio.ko

for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \

echo -n 0000:03:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \

done; \
done

echo "8086 0443" > /sys/bus/pci/drivers/igb_uio/new_id

You can use lspci -vvd:443 to confirm that all devices are now in use by igb_uio kernel
driver.

6.6. Quick Assist Crypto Poll Mode Driver 307

http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/
http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/

CHAPTER 7

Sample Applications User Guide

7.1 Introduction

This document describes the sample applications that are included in the Data Plane Devel-
opment Kit (DPDK). Each chapter describes a sample application that showcases specific
functionality and provides instructions on how to compile, run and use the sample application.

7.1.1 Documentation Roadmap

The following is a list of DPDK documents in suggested reading order:

• Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guides : Describes how to install and configure the DPDK software for
your operating system; designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment.

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application.

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference : Provides detailed information about DPDK functions, data structures
and other programming constructs.

• Sample Applications User Guide : Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

308

DPDK documentation, Release 16.04.0

7.2 Command Line Sample Application

This chapter describes the Command Line sample application that is part of the Data Plane
Development Kit (DPDK).

7.2.1 Overview

The Command Line sample application is a simple application that demonstrates the use of
the command line interface in the DPDK. This application is a readline-like interface that can
be used to debug a DPDK application, in a Linux* application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated
to the same standard as other DPDK libraries. See also the “rte_cmdline library should not
be used in production code due to limited testing” item in the “Known Issues” section of the
Release Notes.

The Command Line sample application supports some of the features of the GNU readline
library such as, completion, cut/paste and some other special bindings that make configuration
and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of
objects. There are three simple commands:

• add obj_name IP: Add a new object with an IP/IPv6 address associated to it.

• del obj_name: Delete the specified object.

• show obj_name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

7.2.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/cmdline

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.2.3 Running the Application

To run the application in linuxapp environment, issue the following command:

$./build/cmdline -c f -n 4

7.2. Command Line Sample Application 309

DPDK documentation, Release 16.04.0

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.2.4 Explanation

The following sections provide some explanation of the code.

EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved
as follows:

int main(int argc, char **argv)
{

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the
console:

cl = cmdline_stdin_new(main_ctx, "example> ");
cmdline_interact(cl);
cmdline_stdin_exit(cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case, the appli-
cation exits.

Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
(cmdline_parse_inst_t *) &cmd_obj_del_show,
(cmdline_parse_inst_t *) &cmd_obj_add,
(cmdline_parse_inst_t *) &cmd_help,
NULL,

};

Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a
callback function that is executed when the command is parsed, an opaque pointer, a help
string and a list of tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

• String Token: Match a static string, a list of static strings or any string.

• Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.

• IP Address Token: Match an IPv4 or IPv6 address or network.

• Ethernet* Address Token: Match a MAC address.

In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c
and parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

7.2. Command Line Sample Application 310

DPDK documentation, Release 16.04.0

struct cmd_obj_add_result {
cmdline_fixed_string_t action;
cmdline_fixed_string_t name;
struct object *obj;

};

static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, attribute ((unused)) void *data)
{

/* ... */
}

cmdline_parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show_result, action, "show#del");

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_show_result, obj, &global_obj_list);

cmdline_parse_inst_t cmd_obj_del_show = {
.f = cmd_obj_del_show_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "Show/del an object",
.tokens = { /* token list, NULL terminated */

(void *)&cmd_obj_action,
(void *)&cmd_obj_obj,
NULL,

},
};

This command is composed of two tokens:

• The first token is a string token that can be show or del.

• The second token is an object that was previously added using the add command in the
global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result
structure. A pointer to this structure is given as an argument to the callback function and can
be used in the body of this function.

7.3 Ethtool Sample Application

The Ethtool sample application shows an implementation of an ethtool-like API and provides a
console environment that allows its use to query and change Ethernet card parameters. The
sample is based upon a simple L2 frame reflector.

7.3.1 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SD}/examples/ethtool

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

7.3. Ethtool Sample Application 311

DPDK documentation, Release 16.04.0

make

7.3.2 Running the Application

The application requires an available core for each port, plus one. The only available options
are the standard ones for the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.3.3 Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>

From this interface the available commands and descriptions of what they do as as follows:

• drvinfo: Print driver info

• eeprom: Dump EEPROM to file

• link: Print port link states

• macaddr: Gets/sets MAC address

• mtu: Set NIC MTU

• open: Open port

• pause: Get/set port pause state

• portstats: Print port statistics

• regs: Dump port register(s) to file

• ringparam: Get/set ring parameters

• rxmode: Toggle port Rx mode

• stop: Stop port

• validate: Check that given MAC address is valid unicast address

• vlan: Add/remove VLAN id

• quit: Exit program

7.3.4 Explanation

The sample program has two parts: A background packet reflector that runs on a slave core,
and a foreground Ethtool Shell that runs on the master core. These are described below.

7.3. Ethtool Sample Application 312

DPDK documentation, Release 16.04.0

Packet Reflector

The background packet reflector is intended to demonstrate basic packet processing on NIC
ports controlled by the Ethtool shim. Each incoming MAC frame is rewritten so that it is returned
to the sender, using the port in question’s own MAC address as the source address, and is then
sent out on the same port.

Ethtool Shell

The foreground part of the Ethtool sample is a console-based interface that accepts commands
as described in using the application. Individual call-back functions handle the detail associ-
ated with each command, which make use of the functions defined in the Ethtool interface to
the DPDK functions.

7.3.5 Ethtool interface

The Ethtool interface is built as a separate library, and implements the following functions:

• rte_ethtool_get_drvinfo()

• rte_ethtool_get_regs_len()

• rte_ethtool_get_regs()

• rte_ethtool_get_link()

• rte_ethtool_get_eeprom_len()

• rte_ethtool_get_eeprom()

• rte_ethtool_set_eeprom()

• rte_ethtool_get_pauseparam()

• rte_ethtool_set_pauseparam()

• rte_ethtool_net_open()

• rte_ethtool_net_stop()

• rte_ethtool_net_get_mac_addr()

• rte_ethtool_net_set_mac_addr()

• rte_ethtool_net_validate_addr()

• rte_ethtool_net_change_mtu()

• rte_ethtool_net_get_stats64()

• rte_ethtool_net_vlan_rx_add_vid()

• rte_ethtool_net_vlan_rx_kill_vid()

• rte_ethtool_net_set_rx_mode()

• rte_ethtool_get_ringparam()

• rte_ethtool_set_ringparam()

7.3. Ethtool Sample Application 313

DPDK documentation, Release 16.04.0

7.4 Exception Path Sample Application

The Exception Path sample application is a simple example that demonstrates the use of the
DPDK to set up an exception path for packets to go through the Linux* kernel. This is done
by using virtual TAP network interfaces. These can be read from and written to by the DPDK
application and appear to the kernel as a standard network interface.

7.4.1 Overview

The application creates two threads for each NIC port being used. One thread reads from
the port and writes the data unmodified to a thread-specific TAP interface. The second thread
reads from a TAP interface and writes the data unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.

Fig. 7.1: Packet Flow

To make throughput measurements, kernel bridges must be setup to forward data between the
bridges appropriately.

7.4.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/exception_path

2. Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

This application is intended as a linuxapp only. See the DPDK Getting Started Guide for
possible RTE_TARGET values.

1. Build the application:

make

7.4.3 Running the Application

The application requires a number of command line options:

.build/exception_path [EAL options] -- -p PORTMASK -i IN_CORES -o OUT_CORES

where:

• -p PORTMASK: A hex bitmask of ports to use

• -i IN_CORES: A hex bitmask of cores which read from NIC

• -o OUT_CORES: A hex bitmask of cores which write to NIC

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.4. Exception Path Sample Application 314

DPDK documentation, Release 16.04.0

The number of bits set in each bitmask must be the same. The coremask -c parameter of
the EAL options should include IN_CORES and OUT_CORES. The same bit must not be set
in IN_CORES and OUT_CORES. The affinities between ports and cores are set beginning
with the least significant bit of each mask, that is, the port represented by the lowest bit in
PORTMASK is read from by the core represented by the lowest bit in IN_CORES, and written
to by the core represented by the lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

./build/exception_path -c f -n 4 -- -p 3 -i 3 -o c

Getting Statistics

While the application is running, statistics on packets sent and received can be displayed by
sending the SIGUSR1 signal to the application from another terminal:

killall -USR1 exception_path

The statistics can be reset by sending a SIGUSR2 signal in a similar way.

7.4.4 Explanation

The following sections provide some explanation of the code.

Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding
Sample Application (in Real and Virtualized Environments). In addition, the TAP interfaces
must also be created. A TAP interface is created for each lcore that is being used. The code
for creating the TAP interface is as follows:

/*
* Create a tap network interface, or use existing one with same name.

* If name[0]='\0' then a name is automatically assigned and returned in name.

*/

static int tap_create(char *name)
{

struct ifreq ifr;
int fd, ret;

fd = open("/dev/net/tun", O_RDWR);
if (fd < 0)

return fd;

memset(&ifr, 0, sizeof(ifr));

/* TAP device without packet information */

ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (name && *name)

rte_snprinf(ifr.ifr_name, IFNAMSIZ, name);

ret = ioctl(fd, TUNSETIFF, (void *) &ifr);

if (ret < 0) {
close(fd);

7.4. Exception Path Sample Application 315

DPDK documentation, Release 16.04.0

return ret;

}

if (name)
snprintf(name, IFNAMSIZ, ifr.ifr_name);

return fd;
}

The other step in the initialization process that is unique to this sample application is the asso-
ciation of each port with two cores:

• One core to read from the port and write to a TAP interface

• A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the lcore IDs. The population
of this array is shown below:

tx_port = 0;
rx_port = 0;

RTE_LCORE_FOREACH(i) {
if (input_cores_mask & (1ULL << i)) {

/* Skip ports that are not enabled */
while ((ports_mask & (1 << rx_port)) == 0) {

rx_port++;
if (rx_port > (sizeof(ports_mask) * 8))

goto fail; /* not enough ports */
}
port_ids[i] = rx_port++;

} else if (output_cores_mask & (1ULL << i)) {
/* Skip ports that are not enabled */
while ((ports_mask & (1 << tx_port)) == 0) {

tx_port++;
if (tx_port > (sizeof(ports_mask) * 8))

goto fail; /* not enough ports */
}
port_ids[i] = tx_port++;

}
}

Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each lcore.
This function first checks the lcore_id against the user provided input_cores_mask and out-
put_cores_mask to see if this core is reading from or writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 Forward-
ing sample application (see Receive, Process and Transmit Packets). The packet transmission
is done by calling write() with the file descriptor of the appropriate TAP interface and then
explicitly freeing the mbuf back to the pool.

/* Loop forever reading from NIC and writing to tap */

for (;;) {
struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
unsigned i;

const unsigned nb_rx = rte_eth_rx_burst(port_ids[lcore_id], 0, pkts_burst, PKT_BURST_SZ);

7.4. Exception Path Sample Application 316

DPDK documentation, Release 16.04.0

lcore_stats[lcore_id].rx += nb_rx;

for (i = 0; likely(i < nb_rx); i++) {
struct rte_mbuf *m = pkts_burst[i];
int ret = write(tap_fd, rte_pktmbuf_mtod(m, void*),

rte_pktmbuf_data_len(m));
rte_pktmbuf_free(m);
if (unlikely(ret<0))

lcore_stats[lcore_id].dropped++;
else

lcore_stats[lcore_id].tx++;
}

}

For the other case that reads from a TAP interface and writes to a NIC port, packets are
retrieved by doing a read() from the file descriptor of the appropriate TAP interface. This fills in
the data into the mbuf, then other fields are set manually. The packet can then be transmitted
as normal.

/* Loop forever reading from tap and writing to NIC */

for (;;) {
int ret;
struct rte_mbuf *m = rte_pktmbuf_alloc(pktmbuf_pool);

if (m == NULL)
continue;

ret = read(tap_fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
if (unlikely(ret < 0)) {

FATAL_ERROR("Reading from %s interface failed", tap_name);
}

m->pkt.nb_segs = 1;
m->pkt.next = NULL;
m->pkt.data_len = (uint16_t)ret;

ret = rte_eth_tx_burst(port_ids[lcore_id], 0, &m, 1);
if (unlikely(ret < 1)) {

rte_pktmuf_free(m);
lcore_stats[lcore_id].dropped++;

}
else {

lcore_stats[lcore_id].tx++;
}

}

To set up loops for measuring throughput, TAP interfaces can be connected using bridging.
The steps to do this are described in the section that follows.

Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format
tap_dpdk_nn, where nn is the lcore ID. These TAP interfaces need to be configured for use:

ifconfig tap_dpdk_00 up

To set up a bridge between two interfaces so that packets sent to one interface can be read
from another, use the brctl tool:

7.4. Exception Path Sample Application 317

DPDK documentation, Release 16.04.0

brctl addbr "br0"
brctl addif br0 tap_dpdk_00
brctl addif br0 tap_dpdk_03
ifconfig br0 up

The TAP interfaces created by this application exist only when the application is running, so
the steps above need to be repeated each time the application is run. To avoid this, persistent
TAP interfaces can be created using openvpn:

openvpn --mktun --dev tap_dpdk_00

If this method is used, then the steps above have to be done only once and the same TAP
interfaces can be reused each time the application is run. To remove bridges and persistent
TAP interfaces, the following commands are used:

ifconfig br0 down
brctl delbr br0
openvpn --rmtun --dev tap_dpdk_00

7.5 Hello World Sample Application

The Hello World sample application is an example of the simplest DPDK application that can
be written. The application simply prints an “helloworld” message on every enabled lcore.

7.5.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.5.2 Running the Application

To run the example in a linuxapp environment:

$./build/helloworld -c f -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

7.5.3 Explanation

The following sections provide some explanation of code.

7.5. Hello World Sample Application 318

DPDK documentation, Release 16.04.0

EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main()
function using the following code:

int

main(int argc, char **argv)

{
ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case
of a Linuxapp environment). The argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments.

Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore. In this
example, lcore_hello() is called on every available lcore. The following is the definition of the
function:

static int
lcore_hello(attribute ((unused)) void *arg)
{

unsigned lcore_id;

lcore_id = rte_lcore_id();
printf("hello from core %u\n", lcore_id);
return 0;

}

The code that launches the function on each lcore is as follows:

/* call lcore_hello() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(lcore_hello, NULL, lcore_id);

}

/* call it on master lcore too */

lcore_hello(NULL);

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch()
function.

7.6 Basic Forwarding Sample Application

The Basic Forwarding sample application is a simple skeleton example of a forwarding appli-
cation.

7.6. Basic Forwarding Sample Application 319

DPDK documentation, Release 16.04.0

It is intended as a demonstration of the basic components of a DPDK forwarding application.
For more detailed implementations see the L2 and L3 forwarding sample applications.

7.6.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example
directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/skeleton

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

7.6.2 Running the Application

To run the example in a linuxapp environment:

./build/basicfwd -c 2 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

7.6.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained
in detail in the DPDK API Documentation.

The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv
arguments are provided to the rte_eal_init() function. The value returned is the number
of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the ap-
plication:

mbuf_pool = rte_mempool_create("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),

7.6. Basic Forwarding Sample Application 320

DPDK documentation, Release 16.04.0

rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id(),
0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf
Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function
which is explained in the next section:

for (portid = 0; portid < nb_ports; portid++) {
if (port_init(portid, mbuf_pool) != 0) {

rte_exit(EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

}
}

Once the initialization is complete, the application is ready to launch a function on an lcore. In
this example lcore_main() is called on a single lcore.

lcore_main();

The lcore_main() function is explained below.

The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is
shown below:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{

struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uint16_t q;

if (port >= rte_eth_dev_count())
return -1;

/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {

retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;

}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {

retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;

}

7.6. Basic Forwarding Sample Application 321

DPDK documentation, Release 16.04.0

/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;

/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);

return 0;
}

The Ethernet ports are configured with default settings using the
rte_eth_dev_configure() function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }

};

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable(port);

The Lcores Main

As we saw above the main() function calls an application function on the available lcores. For
the Basic Forwarding application the lcore function looks like the following:

static __attribute__((noreturn)) void
lcore_main(void)
{

const uint8_t nb_ports = rte_eth_dev_count();
uint8_t port;

/*
* Check that the port is on the same NUMA node as the polling thread

* for best performance.

*/
for (port = 0; port < nb_ports; port++)

if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) !=

(int)rte_socket_id())
printf("WARNING, port %u is on remote NUMA node to "

"polling thread.\n\tPerformance will "
"not be optimal.\n", port);

printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
rte_lcore_id());

/* Run until the application is quit or killed. */
for (;;) {

/*
* Receive packets on a port and forward them on the paired

* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.

*/
for (port = 0; port < nb_ports; port++) {

7.6. Basic Forwarding Sample Application 322

DPDK documentation, Release 16.04.0

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

}

The main work of the application is done within the loop:

for (;;) {
for (port = 0; port < nb_ports; port++) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports.
The ports are grouped in pairs with a simple mapping scheme using the an XOR on the port
number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly using

7.6. Basic Forwarding Sample Application 323

DPDK documentation, Release 16.04.0

rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

7.7 RX/TX Callbacks Sample Application

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates
the use of user defined callbacks on received and transmitted packets. The application per-
forms a simple latency check, using callbacks, to determine the time packets spend within the
application.

In the sample application a user defined callback is applied to all received packets to add a
timestamp. A separate callback is applied to all packets prior to transmission to calculate the
elapsed time, in CPU cycles.

7.7.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example
directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/rxtx_callbacks

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is
on in the config/common_ config file that applies to the target. This is generally on by
default:

CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y

Build the application as follows:

make

7.7.2 Running the Application

To run the example in a linuxapp environment:

./build/rxtx_callbacks -c 2 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

7.7.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the
Basic Forwarding Sample Application. See that section of the documentation for more details
of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

7.7. RX/TX Callbacks Sample Application 324

DPDK documentation, Release 16.04.0

The Main Function

The main() function performs the application initialization and calls the execution threads for
each lcore. This function is effectively identical to the main() function explained in Basic
Forwarding Sample Application.

The lcore_main() function is also identical.

The main difference is in the user defined port_init() function where the callbacks are
added. This is explained in the next section:

The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{

struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uint16_t q;

if (port >= rte_eth_dev_count())
return -1;

/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {

retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;

}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {

retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;

}

/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;

/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);

/* Add the callbacks for RX and TX.*/
rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

7.7. RX/TX Callbacks Sample Application 325

DPDK documentation, Release 16.04.0

return 0;
}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

More than one callback can be added and additional information can be passed to callback
function pointers as a void*. In the examples above NULL is used.

The add_timestamps() and calc_latency() functions are explained below.

The add_timestamps() Callback

The add_timestamps() callback is added to the RX port and is applied to all packets re-
ceived:

static uint16_t
add_timestamps(uint8_t port __rte_unused, uint16_t qidx __rte_unused,

struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{

unsigned i;
uint64_t now = rte_rdtsc();

for (i = 0; i < nb_pkts; i++)
pkts[i]->udata64 = now;

return nb_pkts;
}

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to each packet (see
the cycles section of the DPDK API Documentation for details).

The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all packets prior to
transmission:

static uint16_t
calc_latency(uint8_t port __rte_unused, uint16_t qidx __rte_unused,

struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{

uint64_t cycles = 0;
uint64_t now = rte_rdtsc();
unsigned i;

for (i = 0; i < nb_pkts; i++)
cycles += now - pkts[i]->udata64;

latency_numbers.total_cycles += cycles;
latency_numbers.total_pkts += nb_pkts;

if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {
printf("Latency = %"PRIu64" cycles\n",

latency_numbers.total_cycles / latency_numbers.total_pkts);

latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
}

7.7. RX/TX Callbacks Sample Application 326

DPDK documentation, Release 16.04.0

return nb_pkts;
}

The calc_latency() function accumulates the total number of packets and the total number
of cycles used. Once more than 100 million packets have been transmitted the average cycle
count per packet is printed out and the counters are reset.

7.8 IP Fragmentation Sample Application

The IPv4 Fragmentation application is a simple example of packet processing using the Data
Plane Development Kit (DPDK). The application does L3 forwarding with IPv4 and IPv6 packet
fragmentation.

7.8.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The ini-
tialization and run-time paths are very similar to those of the L2 Forwarding Sample Application
(in Real and Virtualized Environments). This guide highlights the differences between the two
applications.

There are three key differences from the L2 Forwarding sample application:

• The first difference is that the IP Fragmentation sample application makes use of indirect
buffers.

• The second difference is that the forwarding decision is taken based on information read
from the input packet’s IP header.

• The third difference is that the application differentiates between IP and non-IP traffic by
means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an
outgoing port number, associated with that IP address. Any unmatched packets are forwarded
to the originating port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet
is fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

7.8.2 Building the Application

To build the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_fragmentation

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

make

7.8. IP Fragmentation Sample Application 327

DPDK documentation, Release 16.04.0

7.8.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global
l3fwd_ipv4_route_array and l3fwd_ipv6_route_array tables. For each input packet, the packet
forwarding decision (that is, the identification of the output interface for the packet) is taken as
a result of LPM lookup. If the IP packet size is greater than default output MTU, then the input
packet is fragmented and several fragments are sent via the output interface.

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-q NQ]

where:

• -p PORTMASK is a hexadecimal bitmask of ports to configure

• -q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX
queue per lcore:

./build/ip_fragmentation -c 0x14 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)
...
IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...
IP_FRAG: entering main loop on lcore 4
IP_FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: -- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues
per lcore:

./build/ip_fragmentation -c 0x10 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in
the l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{IPv4(100, 10, 0, 0), 16, 0},
{IPv4(100, 20, 0, 0), 16, 1},
{IPv4(100, 30, 0, 0), 16, 2},
{IPv4(100, 40, 0, 0), 16, 3},
{IPv4(100, 50, 0, 0), 16, 4},
{IPv4(100, 60, 0, 0), 16, 5},
{IPv4(100, 70, 0, 0), 16, 6},

7.8. IP Fragmentation Sample Application 328

DPDK documentation, Release 16.04.0

{IPv4(100, 80, 0, 0), 16, 7},
};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

};

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length
9198 bytes, seven IPv4 packets will be sent out from port #0 to the destination address
100.10.1.1: six of those packets will have length 1500 bytes and one packet will have length
318 bytes. IP Fragmentation sample application provides basic NUMA support in that all the
memory structures are allocated on all sockets that have active lcores on them.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.9 IPv4 Multicast Sample Application

The IPv4 Multicast application is a simple example of packet processing using the Data Plane
Development Kit (DPDK). The application performs L3 multicasting.

7.9.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initial-
ization and run-time paths are very similar to those of the L2 Forwarding Sample Application
(in Real and Virtualized Environments). This guide highlights the differences between the two
applications. There are two key differences from the L2 Forwarding sample application:

• The IPv4 Multicast sample application makes use of indirect buffers.

• The forwarding decision is taken based on information read from the input packet’s IPv4
header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is com-
posed of pairs of destination IPv4 address (the FBK) and a port mask associated with that IPv4
address.

For convenience and simplicity, this sample application does not take IANA-assigned multicast
addresses into account, but instead equates the last four bytes of the multicast group (that is,
the last four bytes of the destination IP address) with the mask of ports to multicast packets
to. Also, the application does not consider the Ethernet addresses; it looks only at the IPv4
destination address for any given packet.

7.9.2 Building the Application

To compile the application:

7.9. IPv4 Multicast Sample Application 329

DPDK documentation, Release 16.04.0

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ipv4_multicast

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified in the make
command.

7.9.3 Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: determines the number of queues per lcore

Note: Unlike the basic L2/L3 Forwarding sample applications, NUMA support is not provided
in the IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -c 0x00f -n 3 -- -p 0x3 -q 1

In this command:

• The -c option enables cores 0, 1, 2 and 3

• The -n option specifies 3 memory channels

• The -p option enables ports 0 and 1

• The -q option assigns 1 queue to each lcore

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.9.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview
section, the initialization and run-time paths are very similar to those of the L2 Forwarding
Sample Application (in Real and Virtualized Environments). The following sections describe
aspects that are specific to the IPv4 Multicast sample application.

7.9. IPv4 Multicast Sample Application 330

DPDK documentation, Release 16.04.0

Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for
indirect buffers used for packet duplication purposes. Memory pools for indirect buffers are
initialized differently from the memory pool for direct buffers:

packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);
clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF,
CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

The reason for this is because indirect buffers are not supposed to hold any packet data and
therefore can be initialized with lower amount of reserved memory for each buffer.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

static int

init_mcast_hash(void)
{

uint32_t i;
mcast_hash_params.socket_id = rte_socket_id();

mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
if (mcast_hash == NULL){

return -1;
}

for (i = 0; i < N_MCAST_GROUPS; i ++){
if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) {

return -1;
}

}
return 0;

}

Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is
removed from the packet and the IPv4 address is extracted from the IPv4 header:

/* Remove the Ethernet header from the input packet */

iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct ether_hdr));
RTE_MBUF_ASSERT(iphdr != NULL);
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and if the routing
table has any ports assigned to the destination address:

if (!IS_IPV4_MCAST(dest_addr) ||
(hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
(port_mask = hash & enabled_port_mask) == 0) {

rte_pktmbuf_free(m);
return;

}

7.9. IPv4 Multicast Sample Application 331

DPDK documentation, Release 16.04.0

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt()
function:

/* Get number of bits set. */

static inline uint32_t bitcnt(uint32_t v)
{

uint32_t n;

for (n = 0; v != 0; v &= v - 1, n++)
;

return n;
}

This is done to determine which forwarding algorithm to use. This is explained in more detail
in the next section.

Thereafter, a destination Ethernet address is constructed:

/* construct destination Ethernet address */

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries
the same destination Ethernet address. The destination Ethernet address is constructed from
the lower 23 bits of the multicast group OR-ed with the Ethernet address 01:00:5e:00:00:00,
as per RFC 1112:

#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated
with a multicast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
/* Prepare output packet and send it out. */

if ((port_mask & 1) != 0) {
if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))

mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
else if (use_clone == 0)

rte_pktmbuf_free(m);
}

}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint8_t port)
{

struct ether_hdr *ethdr;
uint16_t len;

/* Construct Ethernet header. */

ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t) sizeof(*ethdr));

RTE_MBUF_ASSERT(ethdr != NULL);

ether_addr_copy(dest_addr, ðdr->d_addr);
ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);

/* Put new packet into the output queue */

7.9. IPv4 Multicast Sample Application 332

DPDK documentation, Release 16.04.0

len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = pkt;
qconf->tx_mbufs[port].len = ++len;

/* Transmit packets */

if (unlikely(MAX_PKT_BURST == len))
send_burst(qconf, port);

}

Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy
buffer cloning. There are two approaches for creating the outgoing packet and although both
are based on the data zero-copy idea, there are some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments
of the input packet and for each of segment, create a new buffer and attach that new buffer
to the segment (refer to rte_pktmbuf_clone() in the rte_mbuf library for more details). A new
buffer is then allocated for the packet header and is prepended to the cloned buffer.

The second approach does not make a clone, it just increments the reference counter for all
input packet segment, allocates a new buffer for the packet header and prepends it to the input
packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of
packet’s metadata. The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata,
so we can safely modify the data pointer of the input packet. That allows us to skip creation
if the output packet is for the last destination port and instead modify input packet’s header in
place. For example, for N destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing
packet, that is, the “clone” operation is skipped completely. However, there is a price to pay.
The input packet’s metadata must remain intact, so for N destination ports, we need to invoke
mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first ap-
proach is faster. As the number of outgoing ports (and/or input segments) grows, the second
approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either
the first (with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);

It is the mcast_out_pkt() function that performs the packet duplication (either with or without
actually cloning the buffers):

static inline struct rte_mbuf *mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{

struct rte_mbuf *hdr;

/* Create new mbuf for the header. */

if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
return NULL;

7.9. IPv4 Multicast Sample Application 333

DPDK documentation, Release 16.04.0

/* If requested, then make a new clone packet. */

if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
rte_pktmbuf_free(hdr);
return NULL;

}

/* prepend new header */

hdr->pkt.next = pkt;

/* update header's fields */

hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len);
hdr->pkt.nb_segs = (uint8_t)(pkt->pkt.nb_segs + 1);

/* copy metadata from source packet */

hdr->pkt.in_port = pkt->pkt.in_port;
hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
hdr->pkt.hash = pkt->pkt.hash;
hdr->ol_flags = pkt->ol_flags;
rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1);

return hdr;
}

7.10 IP Reassembly Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The
application performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

7.10.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding
with reassembly for IPv4 and IPv6 fragmented packets. The initialization and run- time paths
are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized
Environments). The main difference from the L2 Forwarding sample application is that it re-
assembles fragmented IPv4 and IPv6 packets before forwarding. The maximum allowed size
of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

• The first difference is that the forwarding decision is taken based on information read
from the input packet’s IP header.

• The second difference is that the application differentiates between IP and non-IP traffic
by means of offload flags.

7.10.2 The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to
store/lookup an outgoing port number, associated with that IPv4 address.
Any unmatched packets are forwarded to the originating port.Compiling
the Application

To compile the application:

7.10. IP Reassembly Sample Application 334

DPDK documentation, Release 16.04.0

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_reassembly

1. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

make

7.10.3 Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[(s|ms)]]

where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: Number of RX queues per lcore

• –maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535).
Default value: 4096.

• –flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet. If all
fragments of the packet wouldn’t appear within given time-out, then they are considered
as invalid and will be dropped. Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX
queue per lcore:

./build/ip_reassembly -c 0x14 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
...

IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...

IP_RSMBL: entering main loop on lcore 4
IP_RSMBL: -- lcoreid=4 portid=2
IP_RSMBL: entering main loop on lcore 2
IP_RSMBL: -- lcoreid=2 portid=0

7.10. IP Reassembly Sample Application 335

DPDK documentation, Release 16.04.0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues
per lcore:

./build/ip_reassembly -c 0x10 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in
the l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

Please note that in order to test this application, the traffic generator should be generating valid
fragmented IP packets. For IPv6, the only supported case is when no other extension headers
other than fragment extension header are present in the packet.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{IPv4(100, 10, 0, 0), 16, 0},
{IPv4(100, 20, 0, 0), 16, 1},
{IPv4(100, 30, 0, 0), 16, 2},
{IPv4(100, 40, 0, 0), 16, 3},
{IPv4(100, 50, 0, 0), 16, 4},
{IPv4(100, 60, 0, 0), 16, 5},
{IPv4(100, 70, 0, 0), 16, 6},
{IPv4(100, 80, 0, 0), 16, 7},

};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

};

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a
reassembled IPv4 packet be sent out from port #0 to the destination address 100.10.1.1 once
all the fragments are collected.

7.10.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are very similar to those of the L2
Forwarding Sample Application (in Real and Virtualized Environments). The following sections
describe aspects that are specific to the IP reassemble sample application.

IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more
detailed explanation of how to use this library. Fragment table maintains information about al-
ready received fragments of the packet. Each IP packet is uniquely identified by triple <Source
IP address>, <Destination IP address>, <ID>. To avoid lock contention, each RX queue has its
own Fragment Table, e.g. the application can’t handle the situation when different fragments
of the same packet arrive through different RX queues. Each table entry can hold information
about packet consisting of up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

7.10. IP Reassembly Sample Application 336

DPDK documentation, Release 16.04.0

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL)
{

RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue);
return -1;

}

Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated. At any given time up to
(2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs
per packet>) can be stored inside Fragment Table waiting for remaining fragments. To keep
mempool size under reasonable limits and to avoid situation when one RX queue can starve
other queues, each RX queue uses its own mempool.

nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);

snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);

if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
return -1;

}

Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
function. If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet()
for IPv4 packets, or rte_ipv6_reassemble_packet() for IPv6 packets. These functions either
return a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet can’t
be reassembled for some reason). Then l3fwd_simple_forward() continues with the code for
the packet forwarding decision (that is, the identification of the output interface for the packet)
and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

1. Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination
Address, Packet ID>

2. If the entry is found, then check if that entry already timed-out. If yes, then free all
previously received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:

(a) Use as empty entry

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry
with specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassem-
bled (the packet’s entry contains all fragments).

7.10. IP Reassembly Sample Application 337

DPDK documentation, Release 16.04.0

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the
reassembled mbuf to the caller.

(b) If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error (can’t insert
new entry into the Fragment table, or invalid/timed-out fragment), then it will free all associated
with the packet fragments, mark the table entry as invalid and return NULL to the caller.

Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Ta-
ble. This macro is disabled by default. To make ip_reassembly print the statistics to the stan-
dard output, the user must send either an USR1, INT or TERM signal to the process. For all of
these signals, the ip_reassembly process prints Fragment table statistics for each RX queue,
plus the INT and TERM will cause process termination as usual.

7.11 Kernel NIC Interface Sample Application

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace ap-
plications to exchange packets with the kernel networking stack. To accomplish this, DPDK
userspace applications use an IOCTL call to request the creation of a KNI virtual device in the
Linux* kernel. The IOCTL call provides interface information and the DPDK’s physical address
space, which is re-mapped into the kernel address space by the KNI kernel loadable module
that saves the information to a virtual device context. The DPDK creates FIFO queues for
packet ingress and egress to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL
call access the DPDK’s FIFO queue to receive/transmit packets from/to the DPDK userspace
application. The FIFO queues contain pointers to data packets in the DPDK. This:

• Provides a faster mechanism to interface with the kernel net stack and eliminates system
calls

• Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)

• Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of
the DPDK to create a path for packets to go through the Linux* kernel. This is done by creating
one or more kernel net devices for each of the DPDK ports. The application allows the use of
standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and also the exchange
of packets between the DPDK application and the Linux* kernel.

7.11.1 Overview

The Kernel NIC Interface sample application uses two threads in user space for each physical
NIC port being used, and allocates one or more KNI device for each physical NIC port with
kernel module’s support. For a physical NIC port, one thread reads from the port and writes to
KNI devices, and another thread reads from KNI devices and writes the data unmodified to the
physical NIC port. It is recommended to configure one KNI device for each physical NIC port.

7.11. Kernel NIC Interface Sample Application 338

DPDK documentation, Release 16.04.0

If configured with more than one KNI devices for a physical NIC port, it is just for performance
testing, or it can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.

Fig. 7.2: Kernel NIC Application Packet Flow

7.11.2 Compiling the Application

Compile the application as follows:

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/kni

2. Set the target (a default target is used if not specified)

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make

7.11.3 Loading the Kernel Module

Loading the KNI kernel module without any parameter is the typical way a DPDK application
gets packets into and out of the kernel net stack. This way, only one kernel thread is created
for all KNI devices for packet receiving in kernel side:

7.11. Kernel NIC Interface Sample Application 339

DPDK documentation, Release 16.04.0

#insmod rte_kni.ko

Pinning the kernel thread to a specific core can be done using a taskset command such as
following:

#taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'`

This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts
at 0), which means it needs to check if that lcore is available on the board. This command must
be sent after the application has been launched, as insmod does not start the kni thread.

For optimum performance, the lcore in the mask must be selected to be on the same socket
as the lcores used in the KNI application.

To provide flexibility of performance, the kernel module of the KNI, located in the kmod sub-
directory of the DPDK target directory, can be loaded with parameter of kthread_mode as
follows:

• #insmod rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI devices for packet receiving in
kernel side. By default, it is in this single kernel thread mode. It can set core affinity for
this kernel thread by using Linux command taskset.

• #insmod rte_kni.ko kthread_mode =multiple

This mode will create a kernel thread for each KNI device for packet receiving in ker-
nel side. The core affinity of each kernel thread is set when creating the KNI device.
The lcore ID for each kernel thread is provided in the command line of launching the
application. Multiple kernel thread mode can provide scalable higher performance.

To measure the throughput in a loopback mode, the kernel module of the KNI, located in the
kmod sub-directory of the DPDK target directory, can be loaded with parameters as follows:

• #insmod rte_kni.ko lo_mode=lo_mode_fifo

This loopback mode will involve ring enqueue/dequeue operations in kernel space.

• #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb

This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies
in kernel space.

7.11.4 Running the Application

The application requires a number of command line options:

kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"

Where:

• -P: Set all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• -p PORTMASK: Hexadecimal bitmask of ports to configure.

• –config=”(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx,
lcore_tx[,lcore_kthread, ...]]”: Determines which lcores of RX, TX, kernel thread
are mapped to which ports.

7.11. Kernel NIC Interface Sample Application 340

DPDK documentation, Release 16.04.0

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

The -c coremask parameter of the EAL options should include the lcores indicated by the
lcore_rx and lcore_tx, but does not need to include lcores indicated by lcore_kthread as they
are used to pin the kernel thread on. The -p PORTMASK parameter should include the ports
indicated by the port in –config, neither more nor less.

The lcore_kthread in –config can be configured none, one or more lcore IDs. In multiple kernel
thread mode, if configured none, a KNI device will be allocated for each port, while no specific
lcore affinity will be set for its kernel thread. If configured one or more lcore IDs, one or more
KNI devices will be allocated for each port, while specific lcore affinity will be set for its kernel
thread. In single kernel thread mode, if configured none, a KNI device will be allocated for each
port. If configured one or more lcore IDs, one or more KNI devices will be allocated for each
port while no lcore affinity will be set as there is only one kernel thread for all KNI devices.

For example, to run the application with two ports served by six lcores, one lcore of RX, one
lcore of TX, and one lcore of kernel thread for each port:

./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"

7.11.5 KNI Operations

Once the KNI application is started, one can use different Linux* commands to manage the
net interfaces. If more than one KNI devices configured for a physical port, only the first KNI
device will be paired to the physical device. Operations on other KNI devices will not affect the
physical port handled in user space application.

Assigning an IP address:

#ifconfig vEth0_0 192.168.0.1

Displaying the NIC registers:

#ethtool -d vEth0_0

Dumping the network traffic:

#tcpdump -i vEth0_0

When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.

7.11.6 Explanation

The following sections provide some explanation of code.

Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample
Application (in Real and Virtualized Environments).. In addition, one or more kernel NIC inter-
faces are allocated for each of the configured ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is as follows:

static int
kni_alloc(uint8_t port_id)
{

7.11. Kernel NIC Interface Sample Application 341

DPDK documentation, Release 16.04.0

uint8_t i;
struct rte_kni *kni;
struct rte_kni_conf conf;
struct kni_port_params **params = kni_port_params_array;

if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
return -1;

params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;

for (i = 0; i < params[port_id]->nb_kni; i++) {

/* Clear conf at first */

memset(&conf, 0, sizeof(conf));
if (params[port_id]->nb_lcore_k) {

snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
conf.core_id = params[port_id]->lcore_k[i];
conf.force_bind = 1;

} else
snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
conf.group_id = (uint16_t)port_id;
conf.mbuf_size = MAX_PACKET_SZ;

/*
* The first KNI device associated to a port

* is the master, for multiple kernel thread

* environment.

*/

if (i == 0) {
struct rte_kni_ops ops;
struct rte_eth_dev_info dev_info;

memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);

conf.addr = dev_info.pci_dev->addr;
conf.id = dev_info.pci_dev->id;

memset(&ops, 0, sizeof(ops));

ops.port_id = port_id;
ops.change_mtu = kni_change_mtu;
ops.config_network_if = kni_config_network_interface;

kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);
} else

kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);

if (!kni)
rte_exit(EXIT_FAILURE, "Fail to create kni for "

"port: %d\n", port_id);

params[port_id]->kni[i] = kni;
}

return 0;
}

The other step in the initialization process that is unique to this sample application is the asso-
ciation of each port with lcores for RX, TX and kernel threads.

• One lcore to read from the port and write to the associated one or more KNI devices

7.11. Kernel NIC Interface Sample Application 342

DPDK documentation, Release 16.04.0

• Another lcore to read from one or more KNI devices and write to the port

• Other lcores for pinning the kernel threads on one by one

This is done by using the‘kni_port_params_array[]‘ array, which is indexed by the port ID. The
code is as follows:

static int
parse_config(const char *arg)
{

const char *p, *p0 = arg;
char s[256], *end;
unsigned size;
enum fieldnames {

FLD_PORT = 0,
FLD_LCORE_RX,
FLD_LCORE_TX,
_NUM_FLD = KNI_MAX_KTHREAD + 3,

};
int i, j, nb_token;
char *str_fld[_NUM_FLD];
unsigned long int_fld[_NUM_FLD];
uint8_t port_id, nb_kni_port_params = 0;

memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));

while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {
p++;
if ((p0 = strchr(p, ')')) == NULL)

goto fail;

size = p0 - p;

if (size >= sizeof(s)) {
printf("Invalid config parameters\n");
goto fail;

}

snprintf(s, sizeof(s), "%.*s", size, p);
nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');

if (nb_token <= FLD_LCORE_TX) {
printf("Invalid config parameters\n");
goto fail;

}

for (i = 0; i < nb_token; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i]) {

printf("Invalid config parameters\n");
goto fail;

}
}

i = 0;
port_id = (uint8_t)int_fld[i++];

if (port_id >= RTE_MAX_ETHPORTS) {
printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);
goto fail;

}

if (kni_port_params_array[port_id]) {

7.11. Kernel NIC Interface Sample Application 343

DPDK documentation, Release 16.04.0

printf("Port %u has been configured\n", port_id);
goto fail;

}

kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);
kni_port_params_array[port_id]->port_id = port_id;
kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];

if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
printf("lcore_rx %u or lcore_tx %u ID could not "

"exceed the maximum %u\n",
kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);

goto fail;
}

for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
kni_port_params_array[port_id]->nb_lcore_k = j;

}

print_config();

return 0;

fail:

for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (kni_port_params_array[i]) {

rte_free(kni_port_params_array[i]);
kni_port_params_array[i] = NULL;

}
}

return -1;

}

Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore. This
function first checks the lcore_id against the user provided lcore_rx and lcore_tx to see if this
lcore is reading from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces, the packet
reception is the same as in L2 Forwarding sample application (see Receive, Process and
Transmit Packets). The packet transmission is done by sending mbufs into the kernel NIC
interfaces by rte_kni_tx_burst(). The KNI library automatically frees the mbufs after the kernel
successfully copied the mbufs.

/**
* Interface to burst rx and enqueue mbufs into rx_q

*/

static void
kni_ingress(struct kni_port_params *p)
{

uint8_t i, nb_kni, port_id;
unsigned nb_rx, num;
struct rte_mbuf *pkts_burst[PKT_BURST_SZ];

7.11. Kernel NIC Interface Sample Application 344

DPDK documentation, Release 16.04.0

if (p == NULL)
return;

nb_kni = p->nb_kni;
port_id = p->port_id;

for (i = 0; i < nb_kni; i++) {
/* Burst rx from eth */
nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);
if (unlikely(nb_rx > PKT_BURST_SZ)) {

RTE_LOG(ERR, APP, "Error receiving from eth\n");
return;

}

/* Burst tx to kni */
num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
kni_stats[port_id].rx_packets += num;
rte_kni_handle_request(p->kni[i]);

if (unlikely(num < nb_rx)) {
/* Free mbufs not tx to kni interface */
kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);
kni_stats[port_id].rx_dropped += nb_rx - num;

}
}

}

For the other case that reads from kernel NIC interfaces and writes to a physical NIC port,
packets are retrieved by reading mbufs from kernel NIC interfaces by rte_kni_rx_burst(). The
packet transmission is the same as in the L2 Forwarding sample application (see Receive,
Process and Transmit Packets).

/**
* Interface to dequeue mbufs from tx_q and burst tx

*/

static void

kni_egress(struct kni_port_params *p)
{

uint8_t i, nb_kni, port_id;
unsigned nb_tx, num;
struct rte_mbuf *pkts_burst[PKT_BURST_SZ];

if (p == NULL)
return;

nb_kni = p->nb_kni;
port_id = p->port_id;

for (i = 0; i < nb_kni; i++) {
/* Burst rx from kni */
num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);
if (unlikely(num > PKT_BURST_SZ)) {

RTE_LOG(ERR, APP, "Error receiving from KNI\n");
return;

}

/* Burst tx to eth */

nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);

kni_stats[port_id].tx_packets += nb_tx;

7.11. Kernel NIC Interface Sample Application 345

DPDK documentation, Release 16.04.0

if (unlikely(nb_tx < num)) {
/* Free mbufs not tx to NIC */
kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
kni_stats[port_id].tx_dropped += num - nb_tx;

}
}

}

Callbacks for Kernel Requests

To execute specific PMD operations in user space requested by some Linux* commands, call-
backs must be implemented and filled in the struct rte_kni_ops structure. Currently, setting a
new MTU and configuring the network interface (up/ down) are supported.

static struct rte_kni_ops kni_ops = {
.change_mtu = kni_change_mtu,
.config_network_if = kni_config_network_interface,

};

/* Callback for request of changing MTU */

static int
kni_change_mtu(uint8_t port_id, unsigned new_mtu)
{

int ret;
struct rte_eth_conf conf;

if (port_id >= rte_eth_dev_count()) {
RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
return -EINVAL;

}

RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);

/* Stop specific port */

rte_eth_dev_stop(port_id);

memcpy(&conf, &port_conf, sizeof(conf));

/* Set new MTU */

if (new_mtu > ETHER_MAX_LEN)
conf.rxmode.jumbo_frame = 1;

else
conf.rxmode.jumbo_frame = 0;

/* mtu + length of header + length of FCS = max pkt length */

conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;

ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
if (ret < 0) {

RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);
return ret;

}

/* Restart specific port */

ret = rte_eth_dev_start(port_id);

7.11. Kernel NIC Interface Sample Application 346

DPDK documentation, Release 16.04.0

if (ret < 0) {
RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);

return ret;
}

return 0;
}

/* Callback for request of configuring network interface up/down */

static int
kni_config_network_interface(uint8_t port_id, uint8_t if_up)
{

int ret = 0;

if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
return -EINVAL;

}

RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",

port_id, if_up ? "up" : "down");

if (if_up != 0) {
/* Configure network interface up */
rte_eth_dev_stop(port_id);
ret = rte_eth_dev_start(port_id);

} else /* Configure network interface down */
rte_eth_dev_stop(port_id);

if (ret < 0)
RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);

return ret;
}

7.12 Keep Alive Sample Application

The Keep Alive application is a simple example of a heartbeat/watchdog for packet processing
cores. It demonstrates how to detect ‘failed’ DPDK cores and notify a fault management entity
of this failure. Its purpose is to ensure the failure of the core does not result in a fault that is not
detectable by a management entity.

7.12.1 Overview

The application demonstrates how to protect against ‘silent outages’ on packet processing
cores. A Keep Alive Monitor Agent Core (master) monitors the state of packet processing cores
(worker cores) by dispatching pings at a regular time interval (default is 5ms) and monitoring
the state of the cores. Cores states are: Alive, MIA, Dead or Buried. MIA indicates a missed
ping, and Dead indicates two missed pings within the specified time interval. When a core is
Dead, a callback function is invoked to restart the packet processing core; A real life application
might use this callback function to notify a higher level fault management entity of the core
failure in order to take the appropriate corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism or agent to
supervise the Keep Alive Monitor Agent Core DPDK core is required to detect its failure.

7.12. Keep Alive Sample Application 347

DPDK documentation, Release 16.04.0

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtual-
ized Environments). As such, the initialization and run-time paths are very similar to those of
the L2 forwarding application.

7.12.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/keep_alive

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.12.3 Running the Application

The application has a number of command line options:

./build/l2fwd-keepalive [EAL options] \
-- -p PORTMASK [-q NQ] [-K PERIOD] [-T PERIOD]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

• K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

• T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default,
86400 maximum).

To run the application in linuxapp environment with 4 lcores, 16 ports 8 RX queues per lcore
and a ping interval of 10ms, issue the command:

./build/l2fwd-keepalive -c f -n 4 -- -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.12.4 Explanation

The following sections provide some explanation of the The Keep-Alive/’Liveliness’ conceptual
scheme. As mentioned in the overview section, the initialization and run-time paths are very
similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environ-
ments).

The Keep-Alive/’Liveliness’ conceptual scheme:

• A Keep- Alive Agent Runs every N Milliseconds.

• DPDK Cores respond to the keep-alive agent.

7.12. Keep Alive Sample Application 348

DPDK documentation, Release 16.04.0

• If keep-alive agent detects time-outs, it notifies the fault management entity through a
callback function.

The following sections provide some explanation of the code aspects that are specific to the
Keep Alive sample application.

The keepalive functionality is initialized with a struct rte_keepalive and the callback function to
invoke in the case of a timeout.

rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
if (rte_global_keepalive_info == NULL)

rte_exit(EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings() is configured to run every
check_period milliseconds.

if (rte_timer_reset(&hb_timer,
(check_period * rte_get_timer_hz()) / 1000,
PERIODICAL,
rte_lcore_id(),
&rte_keepalive_dispatch_pings,
rte_global_keepalive_info
) != 0)

rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows the same paths as the the L2 forwarding
application. The only addition to the main processing loop is the mark alive functionality and
the example random failures.

rte_keepalive_mark_alive(&rte_global_keepalive_info);
cur_tsc = rte_rdtsc();

/* Die randomly within 7 secs for demo purposes.. */
if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive(struct rte_keepalive *keepcfg)
{

keepcfg->state_flags[rte_lcore_id()] = ALIVE;
}

7.13 L2 Forwarding with Crypto Sample Application

The L2 Forwarding with Crypto (l2fwd-crypto) sample application is a simple example of packet
processing using the Data Plane Development Kit (DPDK), in conjunction with the Cryptodev
library.

7.13.1 Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash)
specified by the user from command line (or using the default values), with a crypto device
capable of doing that operation, for each packet that is received on a RX_PORT and performs
L2 forwarding. The destination port is the adjacent port from the enabled portmask, that is, if
the first four ports are enabled (portmask 0xf), ports 0 and 1 forward into each other, and ports
2 and 3 forward into each other. Also, the MAC addresses are affected as follows:

7.13. L2 Forwarding with Crypto Sample Application 349

DPDK documentation, Release 16.04.0

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

7.13.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-crypto

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.13.3 Running the Application

The application requires a number of command line options:

./build/l2fwd-crypto [EAL options] -- [-p PORTMASK] [-q NQ] [-s] [-T PERIOD] /
[--cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY] /
[--cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[--cipher_key_random_size SIZE] [--iv IV] [--iv_random_size SIZE] /
[--auth_algo ALGO] [--auth_op GENERATE/VERIFY] [--auth_key KEY] /
[--auth_key_random_size SIZE] [--aad AAD] [--aad_random_size SIZE] /
[--digest size SIZE] [--sessionless]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

• q NQ: A number of queues (=ports) per lcore (default is 1)

• s: manage all ports from single core

• T PERIOD: statistics will be refreshed each PERIOD seconds

(0 to disable, 10 default, 86400 maximum)

• cdev_type: select preferred crypto device type: HW, SW or anything (ANY)

(default is ANY)

• chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),

Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash(HASH_ONLY)

(default is Cipher->Hash)

• cipher_algo: select the ciphering algorithm (default is AES CBC)

• cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

• cipher_key: set the ciphering key to be used. Bytes has to be separated with ”:”

7.13. L2 Forwarding with Crypto Sample Application 350

DPDK documentation, Release 16.04.0

• cipher_key_random_size: set the size of the ciphering key,

which will be generated randomly.

Note that if –cipher_key is used, this will be ignored.

• iv: set the IV to be used. Bytes has to be separated with ”:”

• iv_random_size: set the size of the IV, which will be generated randomly.

Note that if –iv is used, this will be ignored.

• auth_algo: select the authentication algorithm (default is SHA1-HMAC)

• cipher_op: select the authentication operation to perform: GENERATE or VERIFY

(default is GENERATE)

• auth_key: set the authentication key to be used. Bytes has to be separated with ”:”

• auth_key_random_size: set the size of the authentication key,

which will be generated randomly.

Note that if –auth_key is used, this will be ignored.

• aad: set the AAD to be used. Bytes has to be separated with ”:”

• aad_random_size: set the size of the AAD, which will be generated randomly.

Note that if –aad is used, this will be ignored.

• digest_size: set the size of the digest to be generated/verified.

• sessionless: no crypto session will be created.

The application requires that crypto devices capable of performing the specified crypto oper-
ation are available on application initialization. This means that HW crypto device/s must be
bound to a DPDK driver or a SW crypto device/s (virtual crypto PMD) must be created (using
–vdev).

To run the application in linuxapp environment with 2 lcores, 2 ports and 2 crypto devices, issue
the command:

$./build/l2fwd -c 0x3 -n 4 --vdev "cryptodev_aesni_mb_pmd" \
--vdev "cryptodev_aesni_mb_pmd" -- -p 0x3 --chain CIPHER_HASH \
--cipher_op ENCRYPT --cipher_algo AES_CBC \
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
--auth_op GENERATE --auth_algo SHA1_HMAC \
--auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1e:1f

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.13.4 Explanation

The L2 forward with Crypto application demonstrates the performance of a crypto operation on
a packet received on a RX PORT before forwarding it to a TX PORT.

The following figure illustrates a sample flow of a packet in the application, from reception until
transmission.

The following sections provide some explanation of the application.

7.13. L2 Forwarding with Crypto Sample Application 351

DPDK documentation, Release 16.04.0

Fig. 7.3: Encryption flow Through the L2 Forwarding with Crypto Application

Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s (ciphering and/or
authentication). The crypto operation to be performed on the packet is parsed from the com-
mand line (go to “Running the Application section for all the options).

If no parameter is passed, the default crypto operation is:

• Encryption with AES-CBC with 128 bit key.

• Authentication with SHA1-HMAC (generation).

• Keys, IV and AAD are generated randomly.

There are two methods to pass keys, IV and ADD from the command line:

• Passing the full key, separated bytes by ”:”:

--cipher_key 00:11:22:33:44

• Passing the size, so key is generated randomly:

--cipher_key_random_size 16

Note: If full key is passed (first method) and the size is passed as well (second method), the
latter will be ignored.

Size of these keys are checked (regardless the method), before starting the app, to make sure
that it is supported by the crypto devices.

Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized. The crypto devices
must be either bound to a DPDK driver (if they are physical devices) or created using the EAL
option –vdev (if they are virtual devices), when running the application.

The initialize_cryptodevs() function performs the device initialization. It iterates through the list
of the available crypto devices and check which ones are capable of performing the operation.
Each device has a set of capabilities associated with it, which are stored in the device info
structure, so the function checks if the operation is within the structure of each device.

The following code checks if the device supports the specified cipher algorithm (similar for the
authentication algorithm):

/* Check if device supports cipher algo */
i = 0;
opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {

cap_cipher_algo = cap->sym.cipher.algo;
if (cap->sym.xform_type ==

RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (cap_cipher_algo == opt_cipher_algo) {

if (check_type(options, &dev_info) == 0)
break;

}
}

7.13. L2 Forwarding with Crypto Sample Application 352

DPDK documentation, Release 16.04.0

cap = &dev_info.capabilities[++i];
}

If a capable crypto device is found, key sizes are checked to see if they are supported (cipher
key and IV for the ciphering):

/*
* Check if length of provided cipher key is supported

* by the algorithm chosen.

*/
if (options->ckey_param) {

if (check_supported_size(
options->cipher_xform.cipher.key.length,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)

!= 0) {
printf("Unsupported cipher key length\n");
return -1;

}
/*
* Check if length of the cipher key to be randomly generated

* is supported by the algorithm chosen.

*/
} else if (options->ckey_random_size != -1) {

if (check_supported_size(options->ckey_random_size,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)

!= 0) {
printf("Unsupported cipher key length\n");
return -1;

}
options->cipher_xform.cipher.key.length =

options->ckey_random_size;
/* No size provided, use minimum size. */
} else

options->cipher_xform.cipher.key.length =
cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the crypto device list.

Note: The number of crypto devices that supports the specified crypto operation must be at
least the number of ports to be used.

Session creation

The crypto operation has a crypto session associated to it, which contains information such as
the transform chain to perform (e.g. ciphering then hashing), pointers to the keys, lengths...
etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session *
initialize_crypto_session(struct l2fwd_crypto_options *options,

uint8_t cdev_id)
{

struct rte_crypto_sym_xform *first_xform;

if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options->cipher_xform;
first_xform->next = &options->auth_xform;

7.13. L2 Forwarding with Crypto Sample Application 353

DPDK documentation, Release 16.04.0

} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options->auth_xform;
first_xform->next = &options->cipher_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options->cipher_xform;

} else {
first_xform = &options->auth_xform;

}

/* Setup Cipher Parameters */
return rte_cryptodev_sym_session_create(cdev_id, first_xform);

}

...

port_cparams[i].session = initialize_crypto_session(options,
port_cparams[i].dev_id);

Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated and filled:

if (nb_rx) {
/*
* If we can't allocate a crypto_ops, then drop

* the rest of the burst and dequeue and

* process the packets to free offload structs

*/
if (rte_crypto_op_bulk_alloc(

l2fwd_crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops_burst, nb_rx) !=

nb_rx) {
for (j = 0; j < nb_rx; j++)

rte_pktmbuf_free(pkts_burst[i]);

nb_rx = 0;
}

After filling the crypto operation (including session attachment), the mbuf which will be trans-
formed is attached to it:

op->sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten after the operation is done
(in-place).

Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices.
Before doing so, for performance reasons, the operation stays in a buffer. When the buffer has
enough operations (MAX_PKT_BURST), they are enqueued in the device, which will perform
the operation at that moment:

static int
l2fwd_crypto_enqueue(struct rte_crypto_op *op,

struct l2fwd_crypto_params *cparams)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

7.13. L2 Forwarding with Crypto Sample Application 354

DPDK documentation, Release 16.04.0

lcore_id = rte_lcore_id();

qconf = &lcore_queue_conf[lcore_id];
len = qconf->op_buf[cparams->dev_id].len;
qconf->op_buf[cparams->dev_id].buffer[len] = op;
len++;

/* enough ops to be sent */
if (len == MAX_PKT_BURST) {

l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
len = 0;

}

qconf->op_buf[cparams->dev_id].len = len;
return 0;

}

...

static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,

struct l2fwd_crypto_params *cparams)
{

struct rte_crypto_op **op_buffer;
unsigned ret;

op_buffer = (struct rte_crypto_op **)
qconf->op_buf[cparams->dev_id].buffer;

ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
cparams->qp_id, op_buffer, (uint16_t) n);

crypto_statistics[cparams->dev_id].enqueued += ret;
if (unlikely(ret < n)) {

crypto_statistics[cparams->dev_id].errors += (n - ret);
do {

rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
rte_crypto_op_free(op_buffer[ret]);

} while (++ret < n);
}

return 0;
}

After this, the operations are dequeued from the device, and the transformed mbuf is extracted
from the operation. Then, the operation is freed and the mbuf is forwarded as it is done in the
L2 forwarding application.

/* Dequeue packets from Crypto device */
do {

nb_rx = rte_cryptodev_dequeue_burst(
cparams->dev_id, cparams->qp_id,
ops_burst, MAX_PKT_BURST);

crypto_statistics[cparams->dev_id].dequeued +=
nb_rx;

/* Forward crypto'd packets */
for (j = 0; j < nb_rx; j++) {

m = ops_burst[j]->sym->m_src;

rte_crypto_op_free(ops_burst[j]);

7.13. L2 Forwarding with Crypto Sample Application 355

DPDK documentation, Release 16.04.0

l2fwd_simple_forward(m, portid);
}

} while (nb_rx == MAX_PKT_BURST);

7.14 L2 Forwarding Sample Application (in Real and Virtualized
Environments) with core load statistics.

The L2 Forwarding sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization
(SR-IOV) features in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate
possible scheme of job stats library usage therefore some parts of this document is identical
with original L2 forwarding application.

7.14.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received. The destination port is the adjacent
port from the enabled portmask, that is, if the first four ports are enabled (portmask 0xf), ports
1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the MAC
addresses are affected as follows:

• The source MAC address is replaced by the TX port MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in
the Fig. 7.4.

The application can also be used in a virtualized environment as shown in Fig. 7.5.

The L2 Forwarding application can also be used as a starting point for developing a new appli-
cation based on the DPDK.

Fig. 7.4: Performance Benchmark Setup (Basic Environment)

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used
in a virtual machine without passing through the whole Network Device into a guest machine
in a virtualized scenario. The virtual functions can be enabled in the host machine or the
hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the
following command:

modprobe ixgbe max_vfs=2,2

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

356

DPDK documentation, Release 16.04.0

Fig. 7.5: Performance Benchmark Setup (Virtualized Environment)

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

357

DPDK documentation, Release 16.04.0

This command enables two Virtual Functions on each of Physical Function of the NIC, with
two physical ports in the PCI configuration space. It is important to note that enabled Virtual
Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would
belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

7.14.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-jobstats

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.14.3 Running the Application

The application requires a number of command line options:

./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

• l: Use locale thousands separator when formatting big numbers.

To run the application in linuxapp environment with 4 lcores, 16 ports, 8 RX queues per lcore
and thousands separator printing, issue the command:

$./build/l2fwd-jobstats -c f -n 4 -- -q 8 -p ffff -l

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.14.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment
Abstraction Layer (EAL) arguments (see Running the Application). The preferred way to parse
parameters is to use the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument
parsing is not described here. Refer to the glibc getopt(3) man page for details.

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

358

DPDK documentation, Release 16.04.0

EAL arguments are parsed first, then application-specific arguments. This is done at the be-
ginning of the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of
mbuf objects that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */
l2fwd_pktmbuf_pool =

rte_mempool_create("mbuf_pool", NB_MBUF,
MBUF_SIZE, 32,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id(), 0);

if (l2fwd_pktmbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of
allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32
mbufs is kept. The memory is allocated in rte_socket_id() socket, but it is possible to extend
this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer. The
default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a
new function derived from rte_pktmbuf_init() can be created.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide and the DPDK API Reference.

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

359

DPDK documentation, Release 16.04.0

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
nb_ports = RTE_MAX_ETHPORTS;

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/
for (portid = 0; portid < nb_ports; portid++) {

/* skip ports that are not enabled */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue;

if (nb_ports_in_mask % 2) {
l2fwd_dst_ports[portid] = last_port;
l2fwd_dst_ports[last_port] = portid;

}
else

last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,

.header_split = 0, /**< Header Split disabled */

.hw_ip_checksum = 0, /**< IP checksum offload disabled */

.hw_vlan_filter = 0, /**< VLAN filtering disabled */

.jumbo_frame = 0, /**< Jumbo Frame Support disabled */

.hw_strip_crc= 0, /**< CRC stripped by hardware */
},

.txmode = {
.mq_mode = ETH_DCB_NONE

},
};

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

360

DPDK documentation, Release 16.04.0

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
rte_eth_dev_socket_id(portid),
NULL,
l2fwd_pktmbuf_pool);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",

ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

struct rte_timer flush_timer;
struct rte_jobstats flush_job;
struct rte_jobstats idle_job;
struct rte_jobstats_context jobs_context;

rte_atomic16_t stats_read_pending;
rte_spinlock_t lock;

} __rte_cache_aligned;

Values of struct lcore_queue_conf:

• n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section
Receive, Process and Transmit Packets later in this chapter).

• rx_timers and flush_timer are used to ensure forced TX on low packet rate.

• flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd
jobs.

• stats_read_pending and lock are used during job stats read phase.

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

/* init one TX queue on each port */

fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,

rte_eth_dev_socket_id(portid),
NULL);

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

361

DPDK documentation, Release 16.04.0

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",

ret, (unsigned) portid);

Jobs statistics initialization

There are several statistics objects available:

• Flush job statistics

rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc,
drain_tsc, 0);

rte_timer_init(&qconf->flush_timer);
ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL,

lcore_id, &l2fwd_flush_job, NULL);

if (ret < 0) {
rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",

lcore_id, rte_strerror(-ret));
}

• Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);

rte_timer_init(&qconf->rx_timers[i]);
ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id,

l2fwd_fwd_job, (void *)(uintptr_t)i);

if (ret < 0) {
rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",

lcore_id, qconf->rx_port_list[i], rte_strerror(-ret));
}

Following parameters are passed to rte_jobstats_init():

• 0 as minimal poll period

• drain_tsc as maximum poll period

• MAX_PKT_BURST as desired target value (RX burst size)

Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the
l2fwd_main_loop() function three loops are placed.

for (;;) {
rte_spinlock_lock(&qconf->lock);

do {
rte_jobstats_context_start(&qconf->jobs_context);

/* Do the Idle job:

* - Read stats_read_pending flag

* - check if some real job need to be executed

*/
rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);

do {

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

362

DPDK documentation, Release 16.04.0

uint8_t i;
uint64_t now = rte_get_timer_cycles();

need_manage = qconf->flush_timer.expire < now;
/* Check if we was esked to give a stats. */
stats_read_pending =

rte_atomic16_read(&qconf->stats_read_pending);
need_manage |= stats_read_pending;

for (i = 0; i < qconf->n_rx_port && !need_manage; i++)
need_manage = qconf->rx_timers[i].expire < now;

} while (!need_manage);
rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target);

rte_timer_manage();
rte_jobstats_context_finish(&qconf->jobs_context);

} while (likely(stats_read_pending == 0));

rte_spinlock_unlock(&qconf->lock);
rte_pause();

}

First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when
asked.

Second inner while loop do the whole jobs management. When any job is ready, the use
rte_timer_manage() is used to call the job handler. In this place functions l2fwd_fwd_job() and
l2fwd_flush_job() are called when needed. Then rte_jobstats_context_finish() is called to mark
loop end - no other jobs are ready to execute. By this time stats are ready to be read and if
stats_read_pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job
is ready or stats job read is pending for this lcore. Statistics from this part of code is considered
as the headroom available for additional processing.

Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of
particular port and forward it. This is done using the following code:

total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST);

for (j = 0; j < total_nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
l2fwd_simple_forward(m, portid);

}

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is pro-
cessed by the l2fwd_simple_forward() function. The processing is very simple: process the TX
port from the RX port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number
of available mbufs in the table.

After first read second try is issued.

if (total_nb_rx == MAX_PKT_BURST) {
const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

363

DPDK documentation, Release 16.04.0

MAX_PKT_BURST);

total_nb_rx += nb_rx;
for (j = 0; j < nb_rx; j++) {

m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
l2fwd_simple_forward(m, portid);

}
}

This second read is important to give job stats library a feedback how many packets was
processed.

/* Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {

rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL,
lcore_id, l2fwd_fwd_job, arg);

}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read
for each l2fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be
increased. If it is greater the period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled
such that for each source port, a destination port is assigned that is either the next or previous
enabled port from the portmask. Naturally, the number of ports in the portmask must be even,
otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct ether_hdr *eth;
void *tmp;
unsigned dst_port;

dst_port = l2fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

/* src addr */

ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test
application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the
main loop to send all the received packets on the same TX port, using the burst-oriented send
function, which is more efficient.

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

364

DPDK documentation, Release 16.04.0

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that, so the same
approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the
table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}

qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job() is
called periodically to for each lcore draining TX queue of each port. This technique introduces
some latency when there are not many packets to send, however it improves performance:

static void
l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg)
{

uint64_t now;
unsigned lcore_id;
struct lcore_queue_conf *qconf;
struct mbuf_table *m_table;
uint8_t portid;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];

rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job);

now = rte_get_timer_cycles();
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {

m_table = &qconf->tx_mbufs[portid];
if (m_table->len == 0 || m_table->next_flush_time <= now)

continue;

l2fwd_send_burst(qconf, portid);
}

/* Pass target to indicate that this job is happy of time interval

* in which it was called. */

7.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics.

365

DPDK documentation, Release 16.04.0

rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);
}

7.15 L2 Forwarding Sample Application (in Real and Virtualized
Environments)

The L2 Forwarding sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization
(SR-IOV) features in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments
sample application was used, however, in later DPDK versions these sample applications have
been merged.

7.15.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received on an RX_PORT. The destination port is
the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask
0xf), ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the
MAC addresses are affected as follows:

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in
the Fig. 7.6.

The application can also be used in a virtualized environment as shown in Fig. 7.7.

The L2 Forwarding application can also be used as a starting point for developing a new appli-
cation based on the DPDK.

Fig. 7.6: Performance Benchmark Setup (Basic Environment)

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used
in a virtual machine without passing through the whole Network Device into a guest machine
in a virtualized scenario. The virtual functions can be enabled in the host machine or the
hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the
following command:

modprobe ixgbe max_vfs=2,2

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 366

DPDK documentation, Release 16.04.0

Fig. 7.7: Performance Benchmark Setup (Virtualized Environment)

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 367

DPDK documentation, Release 16.04.0

This command enables two Virtual Functions on each of Physical Function of the NIC, with
two physical ports in the PCI configuration space. It is important to note that enabled Virtual
Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would
belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

7.15.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.15.3 Running the Application

The application requires a number of command line options:

./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per
lcore, issue the command:

$./build/l2fwd -c f -n 4 -- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.15.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment
Abstraction Layer (EAL) arguments. The preferred way to parse parameters is to use the
getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument
parsing is not described here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the be-
ginning of the main() function:

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 368

DPDK documentation, Release 16.04.0

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of
mbuf objects that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */

l2fwd_pktmbuf_pool = rte_mempool_create("mbuf_pool", NB_MBUF, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, SOCKET0, 0);

if (l2fwd_pktmbuf_pool == NULL)
rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of
allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32
mbufs is kept. The memory is allocated in NUMA socket 0, but it is possible to extend this code
to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer. The
default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a
new function derived from rte_pktmbuf_init() can be created.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 369

DPDK documentation, Release 16.04.0

rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
nb_ports = RTE_MAX_ETHPORTS;

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {
l2fwd_dst_ports[portid] = last_port;
l2fwd_dst_ports[last_port] = portid;

}
else

last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

Observe that:

• rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Eth-
ernet* Poll Mode Driver.

• rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,

.header_split = 0, /**< Header Split disabled */

.hw_ip_checksum = 0, /**< IP checksum offload disabled */

.hw_vlan_filter = 0, /**< VLAN filtering disabled */

.jumbo_frame = 0, /**< Jumbo Frame Support disabled */

.hw_strip_crc= 0, /**< CRC stripped by hardware */
},

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 370

DPDK documentation, Release 16.04.0

.txmode = {
.mq_mode = ETH_DCB_NONE

},
};

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
"err=%d, port=%u\n",
ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Re-
ceive, Process and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {

.pthresh = RX_PTHRESH,

.hthresh = RX_HTHRESH,

.wthresh = RX_WTHRESH,
},

};

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

/* init one TX queue on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 371

DPDK documentation, Release 16.04.0

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */

};

Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
* Read packet from RX queues

*/

for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);

}
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes
the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. The pro-
cessing is very simple: process the TX port from the RX port, then replace the source and
destination MAC addresses.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled
such that for each source port, a destination port is assigned that is either the next or previous
enabled port from the portmask. Naturally, the number of ports in the portmask must be even,
otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct ether_hdr *eth;
void *tmp;
unsigned dst_port;

dst_port = l2fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 372

DPDK documentation, Release 16.04.0

/* src addr */

ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test
application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the
main loop to send all the received packets on the same TX port, using the burst-oriented send
function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that, so the same
approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the
table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}

qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its
main loop. This technique introduces some latency when there are not many packets to send,
however it improves performance:

cur_tsc = rte_rdtsc();

/*
* TX burst queue drain

*/

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {

if (qconf->tx_mbufs[portid].len == 0)
continue;

l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);

7.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 373

DPDK documentation, Release 16.04.0

qconf->tx_mbufs[portid].len = 0;
}

/* if timer is enabled */

if (timer_period > 0) {
/* advance the timer */

timer_tsc += diff_tsc;

/* if timer has reached its timeout */

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/* reset the timer */
timer_tsc = 0;

}
}

}

prev_tsc = cur_tsc;
}

7.16 L2 Forwarding Sample Application with Cache Allocation
Technology (CAT)

Basic Forwarding sample application is a simple skeleton example of a forwarding application.
It has been extended to make use of CAT via extended command line options and linking
against the libpqos library.

It is intended as a demonstration of the basic components of a DPDK forwarding application
and use of the libpqos library to program CAT. For more detailed implementations see the L2
and L3 forwarding sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s last level
cache. CAT introduces classes of service (COS) that are essentially bitmasks. In current
CAT implementations, a bit in a COS bitmask corresponds to one cache way in last level
cache. A CPU core is always assigned to one of the CAT classes. By programming CPU core
assignment and COS bitmasks, applications can be given exclusive, shared, or mixed access
to the CPU’s last level cache. CDP extends CAT so that there are two bitmasks per COS, one
for data and one for code. The number of classes and number of valid bits in a COS bitmask is
CPU model specific and COS bitmasks need to be contiguous. Sample code calls this bitmask
cbm or capacity bitmask. By default, after reset, all CPU cores are assigned to COS 0 and all
classes are programmed to allow fill into all cache ways. CDP is off by default.

For more information about CAT please see:

• https://github.com/01org/intel-cmt-cat

White paper demonstrating example use case:

• Increasing Platform Determinism with Platform Quality of Service for the Data Plane De-
velopment Kit

7.16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 374

https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html

DPDK documentation, Release 16.04.0

7.16.1 Compiling the Application

Requires libpqos from Intel’s intel-cmt-cat software package hosted on GitHub repository.
For installation notes, please see README file.

GIT:

• https://github.com/01org/intel-cmt-cat

To compile the application export the path to PQoS lib and the DPDK source tree and go to the
example directory:

export PQOS_INSTALL_PATH=/path/to/libpqos
export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/l2fwd-cat

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

7.16.2 Running the Application

To run the example in a linuxapp environment and enable CAT on cpus 0-2:

./build/l2fwd-cat -c 2 -n 4 -- --l3ca="0x3@(0-2)"

or to enable CAT and CDP on cpus 1,3:

./build/l2fwd-cat -c 2 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not valid!
PQOS: Shutting down PQoS library...
EAL: Error - exiting with code: 1

Cause: PQOS: L3CA init failed!

The option to enable CAT is:

• --l3ca=’<common_cbm@cpus>[,<(code_cbm,data_cbm)@cpus>...]’:

where cbm stands for capacity bitmask and must be expressed in hexadecimal form.

common_cbm is a single mask, for a CDP enabled system, a group of two masks
(code_cbm and data_cbm) is used.

(and) are necessary if it’s a group.

cpus could be a single digit/range or a group and must be expressed in decimal form.

(and) are necessary if it’s a group.

e.g. --l3ca=’0x00F00@(1,3),0x0FF00@(4-6),0xF0000@7’

– cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;

– cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;

7.16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 375

https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

DPDK documentation, Release 16.04.0

– cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;

– cpu 7 has exclusive access to all of its 4 ways;

e.g. --l3ca=’(0x00C00,0x00300)@(1,3)’ for CDP enabled system

– cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and data
ways are not overlapping.

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pqos tool from Intel’s intel-cmt-
cat software package.

To enabled or disable CDP:

sudo ./pqos -S cdp-on

sudo ./pqos -S cdp-off

to reset CAT configuration:

sudo ./pqos -R

to list CAT config:

sudo ./pqos -s

For more info about pqos tool please see its man page or intel-cmt-cat wiki.

7.16.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained
in detail in the DPDK API Documentation.

The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv
arguments are provided to the rte_eal_init() function. The value returned is the number
of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The argc and argv argu-
ments are provided to the cat_init() function. The value returned is the number of parsed
arguments:

int ret = cat_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init() is a wrapper function which parses the command, validates the requested pa-
rameters and configures CAT accordingly.

7.16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 376

https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat/wiki

DPDK documentation, Release 16.04.0

Parsing of command line arguments is done in parse_args(...). libpqos is then ini-
tialized with the pqos_init(...) call. Next, libpqos is queried for system CPU infor-
mation and L3CA capabilities via pqos_cap_get(...) and pqos_cap_get_type(...,
PQOS_CAP_TYPE_L3CA, ...) calls. When all capability and topology information is col-
lected, the requested CAT configuration is validated. A check is then performed (on per
socket basis) for a sufficient number of un-associated COS. COS are selected and config-
ured via the pqos_l3ca_set(...) call. Finally, COS are associated to relevant CPUs via
pqos_l3ca_assoc_set(...) calls.

atexit(...) is used to register cat_exit(...) to be called on a clean exit.
cat_exit(...) performs a simple CAT clean-up, by associating COS 0 to all involved CPUs
via pqos_l3ca_assoc_set(...) calls.

7.17 L3 Forwarding Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The
application performs L3 forwarding.

7.17.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement
packet forwarding. The initialization and run-time paths are very similar to those of the L2
Forwarding Sample Application (in Real and Virtualized Environments). The main difference
from the L2 Forwarding sample application is that the forwarding decision is made based on
information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When
the selected lookup method is hash-based, a hash object is used to emulate the flow classifi-
cation stage. The hash object is used in correlation with a flow table to map each input packet
to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read
from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port and
Destination Port. The ID of the output interface for the input packet is read from the identified
flow table entry. The set of flows used by the application is statically configured and loaded
into the hash at initialization time. When the selected lookup method is LPM based, an LPM
object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used as the
routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input
packet. The ID of the output interface for the input packet is the next hop returned by the LPM
lookup. The set of LPM rules used by the application is statically configured and loaded into
the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based for-
warding supports IPv4 only.

7.17.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

7.17. L3 Forwarding Sample Application 377

DPDK documentation, Release 16.04.0

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.17.3 Running the Application

The application has a number of command line options:

./build/l3fwd [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa][--hash-entry-num][--ipv6] [--parse-ptype]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless
of the packet’s Ethernet MAC destination address. Without this option, only packets
with the Ethernet MAC destination address set to the Ethernet address of the port are
accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

• –hash-entry-num: optional, specifies the hash entry number in hexadecimal to be setup

• –ipv6: optional, set it if running ipv6 packets

• –parse-ptype: optional, set it if use software way to analyze packet type

For example, consider a dual processor socket platform where cores 0-7 and 16-23 appear
on socket 0, while cores 8-15 and 24-31 appear on socket 1. Let’s say that the programmer
wants to use memory from both NUMA nodes, the platform has only two ports, one connected
to each NUMA node, and the programmer wants to use two cores from each processor socket
to do the packet processing.

To enable L3 forwarding between two ports, using two cores, cores 1 and 2, from each pro-
cessor, while also taking advantage of local memory access by optimizing around NUMA, the
programmer must enable two queues from each port, pin to the appropriate cores and allocate
memory from the appropriate NUMA node. This is achieved using the following command:

./build/l3fwd -c 606 -n 4 -- -p 0x3 --config="(0,0,1),(0,1,2),(1,0,9),(1,1,10)"

In this command:

• The -c option enables cores 0, 1, 2, 3

• The -p option enables ports 0 and 1

7.17. L3 Forwarding Sample Application 378

DPDK documentation, Release 16.04.0

• The –config option enables two queues on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0.
0 1 2 Map queue 1 from port 0 to lcore 2.
1 0 1 Map queue 0 from port 1 to lcore 1.
1 1 3 Map queue 1 from port 1 to lcore 3.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.17.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are very similar to those of the L2
Forwarding Sample Application (in Real and Virtualized Environments). The following sections
describe aspects that are specific to the L3 Forwarding sample application.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array,
and then generate the expected 5-tuple as key to keep consistence with those of real flow for
the convenience to execute hash performance test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either
table depending on the value of variable ipv6. To support the hash performance test with
up to 8M single direction flows/16M bi-direction flows, populate_ipv4_many_flow_into_table()
function will populate the hash table with specified hash table entry number(default 4M).

Note: Value of global variable ipv6 can be specified with –ipv6 in the command line. Value
of global variable hash_entry_number, which is used to specify the total hash entry number
for all used ports in hash performance test, can be specified with –hash-entry-num VALUE in
command line, being its default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

static void
setup_hash(int socketid)
{

// ...

if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
if (ipv6 == 0) {

/* populate the ipv4 hash */
populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);

} else {
/* populate the ipv6 hash */
populate_ipv6_many_flow_into_table(ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);

7.17. L3 Forwarding Sample Application 379

DPDK documentation, Release 16.04.0

}
} else

if (ipv6 == 0) {
/* populate the ipv4 hash */
populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);

} else {
/* populate the ipv6 hash */
populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);

}
}

}
#endif

LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm(int socketid)
{

unsigned i;
int ret;
char s[64];

/* create the LPM table */

snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);

ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);

if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"

" on socket %d\n", socketid);

/* populate the LPM table */

for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
/* skip unused ports */

if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
continue;

ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "

"l3fwd LPM table on socket %d\n", i, socketid);
}

printf("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

}
}
#endif

7.17. L3 Forwarding Sample Application 380

DPDK documentation, Release 16.04.0

Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() func-
tion for IPv6 packets. The l3fwd_simple_forward() function provides the basic functionality
for both IPv4 and IPv6 packet forwarding for any number of burst packets received, and the
packet forwarding decision (that is, the identification of the output interface for the packet) for
hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function. The
get_ipv4_dst_port() function is shown below:

static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{

int ret = 0;
union ipv4_5tuple_host key;

ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);

m128i data = _mm_loadu_si128((m128i*)(ipv4_hdr));

/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */

key.xmm = _mm_and_si128(data, mask0);

/* Find destination port */

ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);

return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for contin-
uous 4 valid ipv4 and ipv6 packets, they leverage the multiple buffer optimization to boost the
performance of forwarding packets with the exact match on hash table. The key code snippet
of simple_ipv4_fwd_4pkts() is shown below:

static inline void
simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
{

// ...

data[0] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
data[1] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
data[2] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
data[3] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));

key[0].xmm = _mm_and_si128(data[0], mask0);
key[1].xmm = _mm_and_si128(data[1], mask0);
key[2].xmm = _mm_and_si128(data[2], mask0);
key[3].xmm = _mm_and_si128(data[3], mask0);

const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};

rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);

dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];

7.17. L3 Forwarding Sample Application 381

DPDK documentation, Release 16.04.0

// ...
}

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work
well at this mode.

Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
function, but the packet forwarding decision (that is, the identification of the output interface for
the packet) for LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uint8_t
get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{

uint8_t next_hop;

return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
}

7.18 L3 Forwarding with Power Management Sample Application

7.18.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet
processing using the DPDK. The application is based on existing L3 Forwarding sample appli-
cation, with the power management algorithms to control the P-states and C-states of the Intel
processor via a power management library.

7.18.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet
forwarding. The initialization and run-time paths are very similar to those of the L3 Forwarding
Sample Application. The main difference from the L3 Forwarding sample application is that this
application introduces power-aware optimization algorithms by leveraging the Power library to
control P-state and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and
transmit (Tx) queues. The design principle of this PMD is to access the Rx and Tx descriptors
directly without any interrupts to quickly receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that
include the following steps:

• Retrieve input packets through the PMD to poll Rx queue

• Process each received packet or provide received packets to other processing cores
through software queues

• Send pending output packets to Tx queue through the PMD

7.18. L3 Forwarding with Power Management Sample Application 382

DPDK documentation, Release 16.04.0

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at
the cost of keeping cores active and running at the highest frequency, hence consuming the
maximum power all the time. However, during the period of processing light network traffic,
which happens regularly in communication infrastructure systems due to well-known “tidal ef-
fect”, the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch be-
tween different supported operating frequencies and voltages. If configured correctly, accord-
ing to system workload, this feature provides power savings. CPUFreq is the infrastructure
provided by the Linux* kernel to control the processor performance state capability. CPUFreq
supports a user space governor that enables setting frequency via manipulating the virtual file
device from a user space application. The Power library in the DPDK provides a set of APIs for
manipulating a virtual file device to allow user space application to set the CPUFreq governor
and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint
to be sent to CPUFreq. The algorithm uses the number of received and available Rx packets
on recent polls to make a heuristic decision to scale frequency up/down. Specifically, some
thresholds are checked to see whether a specific core running an DPDK polling thread needs
to increase frequency a step up based on the near to full trend of polled Rx queues. Also, it
decreases frequency a step if packet processed per loop is far less than the expected threshold
or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low
power idle state from which it is possible to exit via an event, such as an interrupt. However,
there is a tradeoff between the power consumed in the idle state and the time required to wake
up from the idle state (exit latency). Therefore, as you go into deeper C-states, the power
consumed is lower but the exit latency is increased. Each C-state has a target residency. It is
essential that when entering into a C-state, the core remains in this C-state for at least as long
as the target residency in order to fully realize the benefits of entering the C-state. CPUIdle is
the infrastructure provide by the Linux kernel to control the processor C-state capability. Unlike
CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-
state. It actually has its own heuristic algorithms in kernel space to select target C-state to
enter by executing privileged instructions like HLT and MWAIT, based on the speculative sleep
duration of the core. In this application, we introduce a heuristic algorithm that allows packet
processing cores to sleep for a short period if there is no Rx packet received on recent polls.
In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states
instead of always running to the C0 state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended
to enable deeper C3 and C6 states in the BIOS during system boot up.

7.18.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-power

2. Set the target (a default target is used if not specified). For example:

7.18. L3 Forwarding with Power Management Sample Application 383

DPDK documentation, Release 16.04.0

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.18.4 Running the Application

The application has a number of command line options:

./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores.

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

See L3 Forwarding Sample Application for details. The L3fwd-power example reuses the L3fwd
command line options.

7.18.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are identical to those of the L3
forwarding application. The following sections describe aspects that are specific to the L3
Forwarding with Power Management sample application.

Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace
for specific cores that are under control. The Timer library is also initialized and several timers
are created later on, responsible for checking if it needs to scale down frequency at run time
by checking CPU utilization statistics.

Note: Only the power management related initialization is shown.

int main(int argc, char **argv)
{

struct lcore_conf *qconf;
int ret;
unsigned nb_ports;
uint16_t queueid;

7.18. L3 Forwarding with Power Management Sample Application 384

DPDK documentation, Release 16.04.0

unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint8_t portid, nb_rx_queue, queue, socketid;

// ...

/* init RTE timer library to be used to initialize per-core timers */

rte_timer_subsystem_init();

// ...

/* per-core initialization */

for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)

continue;

/* init power management library for a specified core */

ret = rte_power_init(lcore_id);
if (ret)

rte_exit(EXIT_FAILURE, "Power management library "
"initialization failed on core%d\n", lcore_id);

/* init timer structures for each enabled lcore */

rte_timer_init(&power_timers[lcore_id]);

hz = rte_get_hpet_hz();

rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);

// ...
}

// ...
}

Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem
from knowing if the network load is actually heavy or light. In this sample, sampling network
load work is done by monitoring received and available descriptors on NIC Rx queues in recent
polls. Based on the number of returned and available Rx descriptors, this example implements
algorithms to generate frequency scaling hints and speculative sleep duration, and use them
to control P-state and C-state of processors via the power management library. Frequency (P-
state) control and sleep state (C-state) control work individually for each logical core, and the
combination of them contributes to a power efficient packet processing solution when serving
light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are
used in the endless packet processing loop to return the number of received and available Rx
descriptors. And those numbers of specific queue are passed to P-state and C-state heuristic
algorithms to generate hints based on recent network load trends.

7.18. L3 Forwarding with Power Management Sample Application 385

DPDK documentation, Release 16.04.0

Note: Only power control related code is shown.

static
attribute ((noreturn)) int main_loop(attribute ((unused)) void *dummy)
{

// ...

while (1) {
// ...

/**
* Read packet from RX queues

*/

lcore_scaleup_hint = FREQ_CURRENT;
lcore_rx_idle_count = 0;

for (i = 0; i < qconf->n_rx_queue; ++i)
{

rx_queue = &(qconf->rx_queue_list[i]);
rx_queue->idle_hint = 0;
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;

nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
stats[lcore_id].nb_rx_processed += nb_rx;

if (unlikely(nb_rx == 0)) {
/**
* no packet received from rx queue, try to

* sleep for a while forcing CPU enter deeper

* C states.

*/

rx_queue->zero_rx_packet_count++;

if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
continue;

rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
lcore_rx_idle_count++;

} else {
rx_ring_length = rte_eth_rx_queue_count(portid, queueid);

rx_queue->zero_rx_packet_count = 0;

/**
* do not scale up frequency immediately as

* user to kernel space communication is costly

* which might impact packet I/O for received

* packets.

*/

rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);
}

/* Prefetch and forward packets */

// ...
}

7.18. L3 Forwarding with Power Management Sample Application 386

DPDK documentation, Release 16.04.0

if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {

x_queue = &(qconf->rx_queue_list[i]);

if (rx_queue->freq_up_hint > lcore_scaleup_hint)

lcore_scaleup_hint = rx_queue->freq_up_hint;
}

if (lcore_scaleup_hint == FREQ_HIGHEST)

rte_power_freq_max(lcore_id);

else if (lcore_scaleup_hint == FREQ_HIGHER)
rte_power_freq_up(lcore_id);

} else {
/**
* All Rx queues empty in recent consecutive polls,

* sleep in a conservative manner, meaning sleep as

* less as possible.

*/

for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
if (rx_queue->idle_hint < lcore_idle_hint)

lcore_idle_hint = rx_queue->idle_hint;
}

if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
/**
* execute "pause" instruction to avoid context

* switch for short sleep.

*/
rte_delay_us(lcore_idle_hint);

else
/* long sleep force ruining thread to suspend */
usleep(lcore_idle_hint);

stats[lcore_id].sleep_time += lcore_idle_hint;
}

}
}

P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint
for the specified logical core according to available descriptor number returned from
rte_eth_rx_queue_count(). On every poll for new packets, the length of available descriptor
on an Rx queue is evaluated, and the algorithm used for frequency hinting is as follows:

• If the size of available descriptors exceeds 96, the maximum frequency is hinted.

• If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

• If the length of the ring exceeds 32, the trend counter is incremented by 1.

• When the trend counter reached 10000 the frequency hint is changed to the next higher
frequency.

7.18. L3 Forwarding with Power Management Sample Application 387

DPDK documentation, Release 16.04.0

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above
must be adjusted accordingly based on actual hardware Rx queue size, which are configured
via the rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue
have different load, so they would return different frequency hints. The algorithm evaluates
all the hints and then scales up frequency in an aggressive manner by scaling up to highest
frequency as long as one Rx queue requires. In this way, we can minimize any negative
performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specif-
ically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the
sampling period, or if the average packet per iteration is less than expectation, the frequency
is decreased by one step.

C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter
begins incrementing for each successive zero poll. At the same time, the function
power_idle_heuristic() is called to generate speculative sleep duration in order to force log-
ical to enter deeper sleeping C-state. There is no way to control C- state directly, and the
CPUIdle subsystem in OS is intelligent enough to select C-state to enter based on actual sleep
period time of giving logical core. The algorithm has the following sleeping behavior depending
on the idle counter:

• If idle count less than 100, the counter value is used as a microsecond sleep value
through rte_delay_us() which execute pause instructions to avoid costly context switch
but saving power at the same time.

• If idle count is between 100 and 999, a fixed sleep interval of 100 𝜇s is used. A 100 𝜇s
sleep interval allows the core to enter the C1 state while keeping a fast response time in
case new traffic arrives.

• If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer
expiration is used. This allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and
traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values,
the algorithm controls the sleep time in a conservative manner by sleeping for the least possible
time in order to avoid a potential performance impact.

7.19 L3 Forwarding with Access Control Sample Application

The L3 Forwarding with Access Control application is a simple example of packet processing
using the DPDK. The application performs a security check on received packets. Packets that
are in the Access Control List (ACL), which is loaded during initialization, are dropped. Others
are forwarded to the correct port.

7.19. L3 Forwarding with Access Control Sample Application 388

DPDK documentation, Release 16.04.0

7.19.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access
control and packet L3 forwarding. The application loads two types of rules at initialization:

• Route information rules, which are used for L3 forwarding

• Access Control List (ACL) rules that blacklist (or block) packets with a specific character-
istic

When packets are received from a port, the application extracts the necessary information
from the TCP/IP header of the received packet and performs a lookup in the rule database to
figure out whether the packets should be dropped (in the ACL range) or forwarded to desired
ports. The initialization and run-time paths are similar to those of the L3 Forwarding Sample
Application. However, there are significant differences in the two applications. For example,
the original L3 forwarding application uses either LPM or an exact match algorithm to perform
forwarding port lookup, while this application uses the ACL library to perform both ACL and
route entry lookup. The following sections provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application
also assumes that all the packets it processes are TCP/UDP packets and always extracts
source/destination port information from the packets.

Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically.
The 5-tuple syntax consist of a source IP address, a destination IP address, a source port, a
destination port and a protocol identifier. The fields in the 5-tuple syntax have the following
formats:

• Source IP address and destination IP address : Each is either a 32-bit field (for IPv4),
or a set of 4 32-bit fields (for IPv6) represented by a value and a mask length. For
example, an IPv4 range of 192.168.1.0 to 192.168.1.255 could be represented by a value
= [192, 168, 1, 0] and a mask length = 24.

• Source port and destination port : Each is a 16-bit field, represented by a lower start
and a higher end. For example, a range of ports 0 to 8192 could be represented by lower
= 0 and higher = 8192.

• Protocol identifier : An 8-bit field, represented by a value and a mask, that covers a
range of values. To verify that a value is in the range, use the following expression: “(VAL
& mask) == value”

The trick in how to represent a range with a mask and value is as follows. A range can be
enumerated in binary numbers with some bits that are never changed and some bits that are
dynamically changed. Set those bits that dynamically changed in mask and value with 0. Set
those bits that never changed in the mask with 1, in value with number expected. For example,
a range of 6 to 7 is enumerated as 0b110 and 0b111. Bit 1-7 are bits never changed and bit
0 is the bit dynamically changed. Therefore, set bit 0 in mask and value with 0, set bits 1-7 in
mask with 1, and bits 1-7 in value with number 0b11. So, mask is 0xfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when cre-
ating the database. It internally converts them to MSB or Big Endian order. When performing

7.19. L3 Forwarding with Access Control Sample Application 389

DPDK documentation, Release 16.04.0

a lookup, the library assumes the input is in MSB or Big Endian order.

Access Rule Syntax

In this sample application, each rule is a combination of the following:

• 5-tuple field: This field has a format described in Section.

• priority field: A weight to measure the priority of the rules. The rule with the higher priority
will ALWAYS be returned if the specific input has multiple matches in the rule database.
Rules with lower priority will NEVER be returned in any cases.

• userdata field: A user-defined field that could be any value. It can be the forwarding port
number if the rule is a route table entry or it can be a pointer to a mapping address if
the rule is used for address mapping in the NAT application. The key point is that it is a
useful reserved field for user convenience.

ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are manda-
tory, while ACL rules are optional. To simplify the complexity of the priority field for each rule,
all ACL and route entries are assumed to be in the same file. To read data from the specified
file successfully, the application assumes the following:

• Each rule occupies a single line.

• Only the following four rule line types are valid in this application:

• ACL rule line, which starts with a leading character ‘@’

• Route rule line, which starts with a leading character ‘R’

• Comment line, which starts with a leading character ‘#’

• Empty line, which consists of a space, form-feed (‘f’), newline (‘n’), carriage return (‘r’),
horizontal tab (‘t’), or vertical tab (‘v’).

Other lines types are considered invalid.

• Rules are organized in descending order of priority, which means rules at the head of the
file always have a higher priority than those further down in the file.

• A typical IPv4 ACL rule line should have a format as shown below:

Fig. 7.8: A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot
notation for the address and a prefix length separated by ‘/’. For example, 192.168.0.34/32,
where the address is 192.168.0.34 and the prefix length is 32.

7.19. L3 Forwarding with Access Control Sample Application 390

DPDK documentation, Release 16.04.0

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX
are the inclusive minimum and maximum values of the range. The range 0:65535 represents all
possible ports in a range. When MIN and MAX are the same value, a single port is represented,
for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’. For example: 6/0xfe
matches protocol values 6 and 7.

• Route rules start with a leading character ‘R’ and have the same format as ACL rules
except an extra field at the tail that indicates the forwarding port number.

Rules File Example

Fig. 7.9: Rules example

Each rule is explained as follows:

• Rule 1 (the first line) tells the application to drop those packets with source IP address =
[1.2.3.*], destination IP address = [192.168.0.36], protocol = [6]/[7]

• Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored.
It tells the application to forward packets with destination IP address = [192.168.0.36],
protocol = [6]/[7], destined to port 1.

• Rule 3 (the third line) tells the application to forward all packets to port 0. This is some-
thing like a default route entry.

As described earlier, the application assume rules are listed in descending order of priority,
therefore Rule 1 has the highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

• Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and
protocol = [6]

• Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and
protocol = [6]

• Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and
protocol = [8]

Observe that:

• Packet 1 matches all of the rules

• Packet 2 matches Rule 2 and Rule 3

• Packet 3 only matches Rule 3

7.19. L3 Forwarding with Access Control Sample Application 391

DPDK documentation, Release 16.04.0

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and
is forwarded to port 1. Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files
(inside <RTE_SDK>/examples/l3fwd-acl/).

Application Phases

Once the application starts, it transitions through three phases:

• Initialization Phase - Perform the following tasks:

• Parse command parameters. Check the validity of rule file(s) name(s), number of logical
cores, receive and transmit queues. Bind ports, queues and logical cores. Check ACL
search options, and so on.

• Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to
initialize the environment and detect possible NICs. The EAL creates several threads
and sets affinity to a specific hardware thread CPU based on the configuration specified
by the command line arguments.

• Read the rule files and format the rules into the representation that the ACL library can
recognize. Call the ACL library function to add the rules into the database and compile
them as a trie of pattern sets. Note that application maintains a separate AC contexts for
IPv4 and IPv6 rules.

• Runtime Phase - Process the incoming packets from a port. Packets are processed in
three steps:

– Retrieval: Gets a packet from the receive queue. Each logical core may process
several queues for different ports. This depends on the configuration specified by
command line arguments.

– Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-
tuple lookup over corresponding AC context. If an ACL rule is matched, the packets
will be dropped and return back to step 1. If a route rule is matched, it indicates the
packet is not in the ACL list and should be forwarded. If there is no matches for the
packet, then the packet is dropped.

– Forwarding: Forwards the packet to the corresponding port.

• Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

7.19.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-acl

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK IPL Getting Started Guide for possible RTE_TARGET values.

7.19. L3 Forwarding with Access Control Sample Application 392

DPDK documentation, Release 16.04.0

3. Build the application:

make

7.19.3 Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] --rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores

• –rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

• –rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

• –scalar: Use a scalar function to perform rule lookup

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

As an example, consider a dual processor socket platform where cores 0, 2, 4, 6, 8 and 10
appear on socket 0, while cores 1, 3, 5, 7, 9 and 11 appear on socket 1. Let’s say that the user
wants to use memory from both NUMA nodes, the platform has only two ports and the user
wants to use two cores from each processor socket to do the packet processing.

To enable L3 forwarding between two ports, using two cores from each processor, while also
taking advantage of local memory access by optimizing around NUMA, the user must enable
two queues from each port, pin to the appropriate cores and allocate memory from the appro-
priate NUMA node. This is achieved using the following command:

./build/l3fwd-acl -c f -n 4 -- -p 0x3 --config="(0,0,0),(0,1,2),(1,0,1),(1,1,3)" --rule_ipv4="./rule_ipv4.db" -- rule_ipv6="./rule_ipv6.db" --scalar

In this command:

• The -c option enables cores 0, 1, 2, 3

• The -p option enables ports 0 and 1

• The –config option enables two queues on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0.
0 1 2 Map queue 1 from port 0 to lcore 2.
1 0 1 Map queue 0 from port 1 to lcore 1.
1 1 3 Map queue 1 from port 1 to lcore 3.

7.19. L3 Forwarding with Access Control Sample Application 393

DPDK documentation, Release 16.04.0

• The –rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

• The –rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

• The –scalar option specifies the performing of rule lookup with a scalar function.

7.19.4 Explanation

The following sections provide some explanation of the sample application code. The aspects
of port, device and CPU configuration are similar to those of the L3 Forwarding Sample Appli-
cation. The following sections describe aspects that are specific to L3 forwarding with access
control.

Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The
application parses the rules from the file and adds them to the database by calling the ACL li-
brary function. It ignores empty and comment lines, and parses and validates the rules it reads.
If errors are detected, the application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index
to the specific rules in the userdata field, while route rules save the forwarding port number.
In order to differentiate the two types of rules, ACL rules add a signature in the userdata field.
As for the priority field, the application assumes rules are organized in descending order of
priority. Therefore, the code only decreases the priority number with each rule it parses.

Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate
context handler from the ACL library for each CPU socket on the board and adds parsed rules
into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of
the fields from the start of the packet. That’s why only packets with fixed IPv4/ IPv6 header are
supported. That allows to perform ACL classify straight over incoming packet buffer - no extra
protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records
the socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from
the file into the database and build an ACL trie. It is important to note that the application
creates an independent copy of each database for each socket CPU involved in the task to
reduce the time for remote memory access.

7.20 L3 Forwarding in a Virtualization Environment Sample Appli-
cation

The L3 Forwarding in a Virtualization Environment sample application is a simple example of
packet processing using the DPDK. The application performs L3 forwarding that takes advan-
tage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

7.20. L3 Forwarding in a Virtualization Environment Sample Application 394

DPDK documentation, Release 16.04.0

7.20.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement
packet forwarding. The initialization and run-time paths are very similar to those of the L3
Forwarding Sample Application. The forwarding decision is taken based on information read
from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When
the selected lookup method is hash-based, a hash object is used to emulate the flow classifica-
tion stage. The hash object is used in correlation with the flow table to map each input packet
to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields
read from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port
and Destination Port. The ID of the output interface for the input packet is read from the
identified flow table entry. The set of flows used by the application is statically configured and
loaded into the hash at initialization time. When the selected lookup method is LPM based, an
LPM object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used
as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input
packet. The ID of the output interface for the input packet is the next hop returned by the LPM
lookup. The set of LPM rules used by the application is statically configured and loaded into
the LPM object at the initialization time.

Note: Please refer to Virtual Function Setup Instructions for virtualized test case setup.

7.20.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-vf

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified in the make
command.

7.20.3 Running the Application

The application has a number of command line options:

7.20. L3 Forwarding in a Virtualization Environment Sample Application 395

DPDK documentation, Release 16.04.0

./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)] [--no-numa]

where,

• –p PORTMASK: Hexadecimal bitmask of ports to configure

• –config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which
ports are mapped to which cores

• –no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform where cores 0,2,4,6, 8, and 10 appear
on socket 0, while cores 1,3,5,7,9, and 11 appear on socket 1. Let’s say that the programmer
wants to use memory from both NUMA nodes, the platform has only two ports and the pro-
grammer wants to use one core from each processor socket to do the packet processing since
only one Rx/Tx queue pair can be used in virtualization mode.

To enable L3 forwarding between two ports, using one core from each processor, while also
taking advantage of local memory accesses by optimizing around NUMA, the programmer can
pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is
achieved using the following command:

./build/l3fwd-vf -c 0x03 -n 3 -- -p 0x3 --config="(0,0,0),(1,0,1)"

In this command:

• The -c option enables cores 0 and 1

• The -p option enables ports 0 and 1

• The –config option enables one queue on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0
1 1 1 Map queue 0 from port 1 to lcore 1

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.20.4 Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Applica-
tion. See Explanation for more information.

7.21 Link Status Interrupt Sample Application

The Link Status Interrupt sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) that demonstrates how network link status changes
for a network port can be captured and used by a DPDK application.

7.21. Link Status Interrupt Sample Application 396

DPDK documentation, Release 16.04.0

7.21.1 Overview

The Link Status Interrupt sample application registers a user space callback for the link sta-
tus interrupt of each port and performs L2 forwarding for each packet that is received on an
RX_PORT. The following operations are performed:

• RX_PORT and TX_PORT are paired with available ports one-by-one according to the
core mask

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user
space callbacks and the behavior of L2 forwarding each time the link status changes.

7.21.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/link_status_interrupt

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified on the
make command line.

7.21.3 Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]

where,

• -p PORTMASK: A hexadecimal bitmask of the ports to configure

• -q NQ: A number of queues (=ports) per lcore (default is 1)

• -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports
and 8 RX queues per lcore, issue the command:

$./build/link_status_interrupt -c f -n 4-- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.21. Link Status Interrupt Sample Application 397

DPDK documentation, Release 16.04.0

7.21.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environ-
ment Abstraction Layer (EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Command Line Arguments for more information.

Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Mbuf Pool Initialization for more information.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)

rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
nb_ports = RTE_MAX_ETHPORTS;

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((lsi_enabled_port_mask & (1 << portid)) == 0)
continue;

/* save the destination port id */

if (nb_ports_in_mask % 2) {
lsi_dst_ports[portid] = portid_last;
lsi_dst_ports[portid_last] = portid;

}
else

portid_last = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

7.21. Link Status Interrupt Sample Application 398

DPDK documentation, Release 16.04.0

Observe that:

• rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,

.header_split = 0, /**< Header Split disabled */

.hw_ip_checksum = 0, /**< IP checksum offload disabled */

.hw_vlan_filter = 0, /**< VLAN filtering disabled */

.hw_strip_crc= 0, /**< CRC stripped by hardware */
},
.txmode = {},
.intr_conf = {

.lsc = 1, /**< link status interrupt feature enabled */
},

};

Configuring lsc to 0 (the default) disables the generation of any link status change inter-
rupts in kernel space and no user space interrupt event is received. The public interface
rte_eth_link_get() accesses the NIC registers directly to update the link status. Configuring
lsc to non-zero enables the generation of link status change interrupts in kernel space when a
link status change is present and calls the user space callbacks registered by the application.
The public interface rte_eth_link_get() just reads the link status in a global structure that would
be updated in the interrupt host thread only.

Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event. An
example callback function that has been written as indicated below.

static void
lsi_event_callback(uint8_t port_id, enum rte_eth_event_type type, void *param)
{

struct rte_eth_link link;

RTE_SET_USED(param);

printf("\n\nIn registered callback...\n");

printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");

rte_eth_link_get_nowait(port_id, &link);

if (link.link_status) {
printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,

(link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
} else

printf("Port %d Link Down\n\n", port_id);
}

7.21. Link Status Interrupt Sample Application 399

DPDK documentation, Release 16.04.0

This function is called when a link status interrupt is present for the right port. The port_id
indicates which port the interrupt applies to. The type parameter identifies the interrupt event
type, which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added
in the future. The param parameter is the address of the parameter for the callback. This
function should be implemented with care since it will be called in the interrupt host thread,
which is different from the main thread of its caller.

The application registers the lsi_event_callback and a NULL parameter to the link status inter-
rupt event on each port:

rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure() function and before
calling any other function. If lsc is initialized with 0, the callback is never called since no interrupt
event would ever be present.

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
struct mbuf_table tx_mbufs[LSI_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop (see Re-
ceive, Process and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {

.pthresh = RX_PTHRESH,

.hthresh = RX_HTHRESH,

.wthresh = RX_WTHRESH,
},

};

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

7.21. Link Status Interrupt Sample Application 400

DPDK documentation, Release 16.04.0

/* init one TX queue logical core on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */

};

Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
* Read packet from RX queues

*/

for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
port_statistics[portid].rx += nb_rx;

for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
lsi_simple_forward(m, portid);

}
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes
the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function. The processing
is very simple: processes the TX port from the RX port and then replaces the source and
destination MAC addresses.

Note: In the following code, the two lines for calculating the output port require some expla-
nation. If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line
adds 1. If portId is odd, the first line subtracts one and the second line does nothing. Therefore,
0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct ether_hdr *eth;
void *tmp;
unsigned dst_port = lsi_dst_ports[portid];

7.21. Link Status Interrupt Sample Application 401

DPDK documentation, Release 16.04.0

eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);

/* src addr */
ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);

lsi_send_packet(m, dst_port);
}

Then, the packet is sent using the lsi_send_packet(m, dst_port) function. For this test applica-
tion, the processing is exactly the same for all packets arriving on the same RX port. Therefore,
it would have been possible to call the lsi_send_burst() function directly from the main loop to
send all the received packets on the same TX port using the burst-oriented send function,
which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that so the same
approach can be reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. If the table
is full, the whole packets table is transmitted using the lsi_send_burst() function:

/* Send the packet on an output interface */

static int
lsi_send_packet(struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
lsi_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}
qconf->tx_mbufs[port].len = len;

return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue
in its main loop. This technique introduces some latency when there are not many packets to
send. However, it improves performance:

cur_tsc = rte_rdtsc();

/*
* TX burst queue drain

*/

7.21. Link Status Interrupt Sample Application 402

DPDK documentation, Release 16.04.0

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
/* this could be optimized (use queueid instead of * portid), but it is not called so often */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)

continue;

lsi_send_burst(&lcore_queue_conf[lcore_id],
qconf->tx_mbufs[portid].len, (uint8_t) portid);
qconf->tx_mbufs[portid].len = 0;

}

/* if timer is enabled */

if (timer_period > 0) {
/* advance the timer */

timer_tsc += diff_tsc;

/* if timer has reached its timeout */

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/* reset the timer */
timer_tsc = 0;

}
}

}
prev_tsc = cur_tsc;

}

7.22 Load Balancer Sample Application

The Load Balancer sample application demonstrates the concept of isolating the packet I/O
task from the application-specific workload. Depending on the performance target, a number
of logical cores (lcores) are dedicated to handle the interaction with the NIC ports (I/O lcores),
while the rest of the lcores are dedicated to performing the application processing (worker
lcores). The worker lcores are totally oblivious to the intricacies of the packet I/O activity and
use the NIC-agnostic interface provided by software rings to exchange packets with the I/O
cores.

7.22.1 Overview

The architecture of the Load Balance application is presented in the following figure.

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX
lcores off loading the packet I/O overhead incurred by four NIC ports from four worker cores,
with each I/O lcore handling RX/TX for two NIC ports.

7.22. Load Balancer Sample Application 403

DPDK documentation, Release 16.04.0

Fig. 7.10: Load Balancer Application Architecture

I/O RX Logical Cores

Each I/O RX lcore performs packet RX from its assigned NIC RX rings and then distributes
the received packets to the worker threads. The application allows each I/O RX lcore to com-
municate with any of the worker threads, therefore each (I/O RX lcore, worker lcore) pair is
connected through a dedicated single producer - single consumer software ring.

The worker lcore to handle the current packet is determined by reading a predefined 1-byte
field from the input packet:

worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the same value
for the load balancing field, this scheme also ensures that all the packets that are part of the
same traffic flow are directed to the same worker lcore (flow affinity) in the same order they
enter the system (packet ordering).

I/O TX Logical Cores

Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each worker
thread to send packets to any NIC TX port, the application creates a software ring for each
(worker lcore, NIC TX port) pair, with each I/O TX core handling those software rings that are
associated with NIC ports that it handles.

Worker Logical Cores

Each worker lcore reads packets from its set of input software rings and routes them to the NIC
ports for transmission by dispatching them to output software rings. The routing logic is LPM
based, with all the worker threads sharing the same LPM rules.

7.22. Load Balancer Sample Application 404

DPDK documentation, Release 16.04.0

7.22.2 Compiling the Application

The sequence of steps used to build the application is:

1. Export the required environment variables:

export RTE_SDK=<Path to the DPDK installation folder>
export RTE_TARGET=x86_64-native-linuxapp-gcc

2. Build the application executable file:

cd ${RTE_SDK}/examples/load_balancer
make

For more details on how to build the DPDK libraries and sample applications, please refer
to the DPDK Getting Started Guide.

7.22.3 Running the Application

To successfully run the application, the command line used to start the application has to be in
sync with the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the
DPDK Test Report. For more details on how to set up and run the sample applications provided
with DPDK package, please refer to the DPDK Getting Started Guide.

7.22.4 Explanation

Application Configuration

The application run-time configuration is done through the application command line param-
eters. Any parameter that is not specified as mandatory is optional, with the default value
hard-coded in the main.h header file from the application folder.

The list of application command line parameters is listed below:

1. –rx “(PORT, QUEUE, LCORE), ...”: The list of NIC RX ports and queues handled by the
I/O RX lcores. This parameter also implicitly defines the list of I/O RX lcores. This is a
mandatory parameter.

2. –tx “(PORT, LCORE), ... ”: The list of NIC TX ports handled by the I/O TX lcores. This
parameter also implicitly defines the list of I/O TX lcores. This is a mandatory parameter.

3. –w “LCORE, ...”: The list of the worker lcores. This is a mandatory parameter.

4. –lpm “IP / PREFIX => PORT; ...”: The list of LPM rules used by the worker lcores for
packet forwarding. This is a mandatory parameter.

5. –rsz “A, B, C, D”: Ring sizes:

(a) A = The size (in number of buffer descriptors) of each of the NIC RX rings read by
the I/O RX lcores.

(b) B = The size (in number of elements) of each of the software rings used by the I/O
RX lcores to send packets to worker lcores.

(c) C = The size (in number of elements) of each of the software rings used by the
worker lcores to send packets to I/O TX lcores.

7.22. Load Balancer Sample Application 405

DPDK documentation, Release 16.04.0

(d) D = The size (in number of buffer descriptors) of each of the NIC TX rings written by
I/O TX lcores.

6. –bsz “(A, B), (C, D), (E, F)”: Burst sizes:

(a) A = The I/O RX lcore read burst size from NIC RX.

(b) B = The I/O RX lcore write burst size to the output software rings.

(c) C = The worker lcore read burst size from the input software rings.

(d) D = The worker lcore write burst size to the output software rings.

(e) E = The I/O TX lcore read burst size from the input software rings.

(f) F = The I/O TX lcore write burst size to the NIC TX.

7. –pos-lb POS: The position of the 1-byte field within the input packet used by the I/O RX
lcores to identify the worker lcore for the current packet. This field needs to be within the
first 64 bytes of the input packet.

The infrastructure of software rings connecting I/O lcores and worker lcores is built by the appli-
cation as a result of the application configuration provided by the user through the application
command line parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the
I/O TX role for the same or a different set of NIC ports. A specific lcore cannot perform both
the I/O role (either RX or TX) and the worker role during the same session.

Example:

./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29

There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1)
that handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that are assigned worker
IDs 0 to 3 (worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2 and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP
address of the current packet is A.B.C.D, the worker lcore for the current packet is determined
by byte D (which is byte 29). There are two LPM rules that are used by each worker lcore to
route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible traffic
flows:

Flow
#

Source IP
Address

Destination IP
Address

Worker ID (Worker
lcore)

Output NIC
Port

1 0.0.0.0 1.0.0.1 0 (4) 0
2 0.0.0.1 1.0.1.2 1 (5) 1
3 0.0.0.14 1.0.0.3 2 (6) 0
4 0.0.0.15 1.0.1.4 3 (7) 1

NUMA Support

The application has built-in performance enhancements for the NUMA case:

1. One buffer pool per each CPU socket.

2. One LPM table per each CPU socket.

7.22. Load Balancer Sample Application 406

DPDK documentation, Release 16.04.0

3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore han-
dling the respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to enable
at least one lcore to fulfill the I/O role for the NIC ports that are directly attached to that CPU
socket through the PCI Express* bus. It is always recommended to handle the packet I/O with
lcores from the same CPU socket as the NICs.

Depending on whether the I/O RX lcore (same CPU socket as NIC RX), the worker lcore and
the I/O TX lcore (same CPU socket as NIC TX) handling a specific input packet, are on the
same or different CPU sockets, the following run-time scenarios are possible:

1. AAA: The packet is received, processed and transmitted without going across CPU sock-
ets.

2. AAB: The packet is received and processed on socket A, but as it has to be transmitted
on a NIC port connected to socket B, the packet is sent to socket B through software
rings.

3. ABB: The packet is received on socket A, but as it has to be processed by a worker
lcore on socket B, the packet is sent to socket B through software rings. The packet is
transmitted by a NIC port connected to the same CPU socket as the worker lcore that
processed it.

4. ABC: The packet is received on socket A, it is processed by an lcore on socket B, then
it has to be transmitted out by a NIC connected to socket C. The performance price for
crossing the CPU socket boundary is paid twice for this packet.

7.23 Multi-process Sample Application

This chapter describes the example applications for multi-processing that are included in the
DPDK.

7.23.1 Example Applications

Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications,
and as documented in the DPDK Getting Started Guide. To build all the example applications:

1. Set RTE_SDK and go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/multi_process

2. Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the applications:

make

7.23. Multi-process Sample Application 407

DPDK documentation, Release 16.04.0

Note: If just a specific multi-process application needs to be built, the final make command
can be run just in that application’s directory, rather than at the top-level multi-process directory.

Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to
demonstrate how two DPDK processes can work together using queues and memory pools to
share information.

Running the Application

To run the application, start one copy of the simple_mp binary in one terminal, passing at least
two cores in the coremask, as follows:

./build/simple_mp -c 3 -n 4 --proc-type=primary

For the first DPDK process run, the proc-type flag can be omitted or set to auto, since all
DPDK processes will default to being a primary instance, meaning they have control over
the hugepage shared memory regions. The process should start successfully and display a
command prompt as follows:

$./build/simple_mp -c 3 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 0
...

EAL: Requesting 2 pages of size 1073741824
EAL: Requesting 768 pages of size 2097152
EAL: Ask a virtual area of 0x40000000 bytes
EAL: Virtual area found at 0x7ff200000000 (size = 0x40000000)
...

EAL: check igb_uio module
EAL: check module finished
EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)

Starting core 1

simple_mp >

To run the secondary process to communicate with the primary process, again run the same
binary setting at least two cores in the coremask:

./build/simple_mp -c C -n 4 --proc-type=secondary

When running a secondary process such as that shown above, the proc-type parameter can
again be specified as auto. However, omitting the parameter altogether will cause the process
to try and start as a primary rather than secondary process.

Once the process type is specified correctly, the process starts up, displaying largely similar
status messages to the primary instance as it initializes. Once again, you will be presented
with a command prompt.

7.23. Multi-process Sample Application 408

DPDK documentation, Release 16.04.0

Once both processes are running, messages can be sent between them using the send com-
mand. At any stage, either process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5f89820) EAL: Master core 8 is ready (tid=864a3820)
EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready (tid=85995700)
Starting core 11 Starting core 9
simple_mp > send hello_secondary simple_mp > core 9: Received 'hello_secondary'
simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primary
simple_mp > quit simple_mp > quit

Note: If the primary instance is terminated, the secondary instance must also be shut-down
and restarted after the primary. This is necessary because the primary instance will clear and
reset the shared memory regions on startup, invalidating the secondary process’s pointers.
The secondary process can be stopped and restarted without affecting the primary process.

How the Application Works

The core of this example application is based on using two queues and a single memory pool
in shared memory. These three objects are created at startup by the primary process, since
the secondary process cannot create objects in memory as it cannot reserve memory zones,
and the secondary process then uses lookup functions to attach to these objects as it starts
up.

if (rte_eal_process_type() == RTE_PROC_PRIMARY){
send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);
recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);
message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data_sz, NULL, NULL, NULL, NULL, SOCKET0, flags);

} else {
recv_ring = rte_ring_lookup(_PRI_2_SEC);
send_ring = rte_ring_lookup(_SEC_2_PRI);
message_pool = rte_mempool_lookup(_MSG_POOL);

}

Note, however, that the named ring structure used as send_ring in the primary process is the
recv_ring in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary pro-
cesses, the application simply dedicates two threads to sending and receiving messages re-
spectively. The receive thread simply dequeues any messages on the receive ring, prints them,
and frees the buffer space used by the messages back to the memory pool. The send thread
makes use of the command-prompt library to interactively request user input for messages to
send. Once a send command is issued by the user, a buffer is allocated from the memory pool,
filled in with the message contents, then enqueued on the appropriate rte_ring.

Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can
run in parallel, with each process performing the same set of packet- processing operations.
(Since each process is identical in functionality to the others, we refer to this as symmetric
multi-processing, to differentiate it from asymmetric multi- processing - such as a client-server
mode of operation seen in the next example, where different processes perform different tasks,
yet co-operate to form a packet-processing system.) The following diagram shows the data-
flow through the application, using two processes.

7.23. Multi-process Sample Application 409

DPDK documentation, Release 16.04.0

Fig. 7.11: Example Data Flow in a Symmetric Multi-process Application

7.23. Multi-process Sample Application 410

DPDK documentation, Release 16.04.0

As the diagram shows, each process reads packets from each of the network ports in use.
RSS is used to distribute incoming packets on each port to different hardware RX queues.
Each process reads a different RX queue on each port and so does not contend with any other
process for that queue access. Similarly, each process writes outgoing packets to a different
TX queue on each port.

Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run
as the primary instance, though with a number of other application- specific parameters also
provided after the EAL arguments. These additional parameters are:

• -p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system
are to be used. For example: -p 3 to use ports 0 and 1 only.

• –num-procs <N>, where N is the total number of symmetric_mp instances that will be
run side-by-side to perform packet processing. This parameter is used to configure the
appropriate number of receive queues on each network port.

• –proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes,
specified above). This identifies which symmetric_mp instance is being run, so that each
process can read a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified, and the
first two must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4, all performing
level-2 forwarding of packets between ports 0 and 1, the following commands can be used
(assuming run as root):

./build/symmetric_mp -c 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
./build/symmetric_mp -c 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
./build/symmetric_mp -c 8 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
./build/symmetric_mp -c 10 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3

Note: In the above example, the process type can be explicitly specified as primary or sec-
ondary, rather than auto. When using auto, the first process run creates all the memory struc-
tures needed for all processes - irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note: For the symmetric multi-process example, since all processes work in the same manner,
once the hugepage shared memory and the network ports are initialized, it is not necessary
to restart all processes if the primary instance dies. Instead, that process can be restarted
as a secondary, by explicitly setting the proc-type to secondary on the command line. (All
subsequent instances launched will also need this explicitly specified, as auto-detection will
detect no primary processes running and therefore attempt to re-initialize shared memory.)

How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most
part, calling the rte_eal_init(), 1 G and 10 G driver initialization and then rte_eal_pci_probe()

7.23. Multi-process Sample Application 411

DPDK documentation, Release 16.04.0

functions. Thereafter, the initialization done depends on whether the process is configured as
a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports
to be used are initialized - the number of RX and TX queues per port being determined by the
num-procs parameter passed on the command-line. The structures for the initialized network
ports are stored in shared memory and therefore will be accessible by the secondary process
as it initializes.

if (num_ports & 1)
rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i < num_ports; i++){
if(proc_type == RTE_PROC_PRIMARY)

if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)
rte_exit(EXIT_FAILURE, "Error initializing ports\n");

}

In the secondary instance, rather than initializing the network ports, the port information ex-
ported by the primary process is used, giving the secondary process access to the hardware
and software rings for each network port. Similarly, the memory pool of mbufs is accessed by
doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_create(_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)

Once this initialization is complete, the main loop of each process, both primary and secondary,
is exactly the same - each process reads from each port using the queue corresponding to its
proc-id parameter, and writes to the corresponding transmit queue on the output port.

Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can use
a client-server type multi-process design to do packet processing. In this example, a single
server process performs the packet reception from the ports being used and distributes these
packets using round-robin ordering among a set of client processes, which perform the ac-
tual packet processing. In this case, the client applications just perform level-2 forwarding of
packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

Running the Application

The server process must be run initially as the primary process to set up all memory structures
for use by the clients. In addition to the EAL parameters, the application- specific parameters
are:

• -p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system
are to be used. For example: -p 3 to use ports 0 and 1 only.

• -n <num-clients>, where the num-clients parameter is the number of client processes that
will process the packets received by the server application.

Note: In the server process, a single thread, the master thread, that is, the lowest numbered
lcore in the coremask, performs all packet I/O. If a coremask is specified with more than a

7.23. Multi-process Sample Application 412

DPDK documentation, Release 16.04.0

Fig. 7.12: Example Data Flow in a Client-Server Symmetric Multi-process Application

single lcore bit set in it, an additional lcore will be used for a thread to periodically print packet
count statistics.

Since the server application stores configuration data in shared memory, including the network
ports to be used, the only application parameter needed by a client process is its client instance
ID. Therefore, to run a server application on lcore 1 (with lcore 2 printing statistics) along with
two client processes running on lcores 3 and 4, the following commands could be used:

./mp_server/build/mp_server -c 6 -n 4 -- -p 3 -n 2
./mp_client/build/mp_client -c 8 -n 4 --proc-type=auto -- -n 0
./mp_client/build/mp_client -c 10 -n 4 --proc-type=auto -- -n 1

Note: If the server application dies and needs to be restarted, all client applications also need
to be restarted, as there is no support in the server application for it to run as a secondary
process. Any client processes that need restarting can be restarted without affecting the server
process.

How the Application Works

The server process performs the network port and data structure initialization much as the
symmetric multi-process application does when run as primary. One additional enhancement
in this sample application is that the server process stores its port configuration data in a
memory zone in hugepage shared memory. This eliminates the need for the client processes
to have the portmask parameter passed into them on the command line, as is done for the
symmetric multi-process application, and therefore eliminates mismatched parameters as a
potential source of errors.

In the same way that the server process is designed to be run as a primary process instance
only, the client processes are designed to be run as secondary instances only. They have

7.23. Multi-process Sample Application 413

DPDK documentation, Release 16.04.0

no code to attempt to create shared memory objects. Instead, handles to all needed rings
and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup(). The
network ports for use by the processes are obtained by loading the network port drivers and
probing the PCI bus, which will, as in the symmetric multi-process example, automatically
get access to the network ports using the settings already configured by the primary/server
process.

Once all applications are initialized, the server operates by reading packets from each network
port in turn and distributing those packets to the client queues (software rings, one for each
client process) in round-robin order. On the client side, the packets are read from the rings in
as big of bursts as possible, then routed out to a different network port. The routing used is
very simple. All packets received on the first NIC port are transmitted back out on the second
port and vice versa. Similarly, packets are routed between the 3rd and 4th network ports and
so on. The sending of packets is done by writing the packets directly to the network ports; they
are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent, so
as to allow the sending of multiple packets in a single burst to improve efficiency. For example,
the client process will buffer packets to send, until either the buffer is full or until we receive no
further packets from the server.

Master-slave Multi-process Example

The fourth example of DPDK multi-process support demonstrates a master-slave model that
provide the capability of application recovery if a slave process crashes or meets unexpected
conditions. In addition, it also demonstrates the floating process, which can run among different
cores in contrast to the traditional way of binding a process/thread to a specific CPU core, using
the local cache mechanism of mempool structures.

This application performs the same functionality as the L2 Forwarding sample application,
therefore this chapter does not cover that part but describes functionality that is introduced in
this multi-process example only. Please refer to L2 Forwarding Sample Application (in Real
and Virtualized Environments) for more information.

Unlike previous examples where all processes are started from the command line with input
arguments, in this example, only one process is spawned from the command line and that
process creates other processes. The following section describes this in more detail.

Master-slave Process Models

The process spawned from the command line is called the master process in this document. A
process created by the master is called a slave process. The application has only one master
process, but could have multiple slave processes.

Once the master process begins to run, it tries to initialize all the resources such as memory,
CPU cores, driver, ports, and so on, as the other examples do. Thereafter, it creates slave
processes, as shown in the following figure.

The master process calls the rte_eal_mp_remote_launch() EAL function to launch an appli-
cation function for each pinned thread through the pipe. Then, it waits to check if any slave
processes have exited. If so, the process tries to re-initialize the resources that belong to that
slave and launch them in the pinned thread entry again. The following section describes the
recovery procedures in more detail.

7.23. Multi-process Sample Application 414

DPDK documentation, Release 16.04.0

Fig. 7.13: Master-slave Process Workflow

For each pinned thread in EAL, after reading any data from the pipe, it tries to call the function
that the application specified. In this master specified function, a fork() call creates a slave
process that performs the L2 forwarding task. Then, the function waits until the slave exits, is
killed or crashes. Thereafter, it notifies the master of this event and returns. Finally, the EAL
pinned thread waits until the new function is launched.

After discussing the master-slave model, it is necessary to mention another issue, global and
static variables.

For multiple-thread cases, all global and static variables have only one copy and they can be
accessed by any thread if applicable. So, they can be used to sync or share data among
threads.

In the previous examples, each process has separate global and static variables in memory and
are independent of each other. If it is necessary to share the knowledge, some communication
mechanism should be deployed, such as, memzone, ring, shared memory, and so on. The
global or static variables are not a valid approach to share data among processes. For variables
in this example, on the one hand, the slave process inherits all the knowledge of these variables
after being created by the master. On the other hand, other processes cannot know if one or
more processes modifies them after slave creation since that is the nature of a multiple process
address space. But this does not mean that these variables cannot be used to share or sync
data; it depends on the use case. The following are the possible use cases:

1. The master process starts and initializes a variable and it will never be changed after
slave processes created. This case is OK.

2. After the slave processes are created, the master or slave cores need to change a vari-
able, but other processes do not need to know the change. This case is also OK.

3. After the slave processes are created, the master or a slave needs to change a variable.
In the meantime, one or more other process needs to be aware of the change. In this
case, global and static variables cannot be used to share knowledge. Another communi-

7.23. Multi-process Sample Application 415

DPDK documentation, Release 16.04.0

cation mechanism is needed. A simple approach without lock protection can be a heap
buffer allocated by rte_malloc or mem zone.

Slave Process Recovery Mechanism

Before talking about the recovery mechanism, it is necessary to know what is needed before a
new slave instance can run if a previous one exited.

When a slave process exits, the system returns all the resources allocated for this process
automatically. However, this does not include the resources that were allocated by the DPDK.
All the hardware resources are shared among the processes, which include memzone, mem-
pool, ring, a heap buffer allocated by the rte_malloc library, and so on. If the new instance runs
and the allocated resource is not returned, either resource allocation failed or the hardware
resource is lost forever.

When a slave process runs, it may have dependencies on other processes. They could have
execution sequence orders; they could share the ring to communicate; they could share the
same port for reception and forwarding; they could use lock structures to do exclusive access
in some critical path. What happens to the dependent process(es) if the peer leaves? The
consequence are varied since the dependency cases are complex. It depends on what the
processed had shared. However, it is necessary to notify the peer(s) if one slave exited. Then,
the peer(s) will be aware of that and wait until the new instance begins to run.

Therefore, to provide the capability to resume the new slave instance if the previous one exited,
it is necessary to provide several mechanisms:

1. Keep a resource list for each slave process. Before a slave process run, the master
should prepare a resource list. After it exits, the master could either delete the allocated
resources and create new ones, or re-initialize those for use by the new instance.

2. Set up a notification mechanism for slave process exit cases. After the specific slave
leaves, the master should be notified and then help to create a new instance. This mech-
anism is provided in Section Master-slave Process Models.

3. Use a synchronization mechanism among dependent processes. The master should
have the capability to stop or kill slave processes that have a dependency on the one
that has exited. Then, after the new instance of exited slave process begins to run,
the dependency ones could resume or run from the start. The example sends a STOP
command to slave processes dependent on the exited one, then they will exit. Thereafter,
the master creates new instances for the exited slave processes.

The following diagram describes slave process recovery.

Floating Process Support

When the DPDK application runs, there is always a -c option passed in to indicate the cores
that are enabled. Then, the DPDK creates a thread for each enabled core. By doing so, it
creates a 1:1 mapping between the enabled core and each thread. The enabled core always
has an ID, therefore, each thread has a unique core ID in the DPDK execution environment.
With the ID, each thread can easily access the structures or resources exclusively belonging
to it without using function parameter passing. It can easily use the rte_lcore_id() function to
get the value in every function that is called.

7.23. Multi-process Sample Application 416

DPDK documentation, Release 16.04.0

Fig. 7.14: Slave Process Recovery Process Flow

For threads/processes not created in that way, either pinned to a core or not, they will not own a
unique ID and the rte_lcore_id() function will not work in the correct way. However, sometimes
these threads/processes still need the unique ID mechanism to do easy access on structures
or resources. For example, the DPDK mempool library provides a local cache mechanism
(refer to Local Cache) for fast element allocation and freeing. If using a non-unique ID or a
fake one, a race condition occurs if two or more threads/ processes with the same core ID try
to use the local cache.

Therefore, unused core IDs from the passing of parameters with the -c option are used to
organize the core ID allocation array. Once the floating process is spawned, it tries to allocate
a unique core ID from the array and release it on exit.

A natural way to spawn a floating process is to use the fork() function and allocate a unique
core ID from the unused core ID array. However, it is necessary to write new code to provide
a notification mechanism for slave exit and make sure the process recovery mechanism can
work with it.

To avoid producing redundant code, the Master-Slave process model is still used to spawn
floating processes, then cancel the affinity to specific cores. Besides that, clear the core ID as-
signed to the DPDK spawning a thread that has a 1:1 mapping with the core mask. Thereafter,
get a new core ID from the unused core ID allocation array.

Run the Application

This example has a command line similar to the L2 Forwarding sample application with a few
differences.

To run the application, start one copy of the l2fwd_fork binary in one terminal. Unlike the L2
Forwarding example, this example requires at least three cores since the master process will
wait and be accountable for slave process recovery. The command is as follows:

#./build/l2fwd_fork -c 1c -n 4 -- -p 3 -f

This example provides another -f option to specify the use of floating process. If not specified,
the example will use a pinned process to perform the L2 forwarding task.

To verify the recovery mechanism, proceed as follows: First, check the PID of the slave pro-
cesses:

#ps -fe | grep l2fwd_fork
root 5136 4843 29 11:11 pts/1 00:00:05 ./build/l2fwd_fork

7.23. Multi-process Sample Application 417

DPDK documentation, Release 16.04.0

root 5145 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork
root 5146 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork

Then, kill one of the slaves:

#kill -9 5145

After 1 or 2 seconds, check whether the slave has resumed:

#ps -fe | grep l2fwd_fork
root 5136 4843 3 11:11 pts/1 00:00:06 ./build/l2fwd_fork
root 5247 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork
root 5248 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork

It can also monitor the traffic generator statics to see whether slave processes have resumed.

Explanation

As described in previous sections, not all global and static variables need to change to be
accessible in multiple processes; it depends on how they are used. In this example, the statics
info on packets dropped/forwarded/received count needs to be updated by the slave process,
and the master needs to see the update and print them out. So, it needs to allocate a heap
buffer using rte_zmalloc. In addition, if the -f option is specified, an array is needed to store
the allocated core ID for the floating process so that the master can return it after a slave has
exited accidentally.

static int
l2fwd_malloc_shared_struct(void)
{

port_statistics = rte_zmalloc("port_stat", sizeof(struct l2fwd_port_statistics) * RTE_MAX_ETHPORTS, 0);

if (port_statistics == NULL)
return -1;

/* allocate mapping_id array */

if (float_proc) {
int i;

mapping_id = rte_malloc("mapping_id", sizeof(unsigned) * RTE_MAX_LCORE, 0);
if (mapping_id == NULL)

return -1;

for (i = 0 ;i < RTE_MAX_LCORE; i++)
mapping_id[i] = INVALID_MAPPING_ID;

}
return 0;

}

For each slave process, packets are received from one port and forwarded to another port
that another slave is operating on. If the other slave exits accidentally, the port it is operating
on may not work normally, so the first slave cannot forward packets to that port. There is a
dependency on the port in this case. So, the master should recognize the dependency. The
following is the code to detect this dependency:

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

7.23. Multi-process Sample Application 418

DPDK documentation, Release 16.04.0

/* Find pair ports' lcores */

find_lcore = find_pair_lcore = 0;
pair_port = l2fwd_dst_ports[portid];

for (i = 0; i < RTE_MAX_LCORE; i++) {
if (!rte_lcore_is_enabled(i))

continue;

for (j = 0; j < lcore_queue_conf[i].n_rx_port;j++) {
if (lcore_queue_conf[i].rx_port_list[j] == portid) {

lcore = i;
find_lcore = 1;
break;

}

if (lcore_queue_conf[i].rx_port_list[j] == pair_port) {
pair_lcore = i;
find_pair_lcore = 1;
break;

}
}

if (find_lcore && find_pair_lcore)
break;

}

if (!find_lcore || !find_pair_lcore)
rte_exit(EXIT_FAILURE, "Not find port=%d pair\\n", portid);

printf("lcore %u and %u paired\\n", lcore, pair_lcore);

lcore_resource[lcore].pair_id = pair_lcore;
lcore_resource[pair_lcore].pair_id = lcore;

}

Before launching the slave process, it is necessary to set up the communication channel be-
tween the master and slave so that the master can notify the slave if its peer process with the
dependency exited. In addition, the master needs to register a callback function in the case
where a specific slave exited.

for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_resource[i].enabled) {

/* Create ring for master and slave communication */

ret = create_ms_ring(i);
if (ret != 0)

rte_exit(EXIT_FAILURE, "Create ring for lcore=%u failed",i);

if (flib_register_slave_exit_notify(i,slave_exit_cb) != 0)
rte_exit(EXIT_FAILURE, "Register master_trace_slave_exit failed");

}
}

After launching the slave process, the master waits and prints out the port statics periodically.
If an event indicating that a slave process exited is detected, it sends the STOP command to
the peer and waits until it has also exited. Then, it tries to clean up the execution environment
and prepare new resources. Finally, the new slave instance is launched.

while (1) {
sleep(1);
cur_tsc = rte_rdtsc();

7.23. Multi-process Sample Application 419

DPDK documentation, Release 16.04.0

diff_tsc = cur_tsc - prev_tsc;

/* if timer is enabled */

if (timer_period > 0) {
/* advance the timer */
timer_tsc += diff_tsc;

/* if timer has reached its timeout */
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {

print_stats();

/* reset the timer */
timer_tsc = 0;

}
}

prev_tsc = cur_tsc;

/* Check any slave need restart or recreate */

rte_spinlock_lock(&res_lock);

for (i = 0; i < RTE_MAX_LCORE; i++) {
struct lcore_resource_struct *res = &lcore_resource[i];
struct lcore_resource_struct *pair = &lcore_resource[res->pair_id];

/* If find slave exited, try to reset pair */

if (res->enabled && res->flags && pair->enabled) {
if (!pair->flags) {

master_sendcmd_with_ack(pair->lcore_id, CMD_STOP);
rte_spinlock_unlock(&res_lock);
sleep(1);
rte_spinlock_lock(&res_lock);
if (pair->flags)

continue;
}

if (reset_pair(res->lcore_id, pair->lcore_id) != 0)
rte_exit(EXIT_FAILURE, "failed to reset slave");

res->flags = 0;
pair->flags = 0;

}
}
rte_spinlock_unlock(&res_lock);

}

When the slave process is spawned and starts to run, it checks whether the floating process
option is applied. If so, it clears the affinity to a specific core and also sets the unique core
ID to 0. Then, it tries to allocate a new core ID. Since the core ID has changed, the resource
allocated by the master cannot work, so it remaps the resource to the new core ID slot.

static int
l2fwd_launch_one_lcore(attribute ((unused)) void *dummy)
{

unsigned lcore_id = rte_lcore_id();

if (float_proc) {
unsigned flcore_id;

/* Change it to floating process, also change it's lcore_id */

7.23. Multi-process Sample Application 420

DPDK documentation, Release 16.04.0

clear_cpu_affinity();

RTE_PER_LCORE(_lcore_id) = 0;

/* Get a lcore_id */

if (flib_assign_lcore_id() < 0) {
printf("flib_assign_lcore_id failed\n");
return -1;

}

flcore_id = rte_lcore_id();

/* Set mapping id, so master can return it after slave exited */

mapping_id[lcore_id] = flcore_id;
printf("Org lcore_id = %u, cur lcore_id = %u\n",lcore_id, flcore_id);
remapping_slave_resource(lcore_id, flcore_id);

}

l2fwd_main_loop();

/* return lcore_id before return */
if (float_proc) {

flib_free_lcore_id(rte_lcore_id());
mapping_id[lcore_id] = INVALID_MAPPING_ID;

}
return 0;

}

7.24 QoS Metering Sample Application

The QoS meter sample application is an example that demonstrates the use of DPDK to pro-
vide QoS marking and metering, as defined by RFC2697 for Single Rate Three Color Marker
(srTCM) and RFC 2698 for Two Rate Three Color Marker (trTCM) algorithm.

7.24.1 Overview

The application uses a single thread for reading the packets from the RX port, metering, mark-
ing them with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or
changing the color of the packet in a static manner depending on both the input and output
colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:

• Simple forwarding

• srTCM color blind

• srTCM color aware

• srTCM color blind

• srTCM color aware

7.24. QoS Metering Sample Application 421

DPDK documentation, Release 16.04.0

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable
parameters (CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when all the
incoming packets are colored as green.

7.24.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/qos_meter

2. Set the target (a default target is used if not specified):

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make

7.24.3 Running the Application

The application execution command line is as below:

./qos_meter [EAL options] -- -p PORTMASK

The application is constrained to use a single core in the EAL core mask and 2 ports only in
the application port mask (first port from the port mask is used for RX and the other port in the
core mask is used for TX).

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

7.24.4 Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0
#define APP_MODE_SRTCM_COLOR_BLIND 1
#define APP_MODE_SRTCM_COLOR_AWARE 2
#define APP_MODE_TRTCM_COLOR_BLIND 3
#define APP_MODE_TRTCM_COLOR_AWARE 4

#define APP_MODE APP_MODE_SRTCM_COLOR_BLIND

To simplify debugging (for example, by using the traffic generator RX side MAC address based
packet filtering feature), the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default
values:

struct rte_meter_srtcm_params app_srtcm_params[] = {

{.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},

7.24. QoS Metering Sample Application 422

DPDK documentation, Release 16.04.0

};

struct rte_meter_trtcm_params app_trtcm_params[] = {

{.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},

};

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames
(IPv4 packet size of 46 bytes) and green, the expected output traffic should be marked as
shown in the following table:

Table 7.1: Output Traffic Marking

Mode Green (Mpps) Yellow (Mpps) Red (Mpps)
srTCM blind 1 1 12.88
srTCM color 1 1 12.88
trTCM blind 1 0.5 13.38
trTCM color 1 0.5 13.38
FWD 14.88 0 0

To set up the policing scheme as desired, it is necessary to modify the main.h source file,
where this policy is implemented as a static structure, as follows:

int policer_table[e_RTE_METER_COLORS][e_RTE_METER_COLORS] =
{

{ GREEN, RED, RED},
{ DROP, YELLOW, RED},
{ DROP, DROP, RED}

};

Where rows indicate the input color, columns indicate the output color, and the value that is
stored in the table indicates the action to be taken for that particular case.

There are four different actions:

• GREEN: The packet’s color is changed to green.

• YELLOW: The packet’s color is changed to yellow.

• RED: The packet’s color is changed to red.

• DROP: The packet is dropped.

In this particular case:

• Every packet which input and output color are the same, keeps the same color.

• Every packet which color has improved is dropped (this particular case can’t happen, so
these values will not be used).

• For the rest of the cases, the color is changed to red.

7.25 QoS Scheduler Sample Application

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

7.25. QoS Scheduler Sample Application 423

DPDK documentation, Release 16.04.0

7.25.1 Overview

The architecture of the QoS scheduler application is shown in the following figure.

Fig. 7.15: QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application, with two or three threads per
each packet flow configuration being used. The RX thread reads packets from the RX port,
classifies the packets based on the double VLAN (outer and inner) and the lower two bytes of
the IP destination address and puts them into the ring queue. The worker thread dequeues the
packets from the ring and calls the QoS scheduler enqueue/dequeue functions. If a separate
TX core is used, these are sent to the TX ring. Otherwise, they are sent directly to the TX port.
The TX thread, if present, reads from the TX ring and write the packets to the TX port.

7.25.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/qos_sched

2. Set the target (a default target is used if not specified). For example:

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make

Note: To get statistics on the sample app using the command line interface as described in the
next section, DPDK must be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS,
which can be done by changing the configuration file for the specific target to be compiled.

7.25. QoS Scheduler Sample Application 424

DPDK documentation, Release 16.04.0

7.25.3 Running the Application

Note: In order to run the application, a total of at least 4 G of huge pages must be set up for
each of the used sockets (depending on the cores in use).

The application has a number of command line options:

./qos_sched [EAL options] -- <APP PARAMS>

Mandatory application parameters include:

• –pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configura-
tion. Multiple pfc entities can be configured in the command line, having 4 or 5 items (if
TX core defined or not).

Optional application parameters include:

• -i: It makes the application to start in the interactive mode. In this mode, the application
shows a command line that can be used for obtaining statistics while scheduling is taking
place (see interactive mode below for more information).

• –mst n: Master core index (the default value is 1).

• –rsz “A, B, C”: Ring sizes:

• A = Size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX
lcores (the default value is 128).

• B = Size (in number of elements) of each of the software rings used by the I/O RX lcores
to send packets to worker lcores (the default value is 8192).

• C = Size (in number of buffer descriptors) of each of the NIC TX rings written by worker
lcores (the default value is 256)

• –bsz “A, B, C, D”: Burst sizes

• A = I/O RX lcore read burst size from the NIC RX (the default value is 64)

• B = I/O RX lcore write burst size to the output software rings, worker lcore read burst size
from input software rings,QoS enqueue size (the default value is 64)

• C = QoS dequeue size (the default value is 32)

• D = Worker lcore write burst size to the NIC TX (the default value is 64)

• –msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)

• –rth “A, B, C”: The RX queue threshold parameters

• A = RX prefetch threshold (the default value is 8)

• B = RX host threshold (the default value is 8)

• C = RX write-back threshold (the default value is 4)

• –tth “A, B, C”: TX queue threshold parameters

• A = TX prefetch threshold (the default value is 36)

• B = TX host threshold (the default value is 0)

• C = TX write-back threshold (the default value is 0)

7.25. QoS Scheduler Sample Application 425

DPDK documentation, Release 16.04.0

• –cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters
needed for the QoS scheduler configuration.

The profile file has the following format:

; port configuration [port]

frame overhead = 24
number of subports per port = 1
number of pipes per subport = 4096
queue sizes = 64 64 64 64

; Subport configuration

[subport 0]
tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 1250000000; Bytes per second
tc 1 rate = 1250000000; Bytes per second
tc 2 rate = 1250000000; Bytes per second
tc 3 rate = 1250000000; Bytes per second
tc period = 10; Milliseconds
tc oversubscription period = 10; Milliseconds

pipe 0-4095 = 0; These pipes are configured with pipe profile 0

; Pipe configuration

[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc period = 40; Milliseconds

tc 0 oversubscription weight = 1
tc 1 oversubscription weight = 1
tc 2 oversubscription weight = 1
tc 3 oversubscription weight = 1

tc 0 wrr weights = 1 1 1 1
tc 1 wrr weights = 1 1 1 1
tc 2 wrr weights = 1 1 1 1
tc 3 wrr weights = 1 1 1 1

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 48 40 32
tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 48 40 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 10 10

7.25. QoS Scheduler Sample Application 426

DPDK documentation, Release 16.04.0

tc 1 wred weight = 9 9 9

tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

Interactive mode

These are the commands that are currently working under the command line interface:

• Control Commands

• –quit: Quits the application.

• General Statistics

– stats app: Shows a table with in-app calculated statistics.

– stats port X subport Y: For a specific subport, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes. The information is displayed in a table
separating it in different traffic classes.

– stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes. This information is displayed in a table
separating it in individual queues.

• Average queue size

All of these commands work the same way, averaging the number of packets throughout a
specific subset of queues.

Two parameters can be configured for this prior to calling any of these commands:

• qavg n X: n is the number of times that the calculation will take place. Bigger numbers
provide higher accuracy. The default value is 10.

• qavg period X: period is the number of microseconds that will be allowed between each
calculation. The default value is 100.

The commands that can be used for measuring average queue size are:

• qavg port X subport Y: Show average queue size per subport.

• qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic
class.

• qavg port X subport Y pipe Z: Show average queue size per pipe.

• qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic
class.

• qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

7.25. QoS Scheduler Sample Application 427

DPDK documentation, Release 16.04.0

Example

The following is an example command with a single packet flow configuration:

./qos_sched -c a2 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg

This example uses a single packet flow configuration which creates one RX thread on lcore 5
reading from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same
core for QoS scheduler is given below:

./qos_sched -c c6 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg

Note that independent cores for the packet flow configurations for each of the RX, WT and TX
thread are also supported, providing flexibility to balance the work.

The EAL coremask is constrained to contain the default mastercore 1 and the RX, WT and TX
cores only.

7.25.4 Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS appli-
cation:

• A subport represents a predefined group of users.

• A pipe represents an individual user/subscriber.

• A traffic class is the representation of a different traffic type with a specific loss rate, delay
and jitter requirements; such as data voice, video or data transfers.

• A queue hosts packets from one or multiple connections of the same type belonging to
the same user.

The traffic flows that need to be configured are application dependent. This application classi-
fies based on the QinQ double VLAN tags and the IP destination address as indicated in the
following table.

Table 7.2: Entity Types

Level Name Siblings per Parent QoS Functional De-
scription

Selected By

Port • Ethernet port Physical port

Subport Config (8) Traffic shaped (token
bucket)

Outer VLAN tag

Pipe Config (4k) Traffic shaped (token
bucket)

Inner VLAN tag

Traffic Class 4 TCs of the same pipe
services in strict prior-
ity

Destination IP ad-
dress (0.0.X.0)

Queue 4 Queue of the same
TC serviced in WRR

Destination IP ad-
dress (0.0.0.X)

Please refer to the “QoS Scheduler” chapter in the DPDK Programmer’s Guide for more infor-
mation about these parameters.

7.25. QoS Scheduler Sample Application 428

DPDK documentation, Release 16.04.0

7.26 Intel® QuickAssist Technology Sample Application

This sample application demonstrates the use of the cryptographic operations provided by
the Intel® QuickAssist Technology from within the DPDK environment. Therefore, building
and running this application requires having both the DPDK and the QuickAssist Technology
Software Library installed, as well as at least one Intel® QuickAssist Technology hardware
device present in the system.

For this sample application, there is a dependency on either of:

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* package

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* package

7.26.1 Overview

An overview of the application is provided in Fig. 7.16. For simplicity, only two NIC ports and
one Intel® QuickAssist Technology device are shown in this diagram, although the number of
NIC ports and Intel® QuickAssist Technology devices can be different.

Fig. 7.16: Intel® QuickAssist Technology Application Block Diagram

The application allows the configuration of the following items:

• Number of NIC ports

• Number of logical cores (lcores)

• Mapping of NIC RX queues to logical cores

Each lcore communicates with every cryptographic acceleration engine in the system through
a pair of dedicated input - output queues. Each lcore has a dedicated NIC TX queue with
every NIC port in the system. Therefore, each lcore reads packets from its NIC RX queues
and cryptographic accelerator output queues and writes packets to its NIC TX queues and
cryptographic accelerator input queues.

7.26. Intel® QuickAssist Technology Sample Application 429

DPDK documentation, Release 16.04.0

Each incoming packet that is read from a NIC RX queue is either directly forwarded to its des-
tination NIC TX port (forwarding path) or first sent to one of the Intel® QuickAssist Technology
devices for either encryption or decryption before being sent out on its destination NIC TX port
(cryptographic path).

The application supports IPv4 input packets only. For each input packet, the decision between
the forwarding path and the cryptographic path is taken at the classification stage based on the
value of the IP source address field read from the input packet. Assuming that the IP source
address is A.B.C.D, then if:

• D = 0: the forwarding path is selected (the packet is forwarded out directly)

• D = 1: the cryptographic path for encryption is selected (the packet is first encrypted and
then forwarded out)

• D = 2: the cryptographic path for decryption is selected (the packet is first decrypted and
then forwarded out)

For the cryptographic path cases (D = 1 or D = 2), byte C specifies the cipher algorithm and byte
B the cryptographic hash algorithm to be used for the current packet. Byte A is not used and
can be any value. The cipher and cryptographic hash algorithms supported by this application
are listed in the crypto.h header file.

For each input packet, the destination NIC TX port is decided at the forwarding stage (executed
after the cryptographic stage, if enabled for the packet) by looking at the RX port index of the
dst_ports[] array, which was initialized at startup, being the outport the adjacent enabled port.
For example, if ports 1,3,5 and 6 are enabled, for input port 1, outport port will be 3 and vice
versa, and for input port 5, output port will be 6 and vice versa.

For the cryptographic path, it is the payload of the IPv4 packet that is encrypted or decrypted.

Setup

Building and running this application requires having both the DPDK package and the Quick-
Assist Technology Software Library installed, as well as at least one Intel® QuickAssist Tech-
nology hardware device present in the system.

For more details on how to build and run DPDK and Intel® QuickAssist Technology applica-
tions, please refer to the following documents:

• DPDK Getting Started Guide

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started
Guide (440005)

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started
Guide (523128)

For more details on the actual platforms used to validate this application, as well as perfor-
mance numbers, please refer to the Test Report, which is accessible by contacting your Intel
representative.

7.26.2 Building the Application

Steps to build the application:

7.26. Intel® QuickAssist Technology Sample Application 430

DPDK documentation, Release 16.04.0

1. Set up the following environment variables:

export RTE_SDK=<Absolute path to the DPDK installation folder>
export ICP_ROOT=<Absolute path to the Intel QAT installation folder>

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

cd ${RTE_SDK}/examples/dpdk_qat
make

7.26.3 Running the Application

Intel® QuickAssist Technology Configuration Files

The Intel® QuickAssist Technology configuration files used by the application are located in
the config_files folder in the application folder. There following sets of configuration files are
included in the DPDK package:

• Stargo CRB (single CPU socket): located in the stargo folder

– dh89xxcc_qa_dev0.conf

• Shumway CRB (dual CPU socket): located in the shumway folder

– dh89xxcc_qa_dev0.conf

– dh89xxcc_qa_dev1.conf

• Coleto Creek: located in the coleto folder

– dh895xcc_qa_dev0.conf

The relevant configuration file(s) must be copied to the /etc/ directory.

Please note that any change to these configuration files requires restarting the Intel® Quick-
Assist Technology driver using the following command:

service qat_service restart

Refer to the following documents for information on the Intel® QuickAssist Technology config-
uration files:

• Intel® Communications Chipset 8900 to 8920 Series Software Programmer’s Guide

• Intel® Communications Chipset 8925 to 8955 Series Software Programmer’s Guide

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started
Guide.

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started
Guide.

Traffic Generator Setup and Application Startup

The application has a number of command line options:

7.26. Intel® QuickAssist Technology Sample Application 431

DPDK documentation, Release 16.04.0

dpdk_qat [EAL options] – -p PORTMASK [–no-promisc] [–config
‘(port,queue,lcore)[,(port,queue,lcore)]’]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• –no-promisc: Disables promiscuous mode for all ports, so that only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.
By default promiscuous mode is enabled so that packets are accepted regardless of the
packet’s Ethernet MAC destination address.

• –config’(port,queue,lcore)[,(port,queue,lcore)]’: determines which queues from which
ports are mapped to which cores.

Refer to the L3 Forwarding Sample Application for more detailed descriptions of the –config
command line option.

As an example, to run the application with two ports and two cores, which are using different
Intel® QuickAssist Technology execution engines, performing AES-CBC-128 encryption with
AES-XCBC-MAC-96 hash, the following settings can be used:

• Traffic generator source IP address: 0.9.6.1

• Command line:

./build/dpdk_qat -c 0xff -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'

Refer to the DPDK Test Report for more examples of traffic generator setup and the application
startup command lines. If no errors are generated in response to the startup commands, the
application is running correctly.

7.27 Quota and Watermark Sample Application

The Quota and Watermark sample application is a simple example of packet processing using
Data Plane Development Kit (DPDK) that showcases the use of a quota as the maximum
number of packets enqueue/dequeue at a time and low and high watermarks to signal low and
high ring usage respectively.

Additionally, it shows how ring watermarks can be used to feedback congestion notifications
to data producers by temporarily stopping processing overloaded rings and sending Ethernet
flow control frames.

This sample application is split in two parts:

• qw - The core quota and watermark sample application

• qwctl - A command line tool to alter quota and watermarks while qw is running

7.27.1 Overview

The Quota and Watermark sample application performs forwarding for each packet that is
received on a given port. The destination port is the adjacent port from the enabled port mask,
that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 forward into each other,
and ports 2 and 3 forward into each other. The MAC addresses of the forwarded Ethernet
frames are not affected.

7.27. Quota and Watermark Sample Application 432

DPDK documentation, Release 16.04.0

Internally, packets are pulled from the ports by the master logical core and put on a variable
length processing pipeline, each stage of which being connected by rings, as shown in Fig.
7.17.

Fig. 7.17: Pipeline Overview

An adjustable quota value controls how many packets are being moved through the pipeline
per enqueue and dequeue. Adjustable watermark values associated with the rings control a
back-off mechanism that tries to prevent the pipeline from being overloaded by:

• Stopping enqueuing on rings for which the usage has crossed the high watermark thresh-
old

• Sending Ethernet pause frames

• Only resuming enqueuing on a ring once its usage goes below a global low watermark
threshold

This mechanism allows congestion notifications to go up the ring pipeline and eventually lead
to an Ethernet flow control frame being send to the source.

On top of serving as an example of quota and watermark usage, this application can be used to
benchmark ring based processing pipelines performance using a traffic- generator, as shown
in Fig. 7.18.

7.27. Quota and Watermark Sample Application 433

DPDK documentation, Release 16.04.0

Fig. 7.18: Ring-based Processing Pipeline Performance Setup

7.27.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/quota_watermark

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.27.3 Running the Application

The core application, qw, has to be started first.

Once it is up and running, one can alter quota and watermarks while it runs using the control
application, qwctl.

Running the Core Application

The application requires a single command line option:

7.27. Quota and Watermark Sample Application 434

DPDK documentation, Release 16.04.0

./qw/build/qw [EAL options] -- -p PORTMASK

where,

-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linuxapp environment with four logical cores and ports 0 and 2, issue
the following command:

./qw/build/qw -c f -n 4 -- -p 5

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

Running the Control Application

The control application requires a number of command line options:

./qwctl/build/qwctl [EAL options] --proc-type=secondary

The –proc-type=secondary option is necessary for the EAL to properly initialize the control
application to use the same huge pages as the core application and thus be able to access its
rings.

To run the application in a linuxapp environment on logical core 0, issue the following command:

./qwctl/build/qwctl -c 1 -n 4 --proc-type=secondary

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

qwctl is an interactive command line that let the user change variables in a running instance of
qw. The help command gives a list of available commands:

$ qwctl > help

7.27.4 Code Overview

The following sections provide a quick guide to the application’s source code.

Core Application - qw

EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot initialize EAL\n");

argc -= ret;
argv += ret;

Then, a call to init_dpdk(), defined in init.c, is made to initialize the poll mode drivers:

void
init_dpdk(void)
{

int ret;

7.27. Quota and Watermark Sample Application 435

DPDK documentation, Release 16.04.0

/* Bind the drivers to usable devices */

ret = rte_eal_pci_probe();
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eal_pci_probe(): error %d\n", ret);

if (rte_eth_dev_count() < 2)
rte_exit(EXIT_FAILURE, "Not enough Ethernet port available\n");

}

To fully understand this code, it is recommended to study the chapters that relate to the Poll
Mode Driver in the DPDK Getting Started Guide and the DPDK API Reference.

Shared Variables Setup

The quota and low_watermark shared variables are put into an rte_memzone using a call to
setup_shared_variables():

void
setup_shared_variables(void)
{

const struct rte_memzone *qw_memzone;

qw_memzone = rte_memzone_reserve(QUOTA_WATERMARK_MEMZONE_NAME, 2 * sizeof(int), rte_socket_id(), RTE_MEMZONE_2MB);

if (qw_memzone == NULL)
rte_exit(EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));

quota = qw_memzone->addr;
low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);

}

These two variables are initialized to a default value in main() and can be changed while qw is
running using the qwctl control program.

Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be
used by the application. At least two ports are needed to run the application and there should
be an even number of ports given in the port mask.

The port mask parsing is done in parse_qw_args(), defined in args.c.

Mbuf Pool Initialization

Once the application’s arguments are parsed, an mbuf pool is created. It contains a set of mbuf
objects that are used by the driver and the application to store network packets:

/* Create a pool of mbuf to store packets */

mbuf_pool = rte_mempool_create("mbuf_pool", MBUF_PER_POOL, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

if (mbuf_pool == NULL)
rte_panic("%s\n", rte_strerror(rte_errno));

7.27. Quota and Watermark Sample Application 436

DPDK documentation, Release 16.04.0

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a size of MBUF_SIZE each. A
per-lcore cache of 32 mbufs is kept. The memory is allocated in on the master lcore’s socket,
but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer.

The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a new
function derived from rte_pktmbuf_init() can be created.

Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master
lcore’s array of rings. This ring is the first in the pipeline and will hold the packets directly
coming from the port.

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set(port_id, portmask)) {

configure_eth_port(port_id);
init_ring(master_lcore_id, port_id);

}

pair_ports();

The configure_eth_port() and init_ring() functions are used to configure a port and a ring re-
spectively and are defined in init.c. They make use of the DPDK APIs defined in rte_eth.h and
rte_ring.h.

pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between
reception and transmission ports. It is defined in init.c.

Logical Cores Assignment

The application uses the master logical core to poll all the ports for new packets and enqueue
them on a ring associated with the port.

Each logical core except the last runs pipeline_stage() after a ring for each used port is ini-
tialized on that core. pipeline_stage() on core X dequeues packets from core X-1’s rings and
enqueue them on its own rings. See Fig. 7.19.

/* Start pipeline_stage() on all the available slave lcore but the last */

for (lcore_id = 0 ; lcore_id < last_lcore_id; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) && lcore_id != master_lcore_id) {

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set(port_id, portmask))

init_ring(lcore_id, port_id);

7.27. Quota and Watermark Sample Application 437

DPDK documentation, Release 16.04.0

rte_eal_remote_launch(pipeline_stage, NULL, lcore_id);
}

}

The last available logical core runs send_stage(), which is the last stage of the pipeline de-
queuing packets from the last ring in the pipeline and sending them out on the destination port
setup by pair_ports().

/* Start send_stage() on the last slave core */

rte_eal_remote_launch(send_stage, NULL, last_lcore_id);

Receive, Process and Transmit Packets

Fig. 7.19: Threads and Pipelines

In the receive_stage() function running on the master logical core, the main task is to read
ingress packets from the RX ports and enqueue them on the port’s corresponding first ring in
the pipeline. This is done using the following code:

lcore_id = rte_lcore_id();

/* Process each port round robin style */

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask))

continue;

7.27. Quota and Watermark Sample Application 438

DPDK documentation, Release 16.04.0

ring = rings[lcore_id][port_id];

if (ring_state[port_id] != RING_READY) {
if (rte_ring_count(ring) > *low_watermark)

continue;
else

ring_state[port_id] = RING_READY;
}

/* Enqueue received packets on the RX ring */

nb_rx_pkts = rte_eth_rx_burst(port_id, 0, pkts, *quota);

ret = rte_ring_enqueue_bulk(ring, (void *) pkts, nb_rx_pkts);
if (ret == -EDQUOT) {

ring_state[port_id] = RING_OVERLOADED;
send_pause_frame(port_id, 1337);

}
}

For each port in the port mask, the corresponding ring’s pointer is fetched into ring and that
ring’s state is checked:

• If it is in the RING_READY state, *quota packets are grabbed from the port and put on
the ring. Should this operation make the ring’s usage cross its high watermark, the ring
is marked as overloaded and an Ethernet flow control frame is sent to the source.

• If it is not in the RING_READY state, this port is ignored until the ring’s usage crosses
the *low_watermark value.

The pipeline_stage() function’s task is to process and move packets from the preceding pipeline
stage. This thread is running on most of the logical cores to create and arbitrarily long pipeline.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask))

continue;

tx = rings[lcore_id][port_id];
rx = rings[previous_lcore_id][port_id];
if (ring_state[port_id] != RING_READY) {

if (rte_ring_count(tx) > *low_watermark)
continue;

else
ring_state[port_id] = RING_READY;

}

/* Dequeue up to quota mbuf from rx */

nb_dq_pkts = rte_ring_dequeue_burst(rx, pkts, *quota);

if (unlikely(nb_dq_pkts < 0))
continue;

/* Enqueue them on tx */

ret = rte_ring_enqueue_bulk(tx, pkts, nb_dq_pkts);
if (ret == -EDQUOT)

ring_state[port_id] = RING_OVERLOADED;

7.27. Quota and Watermark Sample Application 439

DPDK documentation, Release 16.04.0

}

The thread’s logic works mostly like receive_stage(), except that packets are moved from ring
to ring instead of port to ring.

In this example, no actual processing is done on the packets, but pipeline_stage() is an ideal
place to perform any processing required by the application.

Finally, the send_stage() function’s task is to read packets from the last ring in a pipeline and
send them on the destination port defined in the port_pairs[] array. It is running on the last
available logical core only.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask)) continue;

dest_port_id = port_pairs[port_id];
tx = rings[previous_lcore_id][port_id];

if (rte_ring_empty(tx)) continue;

/* Dequeue packets from tx and send them */

nb_dq_pkts = rte_ring_dequeue_burst(tx, (void *) tx_pkts, *quota);
nb_tx_pkts = rte_eth_tx_burst(dest_port_id, 0, tx_pkts, nb_dq_pkts);

}

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline
and sent on the destination port paired with the current port.

Control Application - qwctl

The qwctl application uses the rte_cmdline library to provide the user with an interactive com-
mand line that can be used to modify and inspect parameters in a running qw application.
Those parameters are the global quota and low_watermark value as well as each ring’s built-in
high watermark.

Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything
related to the rte_cmdline library.

Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and
low_watermark from the rte_memzone previously created by qw.

static void
setup_shared_variables(void)
{

const struct rte_memzone *qw_memzone;

7.27. Quota and Watermark Sample Application 440

DPDK documentation, Release 16.04.0

qw_memzone = rte_memzone_lookup(QUOTA_WATERMARK_MEMZONE_NAME);
if (qw_memzone == NULL)

rte_exit(EXIT_FAILURE, "Couldn't find memzone\n");

quota = qw_memzone->addr;

low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);
}

7.28 Timer Sample Application

The Timer sample application is a simple application that demonstrates the use of a timer in
a DPDK application. This application prints some messages from different lcores regularly,
demonstrating the use of timers.

7.28.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/timer

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.28.2 Running the Application

To run the example in linuxapp environment:

$./build/timer -c f -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.28.3 Explanation

The following sections provide some explanation of the code.

Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the
rte_timer_subsystem_init() function.

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

7.28. Timer Sample Application 441

DPDK documentation, Release 16.04.0

/* init RTE timer library */

rte_timer_subsystem_init();

After timer creation (see the next paragraph), the main loop is executed on each slave lcore
using the well-known rte_eal_remote_launch() and also on the master.

/* call lcore_mainloop() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);

}

/* call it on master lcore too */

(void) lcore_mainloop(NULL);

The main loop is very simple in this example:

while (1) {
/*
* Call the timer handler on each core: as we don't

* need a very precise timer, so only call

* rte_timer_manage() every ~10ms (at 2 GHz). In a real

* application, this will enhance performances as

* reading the HPET timer is not efficient.

*/

cur_tsc = rte_rdtsc();

diff_tsc = cur_tsc - prev_tsc;

if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
rte_timer_manage();
prev_tsc = cur_tsc;

}
}

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to
check if the rte_timer_manage() function must be called or not. In this example, the resolution
of the timer is 10 milliseconds.

Managing Timers

In the main() function, the two timers are initialized. This call to rte_timer_init() is necessary
before doing any other operation on the timer structure.

/* init timer structures */

rte_timer_init(&timer0);
rte_timer_init(&timer1);

Then, the two timers are configured:

• The first timer (timer0) is loaded on the master lcore and expires every second. Since the
PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem.
The callback function is timer0_cb().

• The second timer (timer1) is loaded on the next available lcore every 333 ms. The SIN-
GLE flag means that the timer expires only once and must be reloaded manually if re-
quired. The callback function is timer1_cb().

7.28. Timer Sample Application 442

DPDK documentation, Release 16.04.0

/* load timer0, every second, on master lcore, reloaded automatically */

hz = rte_get_hpet_hz();

lcore_id = rte_lcore_id();

rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);

/* load timer1, every second/3, on next lcore, reloaded manually */

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);

The callback for the first timer (timer0) only displays a message until a global counter reaches
20 (after 20 seconds). In this case, the timer is stopped using the rte_timer_stop() function.

/* timer0 callback */

static void
timer0_cb(attribute ((unused)) struct rte_timer *tim, __attribute ((unused)) void *arg)
{

static unsigned counter = 0;

unsigned lcore_id = rte_lcore_id();

printf("%s() on lcore %u\n", FUNCTION , lcore_id);

/* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */

if ((counter ++) == 20)
rte_timer_stop(tim);

}

The callback for the second timer (timer1) displays a message and reloads the timer on the
next lcore, using the rte_timer_reset() function:

/* timer1 callback */

static void
timer1_cb(attribute ((unused)) struct rte_timer *tim, _attribute ((unused)) void *arg)
{

unsigned lcore_id = rte_lcore_id();
uint64_t hz;

printf("%s() on lcore %u\\n", FUNCTION , lcore_id);

/* reload it on another lcore */

hz = rte_get_hpet_hz();

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}

7.29 Packet Ordering Application

The Packet Ordering sample app simply shows the impact of reordering a stream. It’s meant
to stress the library with different configurations for performance.

7.29. Packet Ordering Application 443

DPDK documentation, Release 16.04.0

7.29.1 Overview

The application uses at least three CPU cores:

• RX core (maser core) receives traffic from the NIC ports and feeds Worker cores with
traffic through SW queues.

• Worker core (slave core) basically do some light work on the packet. Currently it modifies
the output port of the packet for configurations with more than one port enabled.

• TX Core (slave core) receives traffic from Worker cores through software queues, inserts
out-of-order packets into reorder buffer, extracts ordered packets from the reorder buffer
and sends them to the NIC ports for transmission.

7.29.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.29.3 Running the Application

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK [--disable-reorder]

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores. The first CPU core
in the core mask is the master core and would be assigned to RX core, the last to TX core and
the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers. When setting
more than 1 port, traffic would be forwarded in pairs. For example, if we enable 4 ports, traffic
from port 0 to 1 and from 1 to 0, then the other pair from 2 to 3 and from 3 to 2, having [0,1]
and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering of traffic,
which should help evaluate reordering performance impact.

7.29. Packet Ordering Application 444

DPDK documentation, Release 16.04.0

7.30 VMDQ and DCB Forwarding Sample Application

The VMDQ and DCB Forwarding sample application is a simple example of packet processing
using the DPDK. The application performs L2 forwarding using VMDQ and DCB to divide the
incoming traffic into queues. The traffic splitting is performed in hardware by the VMDQ and
DCB features of the Intel® 82599 and X710/XL710 Ethernet Controllers.

7.30.1 Overview

This sample application can be used as a starting point for developing a new application that
is based on the DPDK and uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on MAC and VLAN traffic to divide the traffic into input queues
on the basis of the Destination MAC address, VLAN ID and VLAN user priority fields. VMDQ
filters split the traffic into 16 or 32 groups based on the Destination MAC and VLAN ID. Then,
DCB places each packet into one of queues within that group, based upon the VLAN user
priority field.

All traffic is read from a single incoming port (port 0) and output on port 1, without any process-
ing being performed. With Intel® 82599 NIC, for example, the traffic is split into 128 queues
on input, where each thread of the application reads from multiple queues. When run with
8 threads, that is, with the -c FF option, each thread receives and forwards packets from 16
queues.

As supplied, the sample application configures the VMDQ feature to have 32 pools with
4 queues each as indicated in Fig. 7.20. The Intel® 82599 10 Gigabit Ethernet Con-
troller NIC also supports the splitting of traffic into 16 pools of 8 queues. While the
Intel® X710 or XL710 Ethernet Controller NICs support many configurations of VMDQ
pools of 4 or 8 queues each. For simplicity, only 16 or 32 pools is supported in this
sample. And queues numbers for each VMDQ pool can be changed by setting CON-
FIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM in config/common_* file. The nb-pools, nb-
tcs and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdq_dcb [EAL options] -- -p PORTMASK --nb-pools NP --nb-tcs TC --enable-rss

where, NP can be 16 or 32, TC can be 4 or 8, rss is disabled by default.

Fig. 7.20: Packet Flow Through the VMDQ and DCB Sample Application

In Linux* user space, the application can display statistics with the number of packets received
on each queue. To have the application display the statistics, send a SIGHUP signal to the
running application process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2
Forwarding application (see L2 Forwarding Sample Application (in Real and Virtualized Envi-
ronments)) as it performs unidirectional L2 forwarding of packets from one port to a second
port. No command-line options are taken by this application apart from the standard EAL
command-line options.

Note: Since VMD queues are being used for VMM, this application works correctly when VTd
is disabled in the BIOS or Linux* kernel (intel_iommu=off).

7.30. VMDQ and DCB Forwarding Sample Application 445

DPDK documentation, Release 16.04.0

7.30.2 Compiling the Application

1. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vmdq_dcb

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.30.3 Running the Application

To run the example in a linuxapp environment:

user@target:~$./build/vmdq_dcb -c f -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.30.4 Explanation

The following sections provide some explanation of the code.

Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample
application, as is the creation of the mbuf pool. See L2 Forwarding Sample Application (in Real
and Virtualized Environments). Where this example application differs is in the configuration of
the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the
appropriate values in the rte_eth_conf structure passed to the rte_eth_dev_configure() API.
Initially in the application, a default structure is provided for VMDQ and DCB configuration to
be filled in later by the application.

/* empty vmdq+dcb configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_dcb_conf_default = {

.rxmode = {
.mq_mode = ETH_MQ_RX_VMDQ_DCB,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */

},
.txmode = {

.mq_mode = ETH_MQ_TX_VMDQ_DCB,
},
/*
* should be overridden separately in code with

* appropriate values

7.30. VMDQ and DCB Forwarding Sample Application 446

DPDK documentation, Release 16.04.0

*/
.rx_adv_conf = {

.vmdq_dcb_conf = {
.nb_queue_pools = ETH_32_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
.dcb_tc = {0},

},
.dcb_rx_conf = {

.nb_tcs = ETH_4_TCS,
/** Traffic class each UP mapped to. */
.dcb_tc = {0},

},
.vmdq_rx_conf = {

.nb_queue_pools = ETH_32_POOLS,

.enable_default_pool = 0,

.default_pool = 0,

.nb_pool_maps = 0,

.pool_map = {{0, 0},},
},

},
.tx_adv_conf = {

.vmdq_dcb_tx_conf = {
.nb_queue_pools = ETH_32_POOLS,
.dcb_tc = {0},

},
},

};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values, based
on the global vlan_tags array, and dividing up the possible user priority values equally among
the individual queues (also referred to as traffic classes) within each pool. With Intel® 82599
NIC, if the number of pools is 32, then the user priority fields are allocated 2 to a queue.
If 16 pools are used, then each of the 8 user priority fields is allocated to its own queue
within the pool. With Intel® X710/XL710 NICs, if number of tcs is 4, and number of queues
in pool is 8, then the user priority fields are allocated 2 to one tc, and a tc has 2 queues
mapping to it, then RSS will determine the destination queue in 2. For the VLAN IDs, each
one can be allocated to possibly multiple pools of queues, so the pools parameter in the
rte_eth_vmdq_dcb_conf structure is specified as a bitmask value. For destination MAC, each
VMDQ pool will be assigned with a MAC address. In this sample, each VMDQ pool is assigned
to the MAC like 52:54:00:12:<port_id>:<pool_id>, that is, the MAC of VMDQ pool 2 on port 1
is 52:54:00:12:01:02.

const uint16_t vlan_tags[] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31

};

/* pool mac addr template, pool mac addr is like: 52 54 00 12 port# pool# */
static struct ether_addr pool_addr_template = {

.addr_bytes = {0x52, 0x54, 0x00, 0x12, 0x00, 0x00}
};

/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array

* given above, and the number of traffic classes available for use. */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf)

7.30. VMDQ and DCB Forwarding Sample Application 447

DPDK documentation, Release 16.04.0

{
struct rte_eth_vmdq_dcb_conf conf;
struct rte_eth_vmdq_rx_conf vmdq_conf;
struct rte_eth_dcb_rx_conf dcb_conf;
struct rte_eth_vmdq_dcb_tx_conf tx_conf;
uint8_t i;

conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
vmdq_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
tx_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
conf.nb_pool_maps = num_pools;
vmdq_conf.nb_pool_maps = num_pools;
conf.enable_default_pool = 0;
vmdq_conf.enable_default_pool = 0;
conf.default_pool = 0; /* set explicit value, even if not used */
vmdq_conf.default_pool = 0;

for (i = 0; i < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id = vlan_tags[i];
vmdq_conf.pool_map[i].vlan_id = vlan_tags[i];
conf.pool_map[i].pools = 1UL << i ;
vmdq_conf.pool_map[i].pools = 1UL << i;

}
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){

conf.dcb_tc[i] = i % num_tcs;
dcb_conf.dcb_tc[i] = i % num_tcs;
tx_conf.dcb_tc[i] = i % num_tcs;

}
dcb_conf.nb_tcs = (enum rte_eth_nb_tcs)num_tcs;
(void)(rte_memcpy(eth_conf, &vmdq_dcb_conf_default, sizeof(*eth_conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &conf,

sizeof(conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.dcb_rx_conf, &dcb_conf,

sizeof(dcb_conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &vmdq_conf,

sizeof(vmdq_conf)));
(void)(rte_memcpy(ð_conf->tx_adv_conf.vmdq_dcb_tx_conf, &tx_conf,

sizeof(tx_conf)));
if (rss_enable) {

eth_conf->rxmode.mq_mode= ETH_MQ_RX_VMDQ_DCB_RSS;
eth_conf->rx_adv_conf.rss_conf.rss_hf = ETH_RSS_IP |

ETH_RSS_UDP |
ETH_RSS_TCP |
ETH_RSS_SCTP;

}
return 0;

}

......

/* Set mac for each pool.*/
for (q = 0; q < num_pools; q++) {

struct ether_addr mac;
mac = pool_addr_template;
mac.addr_bytes[4] = port;
mac.addr_bytes[5] = q;
printf("Port %u vmdq pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",

port, q,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);

retval = rte_eth_dev_mac_addr_add(port, &mac,
q + vmdq_pool_base);

7.30. VMDQ and DCB Forwarding Sample Application 448

DPDK documentation, Release 16.04.0

if (retval) {
printf("mac addr add failed at pool %d\n", q);
return retval;

}
}

Once the network port has been initialized using the correct VMDQ and DCB values, the
initialization of the port’s RX and TX hardware rings is performed similarly to that in the L2
Forwarding sample application. See L2 Forwarding Sample Application (in Real and Virtualized
Environments) for more information.

Statistics Display

When run in a linuxapp environment, the VMDQ and DCB Forwarding sample application can
display statistics showing the number of packets read from each RX queue. This is provided
by way of a signal handler for the SIGHUP signal, which simply prints to standard output the
packet counts in grid form. Each row of the output is a single pool with the columns being the
queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_dcb_app

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is
running, rather than the terminal from which the HUP signal was sent.

7.31 Vhost Sample Application

The vhost sample application demonstrates integration of the Data Plane Development Kit
(DPDK) with the Linux* KVM hypervisor by implementing the vhost-net offload API. The sam-
ple application performs simple packet switching between virtual machines based on Media
Access Control (MAC) address or Virtual Local Area Network (VLAN) tag. The splitting of
Ethernet traffic from an external switch is performed in hardware by the Virtual Machine De-
vice Queues (VMDQ) and Data Center Bridging (DCB) features of the Intel® 82599 10 Gigabit
Ethernet Controller.

7.31.1 Background

Virtio networking (virtio-net) was developed as the Linux* KVM para-virtualized method for
communicating network packets between host and guest. It was found that virtio-net perfor-
mance was poor due to context switching and packet copying between host, guest, and QEMU.
The following figure shows the system architecture for a virtio-based networking (virtio-net).

The Linux* Kernel vhost-net module was developed as an offload mechanism for virtio-net.
The vhost-net module enables KVM (QEMU) to offload the servicing of virtio-net devices to
the vhost-net kernel module, reducing the context switching and packet copies in the virtual
dataplane.

This is achieved by QEMU sharing the following information with the vhost-net module through
the vhost-net API:

• The layout of the guest memory space, to enable the vhost-net module to translate ad-
dresses.

7.31. Vhost Sample Application 449

DPDK documentation, Release 16.04.0

Fig. 7.21: System Architecture for Virtio-based Networking (virtio-net).

• The locations of virtual queues in QEMU virtual address space, to enable the vhost
module to read/write directly to and from the virtqueues.

• An event file descriptor (eventfd) configured in KVM to send interrupts to the virtio- net
device driver in the guest. This enables the vhost-net module to notify (call) the guest.

• An eventfd configured in KVM to be triggered on writes to the virtio-net device’s Periph-
eral Component Interconnect (PCI) config space. This enables the vhost-net module to
receive notifications (kicks) from the guest.

The following figure shows the system architecture for virtio-net networking with vhost-net of-
fload.

7.31.2 Sample Code Overview

The DPDK vhost-net sample code demonstrates KVM (QEMU) offloading the servicing of a
Virtual Machine’s (VM’s) virtio-net devices to a DPDK-based application in place of the kernel’s
vhost-net module.

The DPDK vhost-net sample code is based on vhost library. Vhost library is developed for user
space Ethernet switch to easily integrate with vhost functionality.

The vhost library implements the following features:

• Management of virtio-net device creation/destruction events.

• Mapping of the VM’s physical memory into the DPDK vhost-net’s address space.

• Triggering/receiving notifications to/from VMs via eventfds.

7.31. Vhost Sample Application 450

DPDK documentation, Release 16.04.0

Fig. 7.22: Virtio with Linux

• A virtio-net back-end implementation providing a subset of virtio-net features.

There are two vhost implementations in vhost library, vhost cuse and vhost user. In vhost cuse,
a character device driver is implemented to receive and process vhost requests through ioctl
messages. In vhost user, a socket server is created to received vhost requests through socket
messages. Most of the messages share the same handler routine.

Note: Any vhost cuse specific requirement in the following sections will be empha-
sized.

Two implementations are turned on and off statically through configure file. Only one imple-
mentation could be turned on. They don’t co-exist in current implementation.

The vhost sample code application is a simple packet switching application with the following
feature:

• Packet switching between virtio-net devices and the network interface card, including
using VMDQs to reduce the switching that needs to be performed in software.

The following figure shows the architecture of the Vhost sample application based on vhost-
cuse.

The following figure shows the flow of packets through the vhost-net sample application.

7.31. Vhost Sample Application 451

DPDK documentation, Release 16.04.0

Fig. 7.23: Vhost-net Architectural Overview

7.31. Vhost Sample Application 452

DPDK documentation, Release 16.04.0

Fig. 7.24: Packet Flow Through the vhost-net Sample Application

7.31. Vhost Sample Application 453

DPDK documentation, Release 16.04.0

7.31.3 Supported Distributions

The example in this section have been validated with the following distributions:

• Fedora* 18

• Fedora* 19

• Fedora* 20

7.31.4 Prerequisites

This section lists prerequisite packages that must be installed.

Installing Packages on the Host(vhost cuse required)

The vhost cuse code uses the following packages; fuse, fuse-devel, and kernel-modules-extra.
The vhost user code don’t rely on those modules as eventfds are already installed into vhost
process through Unix domain socket.

1. Install Fuse Development Libraries and headers:

yum -y install fuse fuse-devel

2. Install the Cuse Kernel Module:

yum -y install kernel-modules-extra

QEMU simulator

For vhost user, qemu 2.2 is required.

Setting up the Execution Environment

The vhost sample code requires that QEMU allocates a VM’s memory on the hugetlbfs file
system. As the vhost sample code requires hugepages, the best practice is to partition the
system into separate hugepage mount points for the VMs and the vhost sample code.

Note: This is best-practice only and is not mandatory. For systems that only support 2
MB page sizes, both QEMU and vhost sample code can use the same hugetlbfs mount point
without issue.

QEMU

VMs with gigabytes of memory can benefit from having QEMU allocate their memory from 1 GB
huge pages. 1 GB huge pages must be allocated at boot time by passing kernel parameters
through the grub boot loader.

1. Calculate the maximum memory usage of all VMs to be run on the system. Then, round
this value up to the nearest Gigabyte the execution environment will require.

2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX en-
try:

7.31. Vhost Sample Application 454

DPDK documentation, Release 16.04.0

GRUB_CMDLINE_LINUX="... hugepagesz=1G hugepages=<Number of hugepages required> default_hugepagesz=1G"

3. Update the grub boot loader:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot the system.

5. The hugetlbfs mount point (/dev/hugepages) should now default to allocating gigabyte
pages.

Note: Making the above modification will change the system default hugepage size to 1 GB
for all applications.

Vhost Sample Code

In this section, we create a second hugetlbs mount point to allocate hugepages for the DPDK
vhost sample code.

1. Allocate sufficient 2 MB pages for the DPDK vhost sample code:

echo 256 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

2. Mount hugetlbs at a separate mount point for 2 MB pages:

mount -t hugetlbfs nodev /mnt/huge -o pagesize=2M

The above steps can be automated by doing the following:

1. Edit /etc/fstab to add an entry to automatically mount the second hugetlbfs mount point:

hugetlbfs <tab> /mnt/huge <tab> hugetlbfs defaults,pagesize=1G 0 0

2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX en-
try:

GRUB_CMDLINE_LINUX="... hugepagesz=2M hugepages=256 ... default_hugepagesz=1G"

3. Update the grub bootloader:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot the system.

Note: Ensure that the default hugepage size after this setup is 1 GB.

Setting up the Guest Execution Environment

It is recommended for testing purposes that the DPDK testpmd sample application is used in
the guest to forward packets, the reasons for this are discussed in Running the Virtual Machine
(QEMU).

The testpmd application forwards packets between pairs of Ethernet devices, it requires an
even number of Ethernet devices (virtio or otherwise) to execute. It is therefore recommended
to create multiples of two virtio-net devices for each Virtual Machine either through libvirt or at
the command line as follows.

7.31. Vhost Sample Application 455

DPDK documentation, Release 16.04.0

Note: Observe that in the example, “-device” and “-netdev” are repeated for two virtio-net
devices.

For vhost cuse:

qemu-system-x86_64 ... \
-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet1,id=net1 \
-netdev tap,id=hostnet2,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet2,id=net1

For vhost user:

qemu-system-x86_64 ... \
-chardev socket,id=char1,path=<sock_path> \
-netdev type=vhost-user,id=hostnet1,chardev=char1 \
-device virtio-net-pci,netdev=hostnet1,id=net1 \
-chardev socket,id=char2,path=<sock_path> \
-netdev type=vhost-user,id=hostnet2,chardev=char2 \
-device virtio-net-pci,netdev=hostnet2,id=net2

sock_path is the path for the socket file created by vhost.

7.31.5 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n

vhost user is turned on by default in the configure file config/common_linuxapp. To enable
vhost cuse, disable vhost user.

CONFIG_RTE_LIBRTE_VHOST_USER=y

After vhost is enabled and the implementation is selected, build the vhost library.

2. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vhost

3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

cd ${RTE_SDK}
make config ${RTE_TARGET}
make install ${RTE_TARGET}
cd ${RTE_SDK}/examples/vhost
make

5. Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

6. Build the eventfd_link kernel module(vhost cuse required):

make

7.31. Vhost Sample Application 456

DPDK documentation, Release 16.04.0

7.31.6 Running the Sample Code

1. Install the cuse kernel module(vhost cuse required):

modprobe cuse

2. Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

3. Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko

4. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vhost/build/app

5. Run the vhost-switch sample code:

vhost cuse:

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- -p 0x1 --dev-basename usvhost

vhost user: a socket file named usvhost will be created under current directory. Use its
path as the socket path in guest’s qemu commandline.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- -p 0x1 --dev-basename usvhost

Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the
2 MB page hugetlbfs.

Note: The number used with the –socket-mem parameter may need to be more than 1024.
The number required depends on the number of mbufs allocated by vhost-switch.

Parameters

Basename. vhost cuse uses a Linux* character device to communicate with QEMU. The
basename is used to generate the character devices name.

/dev/<basename>

For compatibility with the QEMU wrapper script, a base name of “usvhost” should be used:

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- -p 0x1 --dev-basename usvhost

vm2vm. The vm2vm parameter disable/set mode of packet switching between guests in the
host. Value of “0” means disabling vm2vm implies that on virtual machine packet transmission
will always go to the Ethernet port; Value of “1” means software mode packet forwarding be-
tween guests, it needs packets copy in vHOST, so valid only in one-copy implementation, and
invalid for zero copy implementation; value of “2” means hardware mode packet forwarding
between guests, it allows packets go to the Ethernet port, hardware L2 switch will determine

7.31. Vhost Sample Application 457

DPDK documentation, Release 16.04.0

which guest the packet should forward to or need send to external, which bases on the packet
destination MAC address and VLAN tag.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --vm2vm [0,1,2]

Mergeable Buffers. The mergeable buffers parameter controls how virtio-net descriptors are
used for virtio-net headers. In a disabled state, one virtio-net header is used per packet buffer;
in an enabled state one virtio-net header is used for multiple packets. The default value is 0 or
disabled since recent kernels virtio-net drivers show performance degradation with this feature
is enabled.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --mergeable [0,1]

Stats. The stats parameter controls the printing of virtio-net device statistics. The parameter
specifies an interval second to print statistics, with an interval of 0 seconds disabling statistics.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --stats [0,n]

RX Retry. The rx-retry option enables/disables enqueue retries when the guests RX queue is
full. This feature resolves a packet loss that is observed at high data-rates, by allowing it to
delay and retry in the receive path. This option is enabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --rx-retry [0,1]

RX Retry Number. The rx-retry-num option specifies the number of retries on an RX burst, it
takes effect only when rx retry is enabled. The default value is 4.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --rx-retry 1 --rx-retry-num 5

RX Retry Delay Time. The rx-retry-delay option specifies the timeout (in micro seconds)
between retries on an RX burst, it takes effect only when rx retry is enabled. The default value
is 15.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --rx-retry 1 --rx-retry-delay 20

Zero copy. The zero copy option enables/disables the zero copy mode for RX/TX packet, in
the zero copy mode the packet buffer address from guest translate into host physical address
and then set directly as DMA address. If the zero copy mode is disabled, then one copy mode
is utilized in the sample. This option is disabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --zero-copy [0,1]

RX descriptor number. The RX descriptor number option specify the Ethernet RX descriptor
number, Linux legacy virtio-net has different behavior in how to use the vring descriptor from
DPDK based virtio-net PMD, the former likely allocate half for virtio header, another half for
frame buffer, while the latter allocate all for frame buffer, this lead to different number for avail-
able frame buffer in vring, and then lead to different Ethernet RX descriptor number could be
used in zero copy mode. So it is valid only in zero copy mode is enabled. The value is 32 by
default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --zero-copy 1 --rx-desc-num [0, n]

TX descriptor number. The TX descriptor number option specify the Ethernet TX descriptor
number, it is valid only in zero copy mode is enabled. The value is 64 by default.

7.31. Vhost Sample Application 458

DPDK documentation, Release 16.04.0

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --zero-copy 1 --tx-desc-num [0, n]

VLAN strip. The VLAN strip option enable/disable the VLAN strip on host, if disabled, the
guest will receive the packets with VLAN tag. It is enabled by default.

./vhost-switch -c f -n 4 --socket-mem 1024 --huge-dir /mnt/huge \
-- --vlan-strip [0, 1]

7.31.7 Running the Virtual Machine (QEMU)

QEMU must be executed with specific parameters to:

• Ensure the guest is configured to use virtio-net network adapters.

qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1, \
id=net1 ...

• Ensure the guest’s virtio-net network adapter is configured with offloads disabled.

qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1, \
id=net1, csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off

• Redirect QEMU to communicate with the DPDK vhost-net sample code in place of the
vhost-net kernel module(vhost cuse).

qemu-system-x86_64 ... -netdev tap,id=hostnet1,vhost=on, \
vhostfd=<open fd> ...

• Enable the vhost-net sample code to map the VM’s memory into its own process address
space.

qemu-system-x86_64 ... -mem-prealloc -mem-path /dev/hugepages ...

Note: The QEMU wrapper (qemu-wrap.py) is a Python script designed to automate the QEMU
configuration described above. It also facilitates integration with libvirt, although the script may
also be used standalone without libvirt.

Redirecting QEMU to vhost-net Sample Code(vhost cuse)

To redirect QEMU to the vhost-net sample code implementation of the vhost-net API, an open
file descriptor must be passed to QEMU running as a child process.

#!/usr/bin/python
fd = os.open("/dev/usvhost-1", os.O_RDWR)
subprocess.call
("qemu-system-x86_64 ... -netdev tap,id=vhostnet0,vhost=on,vhostfd="

+ fd +"...", shell=True)

Note: This process is automated in the QEMU Wrapper Script .

Mapping the Virtual Machine’s Memory

For the DPDK vhost-net sample code to be run correctly, QEMU must allocate the VM’s mem-
ory on hugetlbfs. This is done by specifying mem-prealloc and mem-path when executing

7.31. Vhost Sample Application 459

DPDK documentation, Release 16.04.0

QEMU. The vhost-net sample code accesses the virtio-net device’s virtual rings and packet
buffers by finding and mapping the VM’s physical memory on hugetlbfs. In this case, the path
passed to the guest should be that of the 1 GB page hugetlbfs:

qemu-system-x86_64 ... -mem-prealloc -mem-path /dev/hugepages ...

Note: This process is automated in the QEMU Wrapper Script . The following two sections
only applies to vhost cuse. For vhost-user, please make corresponding changes to qemu-
wrapper script and guest XML file.

QEMU Wrapper Script

The QEMU wrapper script automatically detects and calls QEMU with the necessary parame-
ters required to integrate with the vhost sample code. It performs the following actions:

• Automatically detects the location of the hugetlbfs and inserts this into the command line
parameters.

• Automatically open file descriptors for each virtio-net device and inserts this into the
command line parameters.

• Disables offloads on each virtio-net device.

• Calls Qemu passing both the command line parameters passed to the script itself and
those it has auto-detected.

The QEMU wrapper script will automatically configure calls to QEMU:

qemu-wrap.py -machine pc-i440fx-1.4,accel=kvm,usb=off \
-cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1 \
-netdev tap,id=hostnet1,vhost=on \
-device virtio-net-pci,netdev=hostnet1,id=net1 \
-hda <disk img> -m 4096

which will become the following call to QEMU:

qemu-system-x86_64 -machine pc-i440fx-1.4,accel=kvm,usb=off \
-cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1 \
-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci,netdev=hostnet1,id=net1, \
csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off \
-hda <disk img> -m 4096 -mem-path /dev/hugepages -mem-prealloc

Libvirt Integration

The QEMU wrapper script (qemu-wrap.py) “wraps” libvirt calls to QEMU, such that QEMU is
called with the correct parameters described above. To call the QEMU wrapper automatically
from libvirt, the following configuration changes must be made:

• Place the QEMU wrapper script in libvirt’s binary search PATH ($PATH). A good location
is in the directory that contains the QEMU binary.

• Ensure that the script has the same owner/group and file permissions as the QEMU
binary.

• Update the VM xml file using virsh edit <vm name>:

7.31. Vhost Sample Application 460

DPDK documentation, Release 16.04.0

– Set the VM to use the launch script

– Set the emulator path contained in the #<emulator><emulator/> tags For example,
replace <emulator>/usr/bin/qemu-kvm<emulator/> with <emulator>/usr/bin/qemu-
wrap.py<emulator/>

– Set the VM’s virtio-net device’s to use vhost-net offload:

<interface type="network">
<model type="virtio"/>
<driver name="vhost"/>
<interface/>

– Enable libvirt to access the DPDK Vhost sample code’s character device file by
adding it to controllers cgroup for libvirtd using the following steps:

cgroup_controllers = [... "devices", ...] clear_emulator_capabilities = 0
user = "root" group = "root"
cgroup_device_acl = [

"/dev/null", "/dev/full", "/dev/zero",
"/dev/random", "/dev/urandom",
"/dev/ptmx", "/dev/kvm", "/dev/kqemu",
"/dev/rtc", "/dev/hpet", "/dev/net/tun",
"/dev/<devbase-name>-<index>",

]

• Disable SELinux or set to permissive mode.

• Mount cgroup device controller:

mkdir /dev/cgroup
mount -t cgroup none /dev/cgroup -o devices

• Restart the libvirtd system process

For example, on Fedora* “systemctl restart libvirtd.service”

• Edit the configuration parameters section of the script:

– Configure the “emul_path” variable to point to the QEMU emulator.

emul_path = "/usr/local/bin/qemu-system-x86_64"

– Configure the “us_vhost_path” variable to point to the DPDK vhost-net sample
code’s character devices name. DPDK vhost-net sample code’s character device
will be in the format “/dev/<basename>”.

us_vhost_path = "/dev/usvhost"

Common Issues

• QEMU failing to allocate memory on hugetlbfs, with an error like the following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory

When running QEMU the above error indicates that it has failed to allocate memory for
the Virtual Machine on the hugetlbfs. This is typically due to insufficient hugepages being
free to support the allocation request. The number of free hugepages can be checked as
follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU’s allo-
cation request.

7.31. Vhost Sample Application 461

DPDK documentation, Release 16.04.0

• User space VHOST when the guest has 2MB sized huge pages:

The guest may have 2MB or 1GB sized huge pages. The user space VHOST should
work properly in both cases.

• User space VHOST will not work with QEMU without the -mem-prealloc option:

The current implementation works properly only when the guest memory is pre-allocated,
so it is required to use a QEMU version (e.g. 1.6) which supports -mem-prealloc. The
-mem-prealloc option must be specified explicitly in the QEMU command line.

• User space VHOST will not work with a QEMU version without shared memory mapping:

As shared memory mapping is mandatory for user space VHOST to work properly with
the guest, user space VHOST needs access to the shared memory from the guest to
receive and transmit packets. It is important to make sure the QEMU version supports
shared memory mapping.

• In an Ubuntu environment, QEMU fails to start a new guest normally with user space
VHOST due to not being able to allocate huge pages for the new guest:

The solution for this issue is to add -boot c into the QEMU command line to make sure
the huge pages are allocated properly and then the guest should start normally.

Use cat /proc/meminfo to check if there is any changes in the value of
HugePages_Total and HugePages_Free after the guest startup.

• Log message: eventfd_link: module verification failed: signature
and/or required key missing - tainting kernel:

This log message may be ignored. The message occurs due to the kernel module
eventfd_link, which is not a standard Linux module but which is necessary for the
user space VHOST current implementation (CUSE-based) to communicate with the
guest.

7.31.8 Running DPDK in the Virtual Machine

For the DPDK vhost-net sample code to switch packets into the VM, the sample code must first
learn the MAC address of the VM’s virtio-net device. The sample code detects the address
from packets being transmitted from the VM, similar to a learning switch.

This behavior requires no special action or configuration with the Linux* virtio-net driver in
the VM as the Linux* Kernel will automatically transmit packets during device initialization.
However, DPDK-based applications must be modified to automatically transmit packets during
initialization to facilitate the DPDK vhost- net sample code’s MAC learning.

The DPDK testpmd application can be configured to automatically transmit packets during
initialization and to act as an L2 forwarding switch.

Testpmd MAC Forwarding

At high packet rates, a minor packet loss may be observed. To resolve this issue, a “wait and
retry” mode is implemented in the testpmd and vhost sample code. In the “wait and retry”
mode if the virtqueue is found to be full, then testpmd waits for a period of time before retrying
to enqueue packets.

7.31. Vhost Sample Application 462

DPDK documentation, Release 16.04.0

The “wait and retry” algorithm is implemented in DPDK testpmd as a forwarding method call
“mac_retry”. The following sequence diagram describes the algorithm in detail.

Fig. 7.25: Packet Flow on TX in DPDK-testpmd

Running Testpmd

The testpmd application is automatically built when DPDK is installed. Run the testpmd appli-
cation as follows:

cd ${RTE_SDK}/x86_64-native-linuxapp-gcc/app
./testpmd -c 0x3 -n 4 --socket-mem 512 \
-- --burst=64 --i --disable-hw-vlan-filter

The destination MAC address for packets transmitted on each port can be set at the command
line:

./testpmd -c 0x3 -n 4 --socket-mem 512 \
-- --burst=64 --i --disable-hw-vlan-filter \
--eth-peer=0,aa:bb:cc:dd:ee:ff --eth-peer=1,ff:ee:dd:cc:bb:aa

• Packets received on port 1 will be forwarded on port 0 to MAC address

7.31. Vhost Sample Application 463

DPDK documentation, Release 16.04.0

aa:bb:cc:dd:ee:ff

• Packets received on port 0 will be forwarded on port 1 to MAC address

ff:ee:dd:cc:bb:aa

The testpmd application can then be configured to act as an L2 forwarding application:

testpmd> set fwd mac_retry

The testpmd can then be configured to start processing packets, transmitting packets first so
the DPDK vhost sample code on the host can learn the MAC address:

testpmd> start tx_first

Note: Please note “set fwd mac_retry” is used in place of “set fwd mac_fwd” to ensure the
retry feature is activated.

7.31.9 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the
virtio-net device’s MAC address and VLAN tag. The DPDK sample code behaves in a similar
manner to a learning switch in that it learns the MAC address of the virtio-net devices from the
first transmitted packet. On learning the MAC address, the DPDK vhost sample code prints a
message with the MAC address and VLAN tag virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VLAN_TAG 1000 registered

The above message indicates that device 0 has been registered with MAC address
cc:bb:bb:bb:bb:bb and VLAN tag 1000. Any packets received on the NIC with these values
is placed on the devices receive queue. When a virtio-net device transmits packets, the VLAN
tag is added to the packet by the DPDK vhost sample code.

7.32 Netmap Compatibility Sample Application

7.32.1 Introduction

The Netmap compatibility library provides a minimal set of APIs to give programs written
against the Netmap APIs the ability to be run, with minimal changes to their source code,
using the DPDK to perform the actual packet I/O.

Since Netmap applications use regular system calls, like open(), ioctl() and mmap() to
communicate with the Netmap kernel module performing the packet I/O, the compat_netmap
library provides a set of similar APIs to use in place of those system calls, effectively turning a
Netmap application into a DPDK application.

The provided library is currently minimal and doesn’t support all the features that Netmap
supports, but is enough to run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section. Please refer to the
Netmap distribution for details about Netmap.

7.32. Netmap Compatibility Sample Application 464

DPDK documentation, Release 16.04.0

7.32.2 Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap
applications:

• rte_netmap_close()

• rte_netmap_ioctl()

• rte_netmap_open()

• rte_netmap_mmap()

• rte_netmap_poll()

They use the same signature as their libc counterparts, and can be used as drop-in replace-
ments in most cases.

7.32.3 Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O, there are
caveats and limitations to be aware of when trying to use the compat_netmap library, the
most important of these are listed below. These may change as the library is updated:

• Any system call that can potentially affect file descriptors cannot be used with a descriptor
returned by the rte_netmap_open() function.

Note that:

• The rte_netmap_mmap() function merely returns the address of a DPDK memzone.
The address, length, flags, offset, and other arguments are ignored.

• The rte_netmap_poll() function only supports infinite (negative) or zero time outs.
It effectively turns calls to the poll() system call made in a Netmap application into
polling of the DPDK ports, changing the semantics of the usual POSIX defined poll.

• Not all of Netmap’s features are supported: host rings, slot flags and so on are not
supported or are simply not relevant in the DPDK model.

• The Netmap manual page states that “a device obtained through /dev/netmap also sup-
ports the ioctl supported by network devices”. This is not the case with this compatibility
layer.

• The Netmap kernel module exposes a sysfs interface to change some internal parame-
ters, such as the size of the shared memory region. This interface is not available when
using this compatibility layer.

7.32.4 Porting Netmap Applications

Porting Netmap applications typically involves two major steps:

• Changing the system calls to use their compat_netmap library counterparts.

• Adding further DPDK initialization code.

Since the compat_netmap functions have the same signature as the usual libc calls, the
change is trivial in most cases.

7.32. Netmap Compatibility Sample Application 465

DPDK documentation, Release 16.04.0

The usual DPDK initialization code involving rte_eal_init() and rte_eal_pci_probe()
has to be added to the Netmap application in the same way it is used in all other DPDK sample
applications. Please refer to the DPDK Programmer’s Guide and example source code for
details about initialization.

In addition of the regular DPDK initialization code, the ported application needs to call
initialization functions for the compat_netmap library, namely rte_netmap_init() and
rte_netmap_init_port().

These two initialization functions take compat_netmap specific data structures as parameters:
struct rte_netmap_conf and struct rte_netmap_port_conf. The structures’ fields
are Netmap related and are self-explanatory for developers familiar with Netmap. They are
defined in $RTE_SDK/examples/netmap_compat/lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with
the Netmap distribution. It shows how a minimal Netmap application with minimal and
straightforward source code changes can be run on top of the DPDK. Please refer to
$RTE_SDK/examples/netmap_compat/bridge/bridge.c for an example of a ported
application.

7.32.5 Compiling the “bridge” Sample Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/netmap_compat

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for Linux for possible RTE_TARGET values.

3. Build the application:

make

7.32.6 Running the “bridge” Sample Application

The application requires a single command line option:

./build/bridge [EAL options] -- -i INTERFACE_A [-i INTERFACE_B]

where,

• -i INTERFACE: Interface (DPDK port number) to use.

If a single -i parameter is given, the interface will send back all the traffic it receives. If
two -i parameters are given, the two interfaces form a bridge, where traffic received on
one interface is replicated and sent to the other interface.

For example, to run the application in a linuxapp environment using port 0 and 2:

./build/bridge [EAL options] -- -i 0 -i 2

Refer to the DPDK Getting Started Guide for Linux for general information on running applica-
tions and the Environment Abstraction Layer (EAL) options.

7.32. Netmap Compatibility Sample Application 466

DPDK documentation, Release 16.04.0

Note that unlike a traditional bridge or the l2fwd sample application, no MAC address changes
are done on the frames. Do not forget to take this into account when configuring a traffic
generators and testing this sample application.

7.33 Internet Protocol (IP) Pipeline Application

7.33.1 Application overview

The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development
of packet processing applications running on multi-core CPUs.

The application provides a library of reusable functional blocks called pipelines. These
pipelines can be seen as prefabricated blocks that can be instantiated and inter-connected
through packet queues to create complete applications (super-pipelines).

Pipelines are created and inter-connected through the application configuration file. By using
different configuration files, different applications are effectively created, therefore this appli-
cation can be seen as an application generator. The configuration of each pipeline can be
updated at run-time through the application Command Line Interface (CLI).

Main application components are:

A Library of reusable pipelines

• Each pipeline represents a functional block, e.g. flow classification, firewall, routing,
master, etc.

• Each pipeline type can be instantiated several times in the same application, which each
instance configured separately and mapped to a single CPU core. Each CPU core can
run one or several pipeline instances, which can be of same or different type.

• Pipeline instances are inter-connected through packet queues (for packet processing)
and message queues (for run-time configuration).

• Pipelines are implemented using DPDK Packet Framework.

• More pipeline types can always be built and added to the existing pipeline types.

The Configuration file

• The configuration file defines the application structure. By using different configuration
files, different applications are created.

• All the application resources are created and configured through the application configu-
ration file: pipeline instances, buffer pools, links (i.e. network interfaces), hardware device
RX/TX queues, software queues, traffic manager devices, EAL startup arguments, etc.

• The configuration file syntax is “define by reference”, meaning that resources are defined
as they are referenced. First time a resource name is detected, it is registered with
default parameters. Optionally, the resource parameters can be further refined through a
configuration file section dedicated to that resource.

• Command Line Interface (CLI)

Global CLI commands: link configuration, etc.

• Common pipeline CLI commands: ping (keep-alive), statistics, etc.

7.33. Internet Protocol (IP) Pipeline Application 467

DPDK documentation, Release 16.04.0

• Pipeline type specific CLI commands: used to configure instances of specific pipeline
type. These commands are registered with the application when the pipeline type is
registered. For example, the commands for routing pipeline instances include: route
add, route delete, route list, etc.

• CLI commands can be grouped into scripts that can be invoked at initialization and at
runtime.

7.33.2 Design goals

Rapid development

This application enables rapid development through quick connectivity of standard components
called pipelines. These components are built using DPDK Packet Framework and encapsulate
packet processing features at different levels: ports, tables, actions, pipelines and complete
applications.

Pipeline instances are instantiated, configured and inter-connected through low complexity
configuration files loaded during application initialization. Each pipeline instance is mapped to
a single CPU core, with each CPU core able to run one or multiple pipeline instances of same
or different types. By loading a different configuration file, a different application is effectively
started.

Flexibility

Each packet processing application is typically represented as a chain of functional stages
which is often called the functional pipeline of the application. These stages are mapped to
CPU cores to create chains of CPU cores (pipeline model), clusters of CPU cores (run-to-
completion model) or chains of clusters of CPU cores (hybrid model).

This application allows all the above programming models. By applying changes to the con-
figuration file, the application provides the flexibility to reshuffle its building blocks in different
ways until the configuration providing the best performance is identified.

Move pipelines around

The mapping of pipeline instances to CPU cores can be reshuffled through the configuration
file. One or several pipeline instances can be mapped to the same CPU core.

Fig. 7.26: Example of moving pipeline instances across different CPU cores

Move tables around

There is some degree of flexibility for moving tables from one pipeline instance to another.
Based on the configuration arguments passed to each pipeline instance in the configuration
file, specific tables can be enabled or disabled. This way, a specific table can be “moved” from
pipeline instance A to pipeline instance B by simply disabling its associated functionality for
pipeline instance A while enabling it for pipeline instance B.

7.33. Internet Protocol (IP) Pipeline Application 468

DPDK documentation, Release 16.04.0

Due to requirement to have simple syntax for the configuration file, moving tables across dif-
ferent pipeline instances is not as flexible as the mapping of pipeline instances to CPU cores,
or mapping actions to pipeline tables. Complete flexibility in moving tables from one pipeline to
another could be achieved through a complex pipeline description language that would detail
the structural elements of the pipeline (ports, tables and actions) and their connectivity, result-
ing in complex syntax for the configuration file, which is not acceptable. Good configuration file
readability through simple syntax is preferred.

Example: the IP routing pipeline can run the routing function only (with ARP function run by
a different pipeline instance), or it can run both the routing and ARP functions as part of the
same pipeline instance.

Fig. 7.27: Example of moving tables across different pipeline instances

Move actions around

When it makes sense, packet processing actions can be moved from one pipeline instance
to another. Based on the configuration arguments passed to each pipeline instance in the
configuration file, specific actions can be enabled or disabled. This way, a specific action can
be “moved” from pipeline instance A to pipeline instance B by simply disabling its associated
functionality for pipeline instance A while enabling it for pipeline instance B.

Example: The flow actions of accounting, traffic metering, application identification, NAT, etc
can be run as part of the flow classification pipeline instance or split across several flow ac-
tions pipeline instances, depending on the number of flow instances and their compute require-
ments.

Fig. 7.28: Example of moving actions across different tables and pipeline instances

Performance

Performance of the application is the highest priority requirement. Flexibility is not provided at
the expense of performance.

The purpose of flexibility is to provide an incremental development methodology that allows
monitoring the performance evolution:

• Apply incremental changes in the configuration (e.g. mapping on pipeline instances to
CPU cores) in order to identify the configuration providing the best performance for a
given application;

• Add more processing incrementally (e.g. by enabling more actions for specific pipeline in-
stances) until the application is feature complete while checking the performance impact
at each step.

Debug capabilities

The application provides a significant set of debug capabilities:

7.33. Internet Protocol (IP) Pipeline Application 469

DPDK documentation, Release 16.04.0

• Command Line Interface (CLI) support for statistics polling: pipeline instance ping (keep-
alive checks), pipeline instance statistics per input port/output port/table, link statistics,
etc;

• Logging: Turn on/off application log messages based on priority level;

7.33.3 Running the application

The application startup command line is:

ip_pipeline [-f CONFIG_FILE] [-s SCRIPT_FILE] -p PORT_MASK [-l LOG_LEVEL]

The application startup arguments are:

-f CONFIG_FILE

• Optional: Yes

• Default: ./config/ip_pipeline.cfg

• Argument: Path to the configuration file to be loaded by the application. Please refer to
the Configuration file syntax for details on how to write the configuration file.

-s SCRIPT_FILE

• Optional: Yes

• Default: Not present

• Argument: Path to the CLI script file to be run by the master pipeline at application
startup. No CLI script file will be run at startup of this argument is not present.

-p PORT_MASK

• Optional: No

• Default: N/A

• Argument: Hexadecimal mask of NIC port IDs to be used by the application. First port
enabled in this mask will be referenced as LINK0 as part of the application configuration
file, next port as LINK1, etc.

-l LOG_LEVEL

• Optional: Yes

• Default: 1 (High priority)

• Argument: Log level to determine which application messages are to be printed to stan-
dard output. Available log levels are: 0 (None), 1 (High priority), 2 (Low priority). Only
application messages whose priority is higher than or equal to the application log level
will be printed.

7.33.4 Application stages

Configuration

During this stage, the application configuration file is parsed and its content is loaded into the
application data structures. In case of any configuration file parse error, an error message is

7.33. Internet Protocol (IP) Pipeline Application 470

DPDK documentation, Release 16.04.0

displayed and the application is terminated. Please refer to the Configuration file syntax for a
description of the application configuration file format.

Configuration checking

In the absence of any parse errors, the loaded content of application data structures is checked
for overall consistency. In case of any configuration check error, an error message is displayed
and the application is terminated.

Initialization

During this stage, the application resources are initialized and the handles to access them are
saved into the application data structures. In case of any initialization error, an error message
is displayed and the application is terminated.

The typical resources to be initialized are: pipeline instances, buffer pools, links (i.e. network
interfaces), hardware device RX/TX queues, software queues, traffic management devices,
etc.

Run-time

Each CPU core runs the pipeline instances assigned to it in time sharing mode and in round
robin order:

1. Packet processing task : The pipeline run-time code is typically a packet processing task
built on top of DPDK Packet Framework rte_pipeline library, which reads bursts of packets
from the pipeline input ports, performs table lookups and executes the identified actions
for all tables in the pipeline, with packet eventually written to pipeline output ports or
dropped.

2. Message handling task : Each CPU core will also periodically execute the message han-
dling code of each of the pipelines mapped to it. The pipeline message handling code is
processing the messages that are pending in the pipeline input message queues, which
are typically sent by the master CPU core for the on-the-fly pipeline configuration: check
that pipeline is still alive (ping), add/delete entries in the pipeline tables, get statistics, etc.
The frequency of executing the message handling code is usually much smaller than the
frequency of executing the packet processing work.

Please refer to the PIPELINE section for more details about the application pipeline module
encapsulation.

7.33.5 Configuration file syntax

Syntax overview

The syntax of the configuration file is designed to be simple, which favors readability. The
configuration file is parsed using the DPDK library librte_cfgfile, which supports simple INI file
format for configuration files.

As result, the configuration file is split into several sections, with each section containing one
or more entries. The scope of each entry is its section, and each entry specifies a variable that

7.33. Internet Protocol (IP) Pipeline Application 471

http://en.wikipedia.org/wiki/INI_file
http://en.wikipedia.org/wiki/INI_file

DPDK documentation, Release 16.04.0

is assigned a specific value. Any text after the ; character is considered a comment and is
therefore ignored.

The following are application specific: number of sections, name of each section, number of
entries of each section, name of the variables used for each section entry, the value format
(e.g. signed/unsigned integer, string, etc) and range of each section entry variable.

Generic example of configuration file section:

[<section_name>]

<variable_name_1> = <value_1>

...

<variable_name_N> = <value_N>

Application resources present in the configuration file

Table 7.3: Application resource names in the configuration file

Resource type Format Examples
Pipeline PIPELINE<ID> PIPELINE0, PIPELINE1
Mempool MEMPOOL<ID> MEMPOOL0, MEMPOOL1
Link (network interface) LINK<ID> LINK0, LINK1
Link RX queue RXQ<LINK_ID>.<QUEUE_ID> RXQ0.0, RXQ1.5
Link TX queue TXQ<LINK_ID>.<QUEUE_ID> TXQ0.0, TXQ1.5
Software queue SWQ<ID> SWQ0, SWQ1
Traffic Manager TM<LINK_ID> TM0, TM1
Source SOURCE<ID> SOURCE0, SOURCE1
Sink SINK<ID> SINK0, SINK1
Message queue MSGQ<ID>

MSGQ-REQ-PIPELINE<ID>
MSGQ-RSP-PIPELINE<ID>
MSGQ-REQ-CORE-<CORE_ID>
MSGQ-RSP-CORE-<CORE_ID>

MSGQ0, MSGQ1,
MSGQ-REQ-PIPELINE2,
MSGQ-RSP-PIPELINE2,
MSGQ-REQ-CORE-s0c1,
MSGQ-RSP-CORE-s0c1

LINK instances are created implicitly based on the PORT_MASK application startup argument.
LINK0 is the first port enabled in the PORT_MASK, port 1 is the next one, etc. The LINK ID
is different than the DPDK PMD-level NIC port ID, which is the actual position in the bitmask
mentioned above. For example, if bit 5 is the first bit set in the bitmask, then LINK0 is hav-
ing the PMD ID of 5. This mechanism creates a contiguous LINK ID space and isolates the
configuration file against changes in the board PCIe slots where NICs are plugged in.

RXQ, TXQ and TM instances have the LINK ID as part of their name. For example, RXQ2.1,
TXQ2.1 and TM2 are all associated with LINK2.

Rules to parse the configuration file

The main rules used to parse the configuration file are:

1. Application resource name determines the type of resource based on the name prefix.

Example: all software queues need to start with SWQ prefix, so SWQ0 and SWQ5 are valid
software queue names.

7.33. Internet Protocol (IP) Pipeline Application 472

DPDK documentation, Release 16.04.0

2. An application resource is defined by creating a configuration file section with its name.
The configuration file section allows fine tuning on any of the resource parameters. Some
resource parameters are mandatory, in which case it is required to have them specified
as part of the section, while some others are optional, in which case they get assigned
their default value when not present.

Example: section SWQ0 defines a software queue named SWQ0, whose parameters are
detailed as part of this section.

3. An application resource can also be defined by referencing it. Referencing a resource
takes place by simply using its name as part of the value assigned to a variable in any
configuration file section. In this case, the resource is registered with all its parameters
having their default values. Optionally, a section with the resource name can be added
to the configuration file to fine tune some or all of the resource parameters.

Example: in section PIPELINE3, variable pktq_in includes SWQ5 as part of its list,
which results in defining a software queue named SWQ5; when there is no SWQ5 section
present in the configuration file, SWQ5 gets registered with default parameters.

PIPELINE section

Table 7.4: Configuration file PIPELINE section (1/2)

Section Description Optional Range Default
value

type Pipeline type. Defines the functionality to
be executed.

NO See
“List of
pipeline
types”

N/A

core CPU core to run the current pipeline. YES See
“CPU
Core
notation”

CPU
socket
0, core
0, hyper-
thread
0

pktq_in Packet queues to serve as input ports for
the current pipeline instance. The accept-
able packet queue types are: RXQ, SWQ,
TM and SOURCE. First device in this list is
used as pipeline input port 0, second as
pipeline input port 1, etc.

YES List of
input
packet
queue
IDs

Empty
list

pktq_out Packet queues to serve as output ports
for the current pipeline instance. The ac-
ceptable packet queue types are: TXQ,
SWQ, TM and SINK. First device in this list
is used as pipeline output port 0, second
as pipeline output port 1, etc.

YES List of
output
packet
queue
IDs.

Empty
list

7.33. Internet Protocol (IP) Pipeline Application 473

DPDK documentation, Release 16.04.0

Table 7.5: Configuration file PIPELINE section (2/2)

Section Description Optional Range Default
value

msgq_in Input message queues. These queues
contain request messages that need
to be handled by the current pipeline
instance. The type and format of
request messages is defined by the
pipeline type. For each pipeline in-
stance, there is an input message
queue defined implicitly, whose name is:
MSGQ-REQ-<PIPELINE_ID>. This mes-
sage queue should not be mentioned as
part of msgq_in list.

YES List of
mes-
sage
queue
IDs

Empty
list

msgq_out Output message queues. These queues
are used by the current pipeline instance
to write response messages as result of
request messages being handled. The
type and format of response messages
is defined by the pipeline type. For
each pipeline instance, there is an output
message queue defined implicitly, whose
name is: MSGQ-RSP-<PIPELINE_ID>.
This message queue should not be men-
tioned as part of msgq_out list.

YES List of
mes-
sage
queue
IDs

Empty
list

timer_period Time period, measured in milliseconds,
for handling the input message queues.

YES milliseconds1 ms

<any other> Arguments to be passed to the current
pipeline instance. Format of the argu-
ments, their type, whether each argument
is optional or mandatory and its default
value (when optional) are defined by the
pipeline type. The value of the arguments
is applicable to the current pipeline in-
stance only.

Depends
on
pipeline
type

Depends
on
pipeline
type

Depends
on
pipeline
type

CPU core notation

The CPU Core notation is:

<CPU core> ::= [s|S<CPU socket ID>][c|C]<CPU core ID>[h|H]

For example:

CPU socket 0, core 0, hyper-thread 0: 0, c0, s0c0

CPU socket 0, core 0, hyper-thread 1: 0h, c0h, s0c0h

CPU socket 3, core 9, hyper-thread 1: s3c9h

7.33. Internet Protocol (IP) Pipeline Application 474

DPDK documentation, Release 16.04.0

MEMPOOL section

Table 7.6: Configuration file MEMPOOL section

Section Description Optional Type Default value
buffer_size Buffer size (in bytes) for the current

buffer pool.
YES uint32_t 2048 +

sizeof(struct
rte_mbuf) +
HEADROOM

pool_size Number of buffers in the current
buffer pool.

YES uint32_t 32K

cache_size Per CPU thread cache size (in num-
ber of buffers) for the current buffer
pool.

YES uint32_t 256

cpu CPU socket ID where to allocate
memory for the current buffer pool.

YES uint32_t 0

LINK section

Table 7.7: Configuration file LINK section

Section entry Description Optional Type Default
value

arp_q NIC RX queue where ARP packets
should be filtered.

YES 0 .. 127 0 (default
queue)

tcp_syn_local_q NIC RX queue where TCP packets with
SYN flag should be filtered.

YES 0 .. 127 0 (default
queue)

ip_local_q NIC RX queue where IP packets with lo-
cal destination should be filtered. When
TCP, UDP and SCTP local queues are
defined, they take higher priority than this
queue.

YES 0 .. 127 0 (default
queue)

tcp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

udp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

sctp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

promisc Indicates whether current link should be
started in promiscuous mode.

YES YES/NO YES

7.33. Internet Protocol (IP) Pipeline Application 475

DPDK documentation, Release 16.04.0

RXQ section

Table 7.8: Configuration file RXQ section

Section Description Optional Type Default
value

mempool Mempool to use for buffer allocation for
current NIC RX queue. The mempool ID
has to be associated with a valid instance
defined in the mempool entry of the global
section.

YES uint32_t MEMPOOL0

Size NIC RX queue size (number of descrip-
tors)

YES uint32_t 128

burst Read burst size (number of descriptors) YES uint32_t 32

TXQ section

Table 7.9: Configuration file TXQ section

Section Description Optional Type Default
value

size NIC TX queue size (number of descrip-
tors)

YES uint32_t
power of 2
> 0

512

burst Write burst size (number of descriptors) YES uint32_t
power of 2
0 < burst <
size

32

dropless When dropless is set to NO, packets can
be dropped if not enough free slots are
currently available in the queue, so the
write operation to the queue is non- block-
ing. When dropless is set to YES, pack-
ets cannot be dropped if not enough free
slots are currently available in the queue,
so the write operation to the queue is
blocking, as the write operation is retried
until enough free slots become available
and all the packets are successfully writ-
ten to the queue.

YES YES/NO NO

n_retries Number of retries. Valid only when drop-
less is set to YES. When set to 0, it indi-
cates unlimited number of retries.

YES uint32_t 0

7.33. Internet Protocol (IP) Pipeline Application 476

DPDK documentation, Release 16.04.0

SWQ section

Table 7.10: Configuration file SWQ section

Section Description Optional Type Default
value

size Queue size (number of packets) YES uint32_t
power of
2

256

burst_read Read burst size (number of packets) YES uint32_t
power
of 2 0 <
burst <
size

32

burst_write Write burst size (number of packets) YES uint32_t
power
of 2 0 <
burst <
size

32

dropless When dropless is set to NO, packets can
be dropped if not enough free slots are
currently available in the queue, so the
write operation to the queue is non- block-
ing. When dropless is set to YES, pack-
ets cannot be dropped if not enough free
slots are currently available in the queue,
so the write operation to the queue is
blocking, as the write operation is retried
until enough free slots become available
and all the packets are successfully writ-
ten to the queue.

YES YES/NO NO

n_retries Number of retries. Valid only when drop-
less is set to YES. When set to 0, it indi-
cates unlimited number of retries.

YES uint32_t 0

cpu CPU socket ID where to allocate memory
for this SWQ.

YES uint32_t 0

TM section

Table 7.11: Configuration file TM section

Section Description Optional Type Default
value

Cfg File name to parse for the TM configura-
tion to be applied. The syntax of this file
is described in the examples/qos_sched
DPDK application documentation.

YES string tm_profile

burst_read Read burst size (number of packets) YES uint32_t 64
burst_write Write burst size (number of packets) YES uint32_t 32

7.33. Internet Protocol (IP) Pipeline Application 477

DPDK documentation, Release 16.04.0

SOURCE section

Table 7.12: Configuration file SOURCE section

Section Description Optional Type Default
value

Mempool Mempool to use for buffer allocation. YES uint32_t MEMPOOL0
Burst Read burst size (number of packets) uint32_t 32

SINK section

Currently, there are no parameters to be passed to a sink device, so SINK section is not
allowed.

MSGQ section

Table 7.13: Configuration file MSGQ section

Section Description Optional Type Default
value

size Queue size (number of packets) YES uint32_t
!= 0
power of
2

64

cpu CPU socket ID where to allocate memory
for the current queue.

YES uint32_t 0

EAL section

The application generates the EAL parameters rather than reading them from the command
line.

The CPU core mask parameter is generated based on the core entry of all PIPELINE sections.
All the other EAL parameters can be set from this section of the application configuration file.

7.33.6 Library of pipeline types

Pipeline module

A pipeline is a self-contained module that implements a packet processing function and is
typically implemented on top of the DPDK Packet Framework librte_pipeline library. The appli-
cation provides a run-time mechanism to register different pipeline types.

Depending on the required configuration, each registered pipeline type (pipeline class) is in-
stantiated one or several times, with each pipeline instance (pipeline object) assigned to one of
the available CPU cores. Each CPU core can run one or more pipeline instances, which might
be of same or different types. For more information of the CPU core threading model, please
refer to the Run-time section.

7.33. Internet Protocol (IP) Pipeline Application 478

DPDK documentation, Release 16.04.0

Pipeline type

Each pipeline type is made up of a back-end and a front-end. The back-end represents the
packet processing engine of the pipeline, typically implemented using the DPDK Packet Frame-
work libraries, which reads packets from the input packet queues, handles them and eventually
writes them to the output packet queues or drops them. The front-end represents the run-time
configuration interface of the pipeline, which is exposed as CLI commands. The front-end
communicates with the back-end through message queues.

Table 7.14: Pipeline back-end

Field
name

Field type Description

f_init Function
pointer

Function to initialize the back-end of the current pipeline instance. Typ-
ical work implemented by this function for the current pipeline instance:
Memory allocation; Parse the pipeline type specific arguments; Initial-
ize the pipeline input ports, output ports and tables, interconnect input
ports to tables; Set the message handlers.

f_free Function
pointer

Function to free the resources allocated by the back-end of the current
pipeline instance.

f_run Function
pointer

Set to NULL for pipelines implemented using the DPDK library li-
brte_pipeline (typical case), and to non-NULL otherwise. This mech-
anism is made available to support quick integration of legacy code.
This function is expected to provide the packet processing related code
to be called as part of the CPU thread dispatch loop, so this function is
not allowed to contain an infinite loop.

f_timer Function
pointer

Function to read the pipeline input message queues, handle the re-
quest messages, create response messages and write the response
queues. The format of request and response messages is defined
by each pipeline type, with the exception of some requests which are
mandatory for all pipelines (e.g. ping, statistics).

f_track Function
pointer

See section Tracking pipeline output port to physical link

Table 7.15: Pipeline front-end

Field
name

Field type Description

f_init Function
pointer

Function to initialize the front-end of the current pipeline instance.

f_free Function
pointer

Function to free the resources allocated by the front-end of the current
pipeline instance.

cmds Array of CLI
commands

Array of CLI commands to be registered to the application CLI for the
current pipeline type. Even though the CLI is executed by a different
pipeline (typically, this is the master pipeline), from modularity perspec-
tive is more efficient to keep the message client side (part of the front-
end) together with the message server side (part of the back-end).

7.33. Internet Protocol (IP) Pipeline Application 479

DPDK documentation, Release 16.04.0

Tracking pipeline output port to physical link

Each pipeline instance is a standalone block that does not have visibility into the other pipeline
instances or the application-level pipeline inter-connectivity. In some cases, it is useful for a
pipeline instance to get application level information related to pipeline connectivity, such as to
identify the output link (e.g. physical NIC port) where one of its output ports connected, either
directly or indirectly by traversing other pipeline instances.

Tracking can be successful or unsuccessful. Typically, tracking for a specific pipeline instance
is successful when each one of its input ports can be mapped to a single output port, meaning
that all packets read from the current input port can only go out on a single output port. De-
pending on the pipeline type, some exceptions may be allowed: a small portion of the packets,
considered exception packets, are sent out on an output port that is pre-configured for this
purpose.

For pass-through pipeline type, the tracking is always successful. For pipeline types as flow
classification, firewall or routing, the tracking is only successful when the number of output
ports for the current pipeline instance is 1.

This feature is used by the IP routing pipeline for adding/removing implicit routes every time a
link is brought up/down.

Table copies

Fast table copy: pipeline table used by pipeline for the packet processing task, updated through
messages, table data structures are optimized for lookup operation.

Slow table copy: used by the configuration layer, typically updated through CLI commands,
kept in sync with the fast copy (its update triggers the fast copy update). Required for executing
advanced table queries without impacting the packet processing task, therefore the slow copy
is typically organized using different criteria than the fast copy.

Examples:

• Flow classification: Search through current set of flows (e.g. list all flows with a specific
source IP address);

• Firewall: List rules in descending order of priority;

• Routing table: List routes sorted by prefix depth and their type (local, remote, default);

• ARP: List entries sorted per output interface.

Packet meta-data

Packet meta-data field offsets provided as argument to pipeline instances are essentially defin-
ing the data structure for the packet meta-data used by the current application use-case. It is
very useful to put it in the configuration file as a comment in order to facilitate the readability of
the configuration file.

The reason to use field offsets for defining the data structure for the packet meta-data is due
to the C language limitation of not being able to define data structures at run-time. Feature to
consider: have the configuration file parser automatically generate and print the data structure
defining the packet meta-data for the current application use-case.

7.33. Internet Protocol (IP) Pipeline Application 480

DPDK documentation, Release 16.04.0

Packet meta-data typically contains:

1. Pure meta-data: intermediate data per packet that is computed internally, passed be-
tween different tables of the same pipeline instance (e.g. lookup key for the ARP table
is obtained from the routing table), or between different pipeline instances (e.g. flow ID,
traffic metering color, etc);

2. Packet fields: typically, packet header fields that are read directly from the packet, or read
from the packet and saved (duplicated) as a working copy at a different location within
the packet meta-data (e.g. Diffserv 5-tuple, IP destination address, etc).

Several strategies are used to design the packet meta-data, as described in the next subsec-
tions.

Store packet meta-data in a different cache line as the packet headers This approach is
able to support protocols with variable header length, like MPLS, where the offset of IP header
from the start of the packet (and, implicitly, the offset of the IP header in the packet buffer) is not
fixed. Since the pipelines typically require the specification of a fixed offset to the packet fields
(e.g. Diffserv 5-tuple, used by the flow classification pipeline, or the IP destination address,
used by the IP routing pipeline), the workaround is to have the packet RX pipeline copy these
fields at fixed offsets within the packet meta-data.

As this approach duplicates some of the packet fields, it requires accessing more cache lines
per packet for filling in selected packet meta-data fields (on RX), as well as flushing selected
packet meta-data fields into the packet (on TX).

Example:

; struct app_pkt_metadata {
; uint32_t ip_da;
; uint32_t hash;
; uint32_t flow_id;
; uint32_t color;
; } __attribute__((__packed__));
;

[PIPELINE1]
; Packet meta-data offsets
ip_da_offset = 0; Used by: routing
hash_offset = 4; Used by: RX, flow classification
flow_id_offset = 8; Used by: flow classification, flow actions
color_offset = 12; Used by: flow actions, routing

Overlay the packet meta-data in the same cache line with the packet headers This ap-
proach is minimizing the number of cache line accessed per packet by storing the packet
metadata in the same cache line with the packet headers. To enable this strategy, either some
headroom is reserved for meta-data at the beginning of the packet headers cache line (e.g. if
16 bytes are needed for meta-data, then the packet headroom can be set to 128+16 bytes, so
that NIC writes the first byte of the packet at offset 16 from the start of the first packet cache
line), or meta-data is reusing the space of some packet headers that are discarded from the
packet (e.g. input Ethernet header).

Example:

; struct app_pkt_metadata {
; uint8_t headroom[RTE_PKTMBUF_HEADROOM]; /* 128 bytes (default) */
; union {

7.33. Internet Protocol (IP) Pipeline Application 481

DPDK documentation, Release 16.04.0

; struct {
; struct ether_hdr ether; /* 14 bytes */
; struct qinq_hdr qinq; /* 8 bytes */
; };
; struct {
; uint32_t hash;
; uint32_t flow_id;
; uint32_t color;
; };
; };
; struct ipv4_hdr ip; /* 20 bytes */
; } __attribute__((__packed__));
;
[PIPELINE2]
; Packet meta-data offsets
qinq_offset = 142; Used by: RX, flow classification
ip_da_offset = 166; Used by: routing
hash_offset = 128; Used by: RX, flow classification
flow_id_offset = 132; Used by: flow classification, flow actions
color_offset = 136; Used by: flow actions, routing

7.33. Internet Protocol (IP) Pipeline Application 482

DPDK documentation, Release 16.04.0

List of pipeline types

Table 7.16: List of pipeline types provided with the application

Name Table(s) Actions Messages
Pass-through
Note: depending
on port type, can
be used for RX,
TX, IP fragmenta-
tion, IP reassem-
bly or Traffic Man-
agement

Passthrough
1. Pkt metadata

build
2. Flow hash
3. Pkt checks
4. Load balancing

1. Ping
2. Stats

Flow classifica-
tion

Exact match
• Key = byte array

(source: pkt metadata)
• Data = action depen-

dent

1. Flow ID
2. Flow stats
3. Metering
4. Network Address
5. Translation (NAT)

1. Ping
2. Stats
3. Flow stats
4. Action stats
5. Flow add/ update/

delete
6. Default flow add/

update/ delete
7. Action update

Flow actions Array
• Key = Flow ID (source:

pkt metadata)
• Data = action depen-

dent

1. Flow stats
2. Metering
3. Network Address
4. Translation (NAT)

1. Ping
2. Stats
3. Action stats
4. Action update

Firewall ACL
• Key = n-tuple (source:

pkt headers)
• Data = none

1. Allow/Drop 1. Ping
2. Stats
3. Rule add/ update/

delete
4. Default rule add/

update/ delete

IP routing LPM (IPv4 or IPv6, depend-
ing on pipeline type)

• Key = IP destination
(source: pkt metadata)

• Data = Dependent on
actions and next hop
type

Hash table (for ARP, only
when ARP is enabled)

• Key = (Port ID, next hop
IP address) (source:
pkt meta-data)

• Data: MAC address

1. TTL decrement
and

2. IPv4 checksum
3. update
4. Header
5. encapsulation
6. (based on next

hop
7. type)

1. Ping
2. Stats
3. Route add/ up-

date/ delete
4. Default route add/

update/ delete
5. ARP entry add/

update/ delete
6. Default ARP en-

try add/ update/
delete

7.33. Internet Protocol (IP) Pipeline Application 483

DPDK documentation, Release 16.04.0

7.33.7 Command Line Interface (CLI)

Global CLI commands

Table 7.17: Global CLI commands

Command Description Syntax
run Run CLI commands script file. run <file> <file> = path to file with

CLI commands to execute
quit Gracefully terminate the applica-

tion.
quit

CLI commands for link configuration

Table 7.18: List of run-time configuration commands for link configuration

Command Description Syntax
link config Link configuration link <link ID> config <IP address>

<depth>
link up Link up link <link ID> up
link down Link down link <link ID> down
link ls Link list link ls

CLI commands common for all pipeline types

Table 7.19: CLI commands mandatory for all pipelines

Command Description Syntax
ping Check whether specific pipeline

instance is alive. The master
pipeline sends a ping request mes-
sage to given pipeline instance
and waits for a response message
back. Timeout message is dis-
played when the response mes-
sage is not received before the
timer expires.

p <pipeline ID> ping

stats Display statistics for specific
pipeline input port, output port or
table.

p <pipeline ID> stats port in <port
in ID> p <pipeline ID> stats port out
<port out ID> p <pipeline ID> stats
table <table ID>

input port enable Enable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID> en-
able

input port disable Disable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID>
disable

Pipeline type specific CLI commands

The pipeline specific CLI commands are part of the pipeline type front-end.

7.33. Internet Protocol (IP) Pipeline Application 484

DPDK documentation, Release 16.04.0

7.34 Test Pipeline Application

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite. Its
purpose is to demonstrate the performance of single-table DPDK pipelines.

7.34.1 Overview

The application uses three CPU cores:

• Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through
SW queues.

• Core B (“Pipeline core”) implements a single-table DPDK pipeline whose type is se-
lectable through specific command line parameter. Core B receives traffic from core A
through software queues, processes it according to the actions configured in the table
entries that are hit by the input packets and feeds it to core C through another set of
software queues.

• Core C (“TX core”) receives traffic from core B through software queues and sends it to
the NIC ports for transmission.

Fig. 7.29: Test Pipeline Application

7.34.2 Compiling the Application

1. Go to the app/test directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/app/test/test-pipeline

2. Set the target (a default target is used if not specified):

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make

7.34. Test Pipeline Application 485

DPDK documentation, Release 16.04.0

7.34.3 Running the Application

Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE

The -c EAL CPU core mask option has to contain exactly 3 CPU cores. The first CPU core in
the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

Table Types and Behavior

Table 7.20 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys. For hash tables, the following param-
eters can be selected:

• Configurable key size implementation or fixed (specialized) key size implementa-
tion (e.g. hash-8-ext or hash-spec-8-ext). The key size specialized implementations
are expected to provide better performance for 8-byte and 16-byte key sizes, while the
key-size-non-specialized implementation is expected to provide better performance for
larger key sizes;

• Key size (e.g. hash-spec-8-ext or hash-spec-16-ext). The available options are 8, 16
and 32 bytes;

• Table type (e.g. hash-spec-16-ext or hash-spec-16-lru). The available options are ext
(extendable bucket) or lru (least recently used).

7.34. Test Pipeline Application 486

DPDK documentation, Release 16.04.0

Table 7.20: Table Types

TABLE_TYPE Description of Core
B Table

Pre-added Table En-
tries

1 none Core B is not im-
plementing a DPDK
pipeline. Core B is
implementing a pass-
through from its in-
put set of software
queues to its out-
put set of software
queues.

N/A

2 stub Stub table. Core B
is implementing the
same pass-through
functionality as de-
scribed for the “none”
option by using the
DPDK Packet Frame-
work by using one
stub table for each
input NIC port.

N/A

3 hash-[spec]-8-lru LRU hash table with 8-
byte key size and 16
million entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 4 bytes
of 0]
The action configured
for all table entries is
“Sendto output port”,
with the output port
index uniformly dis-
tributed for the range
of output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A is
creating the following
lookup key and storing
it into the packet meta
data for core B to use
for table lookup:
[destination IPv4 ad-
dress, 4 bytes of 0]

4 hash-[spec]-8-ext Extendable bucket
hash table with 8-byte
key size and 16 million
entries.

Same as hash-[spec]-
8-lru table entries,
above.

5 hash-[spec]-16-lru LRU hash table with
16-byte key size and
16 million entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 12
bytes of 0]
The action configured
for all table entries is
“Send to output port”,
with the output port
index uniformly dis-
tributed for the range
of output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A is
creating the following
lookup key and storing
it into the packet meta
data for core B to use
for table lookup:
[destination IPv4 ad-
dress, 12 bytes of 0]

6 hash-[spec]-16-ext Extendable bucket
hash table with 16-
byte key size and 16
million entries.

Same as hash-[spec]-
16-lru table entries,
above.

7 hash-[spec]-32-lru LRU hash table with
32-byte key size and
16 million entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 28
bytes of 0].
The action configured
for all table entries is
“Send to output port”,
with the output port
index uniformly dis-
tributed for the range
of output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A is
creating the following
lookup key and storing
it into the packet meta
data for Lpmcore B to
use for table lookup:
[destination IPv4 ad-
dress, 28 bytes of 0]

8 hash-[spec]-32-ext Extendable bucket
hash table with 32-
byte key size and 16
million entries.

Same as hash-[spec]-
32-lru table entries,
above.

9 lpm Longest Prefix Match
(LPM) IPv4 table.

In the case of two
ports, two routes are
added to the table:
[0.0.0.0/9 => send to
output port 0]
[0.128.0.0/9 => send
to output port 1]
In case of four ports,
four entries are added
to the table:
[0.0.0.0/10 => send to
output port 0]
[0.64.0.0/10 => send
to output port 1]
[0.128.0.0/10 => send
to output port 2]
[0.192.0.0/10 => send
to output port 3]
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A
is storing the IPv4
destination within the
packet meta data to
be later used by core
B as the lookup key.

10 acl Access Control List
(ACL) table

In the case of two
ports, two ACL rules
are added to the table:
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination =
0.0.0.0/9,
L4 protocol = ANY,
TCP source port =
ANY,
TCP destination port
= ANY
=> send to output port
0]
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination =
0.128.0.0/9,
L4 protocol = ANY,
TCP source port =
ANY,
TCP destination port
= ANY
=> send to output port
0].
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.

7.34. Test Pipeline Application 487

DPDK documentation, Release 16.04.0

Input Traffic

Regardless of the table type used for the core B pipeline, the same input traffic can be used
to hit all table entries with uniform distribution, which results in uniform distribution of packets
sent out on the set of output NIC ports. The profile for input traffic is TCP/IPv4 packets with:

• destination IP address as A.B.C.D with A fixed to 0 and B, C,D random

• source IP address fixed to 0.0.0.0

• destination TCP port fixed to 0

• source TCP port fixed to 0

7.35 Distributor Sample Application

The distributor sample application is a simple example of packet distribution to cores using the
Data Plane Development Kit (DPDK).

7.35.1 Overview

The distributor application performs the distribution of packets that are received on an
RX_PORT to different cores. When processed by the cores, the destination port of a packet
is the port from the enabled port mask adjacent to the one on which the packet was received,
that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 RX/TX into each other,
and ports 2 and 3 RX/TX into each other.

This application can be used to benchmark performance using the traffic generator as shown
in the figure below.

Fig. 7.30: Performance Benchmarking Setup (Basic Environment)

7.35.2 Compiling the Application

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/distributor

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.35.3 Running the Application

1. The application has a number of command line options:

./build/distributor_app [EAL options] -- -p PORTMASK

7.35. Distributor Sample Application 488

DPDK documentation, Release 16.04.0

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

2. To run the application in linuxapp environment with 10 lcores, 4 ports, issue the com-
mand:

$./build/distributor_app -c 0x4003fe -n 4 -- -p f

3. Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

7.35.4 Explanation

The distributor application consists of three types of threads: a receive thread (lcore_rx()), a set
of worker threads(lcore_worker()) and a transmit thread(lcore_tx()). How these threads work
together is shown in Fig. 7.31 below. The main() function launches threads of these three
types. Each thread has a while loop which will be doing processing and which is terminated
only upon SIGINT or ctrl+C. The receive and transmit threads communicate using a software
ring (rte_ring structure).

The receive thread receives the packets using rte_eth_rx_burst() and gives them to the distrib-
utor (using rte_distributor_process() API) which will be called in context of the receive thread
itself. The distributor distributes the packets to workers threads based on the tagging of the
packet - indicated by the hash field in the mbuf. For IP traffic, this field is automatically filled by
the NIC with the “usr” hash value for the packet, which works as a per-flow tag.

More than one worker thread can exist as part of the application, and these worker threads
do simple packet processing by requesting packets from the distributor, doing a simple XOR
operation on the input port mbuf field (to indicate the output port which will be used later for
packet transmission) and then finally returning the packets back to the distributor in the RX
thread.

Meanwhile, the receive thread will call the distributor api rte_distributor_returned_pkts() to get
the packets processed, and will enqueue them to a ring for transfer to the TX thread for trans-
mission on the output port. The transmit thread will dequeue the packets from the ring and
transmit them on the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C (or send SIG-
INT to the app). Upon this signal, a signal handler provided in the application will terminate all
running threads gracefully and print final statistics to the user.

Fig. 7.31: Distributor Sample Application Layout

7.35.5 Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment the line
“#define DEBUG” defined in start of the application in main.c to enable debug logs.

7.35.6 Statistics

Upon SIGINT (or) ctrl+C, the print_stats() function displays the count of packets processed at
the different stages in the application.

7.35. Distributor Sample Application 489

DPDK documentation, Release 16.04.0

7.35.7 Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Command Line Arguments.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Mbuf Pool Initialization.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample Application.
See Driver Initialization.

RX queue initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See RX Queue Initialization.

TX queue initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See TX Queue Initialization.

7.36 VM Power Management Application

7.36.1 Introduction

Applications running in Virtual Environments have an abstract view of the underlying hard-
ware on the Host, in particular applications cannot see the binding of virtual to physical hard-
ware. When looking at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to Host Physical
CPUs(pCPUS) is not apparent to an application and this pinning may change over time. Fur-
thermore, Operating Systems on virtual machines do not have the ability to govern their own
power policy; the Machine Specific Registers (MSRs) for enabling P-State transitions are not
exposed to Operating Systems running on Virtual Machines(VMs).

The Virtual Machine Power Management solution shows an example of how a DPDK applica-
tion can indicate its processing requirements using VM local only information(vCPU/lcore) to
a Host based Monitor which is responsible for accepting requests for frequency changes for a
vCPU, translating the vCPU to a pCPU via libvirt and affecting the change in frequency.

The solution is comprised of two high-level components:

1. Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel manage-
ment allows adding channels to the Monitor, setting and querying the vCPU to pCPU
pinning, inspecting and manually changing the frequency for each CPU. The CLI runs on
a single lcore while the thread responsible for managing VM requests runs on a second
lcore.

VM requests arriving on a channel for frequency changes are passed to the librte_power
ACPI cpufreq sysfs based library. The Host Application relies on both qemu-kvm and
libvirt to function.

2. librte_power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for frequency
changes are forwarded to the host monitor rather than the APCI cpufreq sysfs interface
used on the host.

The l3fwd-power application will use this implementation when deployed on a VM (see
L3 Forwarding with Power Management Sample Application).

7.36. VM Power Management Application 490

DPDK documentation, Release 16.04.0

Fig. 7.32: Highlevel Solution

7.36.2 Overview

VM Power Management employs qemu-kvm to provide communications channels between the
host and VMs in the form of Virtio-Serial which appears as a paravirtualized serial device on
a VM and can be configured to use various backends on the host. For this example each
Virtio-Serial endpoint on the host is configured as AF_UNIX file socket, supporting poll/select
and epoll for event notification. In this example each channel endpoint on the host is monitored
via epoll for EPOLLIN events. Each channel is specified as qemu-kvm arguments or as libvirt
XML for each VM, where each VM can have a number of channels up to a maximum of 64 per
VM, in this example each DPDK lcore on a VM has exclusive access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface is
forwarded via Virtio-Serial to the host, each request contains the vCPU and power com-
mand(scale up/down/min/max). The API for host and guest librte_power is consistent across
environments, with the selection of VM or Host Implementation determined at automatically at
runtime based on the environment.

Upon receiving a request, the host translates the vCPU to a pCPU via the libvirt API before
forwarding to the host librte_power.

Fig. 7.33: VM request to scale frequency

Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core, earlier
Microarchtectures do not offer such fine grained control. When deployed on pre-Haswell plat-
forms greater care must be taken in selecting which cores are assigned to a VM, for instance
a core will not scale down until its sibling is similarly scaled.

7.36.3 Configuration

BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the
power management feature of DPDK is to be used. Otherwise, the sys file folder
/sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency-based power
management cannot be used. Consult the relevant BIOS documentation to determine how
these settings can be accessed.

Host Operating System

The Host OS must also have the apci_cpufreq module installed, in some cases the intel_pstate
driver may be the default Power Management environment. To enable acpi_cpufreq and dis-
able intel_pstate, add the following to the grub Linux command line:

intel_pstate=disable

7.36. VM Power Management Application 491

DPDK documentation, Release 16.04.0

Upon rebooting, load the acpi_cpufreq module:

modprobe acpi_cpufreq

Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

<name>{vm_name}</name>
<controller type='virtio-serial' index='0'>

<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</controller>
<channel type='unix'>

<source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
<target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}/>
<address type='virtio-serial' controller='0' bus='0' port='{N}'/>

</channel>

Where a single controller of type virtio-serial is created and up to 32 channels can be asso-
ciated with a single controller and multiple controllers can be specified. The convention is to
use the name of the VM in the host path {vm_name} and to increment {channel_num} for each
channel, likewise the port value {N} must be incremented for each channel.

Each channel on the host will appear in path, the directory /tmp/powermonitor/ must first be
created and given qemu permissions

mkdir /tmp/powermonitor/
chown qemu:qemu /tmp/powermonitor

Note that files and directories within /tmp are generally removed upon rebooting the host and
the above steps may need to be carried out after each reboot.

The serial device as it appears on a VM is configured with the target element attribute
name and must be in the form of virtio.serial.port.poweragent.{vm_channel_num}, where
vm_channel_num is typically the lcore channel to be used in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-
ports/virtio.serial.port.poweragent.{vm_channel_num}

7.36.4 Compiling and Running the Host Application

Compiling

1. export RTE_SDK=/path/to/rte_sdk

2. cd ${RTE_SDK}/examples/vm_power_manager

3. make

Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

The application requires exactly two cores to run, one core is dedicated to the CLI, while the
other is dedicated to the channel endpoint monitor, for example to run on cores 0 & 1 on a
system with 4 memory channels:

7.36. VM Power Management Application 492

DPDK documentation, Release 16.04.0

./build/vm_power_mgr -c 0x3 -n 4

After successful initialization the user is presented with VM Power Manager CLI:

vm_power>

Virtual Machines can now be added to the VM Power Manager:

vm_power> add_vm {vm_name}

When a {vm_name} is specified with the add_vm command a lookup is performed with libvirt
to ensure that the VM exists, {vm_name} is used as an unique identifier to associate channels
with a particular VM and for executing operations on a VM within the CLI. VMs do not have to
be running in order to add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

rm_vm {vm_name}

Add communication channels for the specified VM, the virtio channels must be en-
abled in the VM configuration(qemu/libvirt) and the associated VM must be active.
{list} is a comma-separated list of channel numbers to add, using the keyword ‘all’
will attempt to add all channels for the VM:

add_channels {vm_name} {list}|all

Enable or disable the communication channels in {list}(comma-separated) for the
specified VM, alternatively list can be replaced with keyword ‘all’. Disabled channels
will still receive packets on the host, however the commands they specify will be
ignored. Set status to ‘enabled’ to begin processing requests again:

set_channel_status {vm_name} {list}|all enabled|disabled

Print to the CLI the information on the specified VM, the information lists the number
of vCPUS, the pinning to pCPU(s) as a bit mask, along with any communication
channels associated with each VM, along with the status of each channel:

show_vm {vm_name}

Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU
mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu}

Set the binding of Virtual CPU on VM to the Physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

show_cpu_freq_mask {mask}

Set the current frequency for the cores specified in {core_mask} by scaling each
up/down/min/max:

set_cpu_freq {core_mask} up|down|min|max

Get the current frequency for the specified core:

show_cpu_freq {core_num}

Set the current frequency for the specified core by scaling up/down/min/max:

7.36. VM Power Management Application 493

DPDK documentation, Release 16.04.0

set_cpu_freq {core_num} up|down|min|max

7.36.5 Compiling and Running the Guest Applications

For compiling and running l3fwd-power, see L3 Forwarding with Power Management Sample
Application.

A guest CLI is also provided for validating the setup.

For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the host
application using the add_channels command on the host.

Compiling

1. export RTE_SDK=/path/to/rte_sdk

2. cd ${RTE_SDK}/examples/vm_power_manager/guest_cli

3. make

Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

The application for example purposes uses a channel for each lcore enabled, for example to
run on cores 0,1,2,3 on a system with 4 memory channels:

./build/guest_vm_power_mgr -c 0xf -n 4

After successful initialization the user is presented with VM Power Manager Guest CLI:

vm_power(guest)>

To change the frequency of a lcore, use the set_cpu_freq command. Where {core_num} is the
lcore and channel to change frequency by scaling up/down/min/max.

set_cpu_freq {core_num} up|down|min|max

7.37 TEP termination Sample Application

The TEP (Tunnel End point) termination sample application simulates a VXLAN Tunnel End-
point (VTEP) termination in DPDK, which is used to demonstrate the offload and filtering ca-
pabilities of Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet. This sample
uses the basic virtio devices management mechanism from vhost example, and also uses the
us-vHost interface and tunnel filtering mechanism to direct a specified traffic to a specific VM.
In addition, this sample is also designed to show how tunneling protocols can be handled.

7.37.1 Background

With virtualization, overlay networks allow a network structure to be built or imposed across
physical nodes which is abstracted away from the actual underlining physical network connec-
tions. This allows network isolation, QOS, etc to be provided on a per client basis.

7.37. TEP termination Sample Application 494

DPDK documentation, Release 16.04.0

Fig. 7.34: Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point
(VEP/TEP). The TEP is normally located at the physical host level ideally in the software switch.
Due to processing constraints and the inevitable bottleneck that the switch becomes the ability
to offload overlay support features becomes an important requirement. Intel® XL710 10/40 G
Ethernet network card provides hardware filtering and offload capabilities to support overlay
networks implementations such as MAC in UDP and MAC in GRE.

7.37.2 Sample Code Overview

The DPDK TEP termination sample code demonstrates the offload and filtering capabilities of
Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library. The vhost library is developed for user space
Ethernet switch to easily integrate with vhost functionality.

The sample will support the followings:

• Tunneling packet recognition.

• The port of UDP tunneling is configurable

• Directing incoming traffic to the correct queue based on the tunnel filter type. The sup-
ported filter type are listed below.

– Inner MAC and VLAN and tenant ID

– Inner MAC and tenant ID, and Outer MAC

– Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device
ID. Each device will receive a unique device ID. The inner MAC will be learned by the first
packet transmitted from a device.

• Decapsulation of RX VXLAN traffic. This is a software only operation.

• Encapsulation of TX VXLAN traffic. This is a software only operation.

• Inner IP and inner L4 checksum offload.

• TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample application based on
vhost-cuse.

Fig. 7.35: TEP termination Framework Overview

7.37.3 Supported Distributions

The example in this section have been validated with the following distributions:

• Fedora* 18

• Fedora* 19

7.37. TEP termination Sample Application 495

DPDK documentation, Release 16.04.0

• Fedora* 20

7.37.4 Prerequisites

Refer to Prerequisites.

7.37.5 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n

vhost user is turned on by default in the configure file config/common_linuxapp. To enable
vhost cuse, disable vhost user.

CONFIG_RTE_LIBRTE_VHOST_USER=y

After vhost is enabled and the implementation is selected, build the vhost library.

2. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

cd ${RTE_SDK}
make config ${RTE_TARGET}
make install ${RTE_TARGET}
cd ${RTE_SDK}/examples/tep_termination
make

5. Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

6. Build the eventfd_link kernel module(vhost cuse required):

make

7.37.6 Running the Sample Code

1. Install the cuse kernel module(vhost cuse required):

modprobe cuse

2. Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/lib/librte_vhost/eventfd_link

3. Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko

7.37. TEP termination Sample Application 496

DPDK documentation, Release 16.04.0

4. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

5. Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
-p 0x1 --dev-basename tep-termination --nb-devices 4
--udp-port 4789 --filter-type 1

Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the
2 MB page hugetlbfs.

Parameters

The same parameters with the vhost sample.

Refer to Parameters for the meanings of ‘Basename’, ‘Stats’, ‘RX Retry’, ‘RX Retry Number’
and ‘RX Retry Delay Time’.

Number of Devices.

The nb-devices option specifies the number of virtIO device. The default value is 2.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 2

Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet.
The default value is 4789.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789

Filter Type.

The filter-type option is used to specify which filter type is used to filter UDP tunneling packet to
a specified queue. The default value is 1, which means the filter type of inner MAC and tenant
ID is used.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789 --filter-type 1

TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload. The
default value is 0, which means the checksum offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --tx-checksum

TCP segment size.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet. The
default value is 0, which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--tx-checksum --tso-segsz 800

7.37. TEP termination Sample Application 497

DPDK documentation, Release 16.04.0

Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN
packet. The default value is 1.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --decap 1

Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet.
The default value is 1.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --encap 1

7.37.7 Running the Virtual Machine (QEMU)

Refer to Running the Virtual Machine (QEMU).

7.37.8 Running DPDK in the Virtual Machine

Refer to Running DPDK in the Virtual Machine.

7.37.9 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the virtio-
net device’s MAC address. The DPDK sample code behaves in a similar manner to a learning
switch in that it learns the MAC address of the virtio-net devices from the first transmitted
packet. On learning the MAC address, the DPDK vhost sample code prints a message with
the MAC address and tenant ID virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered

The above message indicates that device 0 has been registered with MAC address
cc:bb:bb:bb:bb:bb and VNI 1000. Any packets received on the NIC with these values are
placed on the devices receive queue.

7.38 dpdk_proc_info Application

The dpdk_proc_info application is a Data Plane Development Kit (DPDK) application that runs
as a DPDK secondary process and is capable of retrieving port statistics, resetting port statis-
tics and printing DPDK memory information. This application extends the original functionality
that was supported by dump_cfg.

7.38.1 Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/dpdk_proc_info -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset]

7.38. dpdk_proc_info Application 498

DPDK documentation, Release 16.04.0

Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats The stats parameter controls the printing of generic port statistics. If no port mask is
specified stats are printed for all DPDK ports.

–xstats The stats parameter controls the printing of extended port statistics. If no port mask is
specified xstats are printed for all DPDK ports.

–stats-reset The stats-reset parameter controls the resetting of generic port statistics. If no
port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset The xstats-reset parameter controls the resetting of extended port statistics. If
no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

7.39 PTP Client Sample Application

The PTP (Precision Time Protocol) client sample application is a simple example of using the
DPDK IEEE1588 API to communicate with a PTP master clock to synchronize the time on the
NIC and, optionally, on the Linux system.

Note, PTP is a time syncing protocol and cannot be used within DPDK as a time-stamping
mechanism. See the following for an explanation of the protocol: Precision Time Protocol.

7.39.1 Limitations

The PTP sample application is intended as a simple reference implementation of a PTP client
using the DPDK IEEE1588 API. In order to keep the application simple the following assump-
tions are made:

• The first discovered master is the master for the session.

• Only L2 PTP packets are supported.

• Only the PTP v2 protocol is supported.

• Only the slave clock is implemented.

7.39.2 How the Application Works

Fig. 7.36: PTP Synchronization Protocol

The PTP synchronization in the sample application works as follows:

• Master sends Sync message - the slave saves it as T2.

• Master sends Follow Up message and sends time of T1.

• Slave sends Delay Request frame to PTP Master and stores T3.

• Master sends Delay Response T4 time which is time of received T3.

7.39. PTP Client Sample Application 499

https://en.wikipedia.org/wiki/Precision_Time_Protocol

DPDK documentation, Release 16.04.0

The adjustment for slave can be represented as:

adj = -[(T2-T1)-(T4 - T3)]/2

If the command line parameter -T 1 is used the application also synchronizes the PTP PHC
clock with the Linux kernel clock.

7.39.3 Compiling the Application

To compile the application, export the path to the DPDK source tree and edit the
config/common_linuxapp configuration file to enable IEEE1588:

export RTE_SDK=/path/to/rte_sdk

Edit common_linuxapp and set the following options:
CONFIG_RTE_LIBRTE_IEEE1588=y

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

Recompile DPDK.
make install T=$RTE_TARGET

Compile the application.
cd ${RTE_SDK}/examples/ptpclient
make

7.39.4 Running the Application

To run the example in a linuxapp environment:

./build/ptpclient -c 2 -n 4 -- -p 0x1 -T 0

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

• -p portmask: Hexadecimal portmask.

• -T 0: Update only the PTP slave clock.

• -T 1: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.

7.39.5 Code Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained
in detail in the DPDK API Documentation.

7.39. PTP Client Sample Application 500

DPDK documentation, Release 16.04.0

The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv
arguments are provided to the rte_eal_init() function. The value returned is the number
of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

And than we parse application specific arguments

argc -= ret;
argv += ret;

ret = ptp_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the ap-
plication:

mbuf_pool = rte_mempool_create("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id(),
0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf
Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function
with portmask provided by user:

for (portid = 0; portid < nb_ports; portid++)
if ((ptp_enabled_port_mask & (1 << portid)) != 0) {

if (port_init(portid, mbuf_pool) == 0) {
ptp_enabled_ports[ptp_enabled_port_nb] = portid;
ptp_enabled_port_nb++;

} else {
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",

portid);
}

}

Once the initialization is complete, the application is ready to launch a function on an lcore. In
this example lcore_main() is called on a single lcore.

lcore_main();

The lcore_main() function is explained below.

The Lcores Main

As we saw above the main() function calls an application function on the available lcores.

7.39. PTP Client Sample Application 501

DPDK documentation, Release 16.04.0

The main work of the application is done within the loop:

for (portid = 0; portid < ptp_enabled_port_nb; portid++) {

portid = ptp_enabled_ports[portid];
nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);

if (likely(nb_rx == 0))
continue;

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames(portid, m);

rte_pktmbuf_free(m);
}

Packets are received one by one on the RX ports and, if required, PTP response packets are
transmitted on the TX ports.

If the offload flags in the mbuf indicate that the packet is a PTP packet then the packet is parsed
to determine which type:

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames(portid, m);

All packets are freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

PTP parsing

The parse_ptp_frames() function processes PTP packets, implementing slave PTP
IEEE1588 L2 functionality.

void
parse_ptp_frames(uint8_t portid, struct rte_mbuf *m) {

struct ptp_header *ptp_hdr;
struct ether_hdr *eth_hdr;
uint16_t eth_type;

eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);

if (eth_type == PTP_PROTOCOL) {
ptp_data.m = m;
ptp_data.portid = portid;
ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)

+ sizeof(struct ether_hdr));

switch (ptp_hdr->msgtype) {
case SYNC:

parse_sync(&ptp_data);
break;

case FOLLOW_UP:
parse_fup(&ptp_data);
break;

case DELAY_RESP:
parse_drsp(&ptp_data);
print_clock_info(&ptp_data);
break;

default:
break;

7.39. PTP Client Sample Application 502

DPDK documentation, Release 16.04.0

}
}

}

There are 3 types of packets on the RX path which we must parse to create a minimal imple-
mentation of the PTP slave client:

• SYNC packet.

• FOLLOW UP packet

• DELAY RESPONSE packet.

When we parse the FOLLOW UP packet we also create and send a DELAY_REQUEST
packet. Also when we parse the DELAY RESPONSE packet, and all conditions are met we
adjust the PTP slave clock.

7.40 Performance Thread Sample Application

The performance thread sample application is a derivative of the standard L3 forwarding appli-
cation that demonstrates different threading models.

7.40.1 Overview

For a general description of the L3 forwarding applications capabilities please refer to the doc-
umentation of the standard application in L3 Forwarding Sample Application.

The performance thread sample application differs from the standard L3 forwarding example
in that it divides the TX and RX processing between different threads, and makes it possible to
assign individual threads to different cores.

Three threading models are considered:

1. When there is one EAL thread per physical core.

2. When there are multiple EAL threads per physical core.

3. When there are multiple lightweight threads per EAL thread.

Since DPDK release 2.0 it is possible to launch applications using the --lcores EAL param-
eter, specifying cpu-sets for a physical core. With the performance thread sample application
its is now also possible to assign individual RX and TX functions to different cores.

As an alternative to dividing the L3 forwarding work between different EAL threads the perfor-
mance thread sample introduces the possibility to run the application threads as lightweight
threads (L-threads) within one or more EAL threads.

In order to facilitate this threading model the example includes a primitive cooperative sched-
uler (L-thread) subsystem. More details of the L-thread subsystem can be found in The L-
thread subsystem.

Note: Whilst theoretically possible it is not anticipated that multiple L-thread schedulers would
be run on the same physical core, this mode of operation should not be expected to yield useful
performance and is considered invalid.

7.40. Performance Thread Sample Application 503

DPDK documentation, Release 16.04.0

7.40.2 Compiling the Application

The application is located in the sample application folder in the performance-thread folder.

1. Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/l3fwd-thread

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Linux Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.40.3 Running the Application

The application has a number of command line options:

./build/l3fwd-thread [EAL options] --
-p PORTMASK [-P]
--rx(port,queue,lcore,thread)[,(port,queue,lcore,thread)]
--tx(lcore,thread)[,(lcore,thread)]
[--enable-jumbo] [--max-pkt-len PKTLEN]] [--no-numa]
[--hash-entry-num] [--ipv6] [--no-lthreads] [--stat-lcore lcore]

Where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure.

• -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless
of the packet’s Ethernet MAC destination address. Without this option, only packets
with the Ethernet MAC destination address set to the Ethernet address of the port are
accepted.

• --rx (port,queue,lcore,thread)[,(port,queue,lcore,thread)]: the list
of NIC RX ports and queues handled by the RX lcores and threads. The parameters
are explained below.

• --tx (lcore,thread)[,(lcore,thread)]: the list of TX threads identifying the
lcore the thread runs on, and the id of RX thread with which it is associated. The param-
eters are explained below.

• --enable-jumbo: optional, enables jumbo frames.

• --max-pkt-len: optional, maximum packet length in decimal (64-9600).

• --no-numa: optional, disables numa awareness.

• --hash-entry-num: optional, specifies the hash entry number in hex to be setup.

• --ipv6: optional, set it if running ipv6 packets.

• --no-lthreads: optional, disables l-thread model and uses EAL threading model. See
below.

• --stat-lcore: optional, run CPU load stats collector on the specified lcore.

The parameters of the --rx and --tx options are:

7.40. Performance Thread Sample Application 504

DPDK documentation, Release 16.04.0

• --rx parameters

port RX port
queue RX queue that will be read on the specified RX port
lcore Core to use for the thread
thread Thread id (continuously from 0 to N)

• --tx parameters

lcore Core to use for L3 route match and transmit
thread Id of RX thread to be associated with this TX thread

The l3fwd-thread application allows you to start packet processing in two threading models:
L-Threads (default) and EAL Threads (when the --no-lthreads parameter is used). For
consistency all parameters are used in the same way for both models.

Running with L-threads

When the L-thread model is used (default option), lcore and thread parameters in --rx/--tx
are used to affinitize threads to the selected scheduler.

For example, the following places every l-thread on different lcores:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"

The following places RX l-threads on lcore 0 and TX l-threads on lcore 1 and 2 and so on:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(2,1)"

Running with EAL threads

When the --no-lthreads parameter is used, the L-threading model is turned off and EAL
threads are used for all processing. EAL threads are enumerated in the same way as L-
threads, but the --lcores EAL parameter is used to affinitize threads to the selected cpu-set
(scheduler). Thus it is possible to place every RX and TX thread on different lcores.

For example, the following places every EAL thread on different lcores:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

To affinitize two or more EAL threads to one cpu-set, the EAL --lcores parameter is used.

The following places RX EAL threads on lcore 0 and TX EAL threads on lcore 1 and 2 and so
on:

l3fwd-thread -c ff -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

7.40. Performance Thread Sample Application 505

DPDK documentation, Release 16.04.0

Examples

For selected scenarios the command line configuration of the application for L-threads and its
corresponding EAL threads command line can be realized as follows:

1. Start every thread on different scheduler (1:1):

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"

EAL thread equivalent:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

2. Start all threads on one core (N:1).

Start 4 L-threads on lcore 0:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(0,0)(0,1)"

Start 4 EAL threads on cpu-set 0:

l3fwd-thread -c ff -n 2 --lcores="(0-3)@0" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

3. Start threads on different cores (N:M).

Start 2 L-threads for RX on lcore 0, and 2 L-threads for TX on lcore 1:

l3fwd-thread -c ff -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(1,1)"

Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on cpu-set 1:

l3fwd-thread -c ff -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

7.40.4 Explanation

To a great extent the sample application differs little from the standard L3 forwarding appli-
cation, and readers are advised to familiarize themselves with the material covered in the L3
Forwarding Sample Application documentation before proceeding.

The following explanation is focused on the way threading is handled in the performance thread
example.

Mode of operation with EAL threads

The performance thread sample application has split the RX and TX functionality into two
different threads, and the RX and TX threads are interconnected via software rings. With
respect to these rings the RX threads are producers and the TX threads are consumers.

7.40. Performance Thread Sample Application 506

DPDK documentation, Release 16.04.0

On initialization the TX and RX threads are started according to the command line parameters.

The RX threads poll the network interface queues and post received packets to a TX thread
via a corresponding software ring.

The TX threads poll software rings, perform the L3 forwarding hash/LPM match, and assemble
packet bursts before performing burst transmit on the network interface.

As with the standard L3 forward application, burst draining of residual packets is performed
periodically with the period calculated from elapsed time using the timestamps counter.

The diagram below illustrates a case with two RX threads and three TX threads.

Mode of operation with L-threads

Like the EAL thread configuration the application has split the RX and TX functionality into
different threads, and the pairs of RX and TX threads are interconnected via software rings.

On initialization an L-thread scheduler is started on every EAL thread. On all but the master
EAL thread only a a dummy L-thread is initially started. The L-thread started on the master
EAL thread then spawns other L-threads on different L-thread schedulers according the the
command line parameters.

The RX threads poll the network interface queues and post received packets to a TX thread
via the corresponding software ring.

The ring interface is augmented by means of an L-thread condition variable that enables the
TX thread to be suspended when the TX ring is empty. The RX thread signals the condition
whenever it posts to the TX ring, causing the TX thread to be resumed.

Additionally the TX L-thread spawns a worker L-thread to take care of polling the software
rings, whilst it handles burst draining of the transmit buffer.

The worker threads poll the software rings, perform L3 route lookup and assemble packet
bursts. If the TX ring is empty the worker thread suspends itself by waiting on the condition
variable associated with the ring.

Burst draining of residual packets, less than the burst size, is performed by the TX thread which
sleeps (using an L-thread sleep function) and resumes periodically to flush the TX buffer.

This design means that L-threads that have no work, can yield the CPU to other L-threads and
avoid having to constantly poll the software rings.

The diagram below illustrates a case with two RX threads and three TX functions (each com-
prising a thread that processes forwarding and a thread that periodically drains the output
buffer of residual packets).

CPU load statistics

It is possible to display statistics showing estimated CPU load on each core. The statistics
indicate the percentage of CPU time spent: processing received packets (forwarding), polling
queues/rings (waiting for work), and doing any other processing (context switch and other
overhead).

7.40. Performance Thread Sample Application 507

DPDK documentation, Release 16.04.0

When enabled statistics are gathered by having the application threads set and clear flags
when they enter and exit pertinent code sections. The flags are then sampled in real time by
a statistics collector thread running on another core. This thread displays the data in real time
on the console.

This feature is enabled by designating a statistics collector core, using the --stat-lcore
parameter.

7.40.5 The L-thread subsystem

The L-thread subsystem resides in the examples/performance-thread/common directory and
is built and linked automatically when building the l3fwd-thread example.

The subsystem provides a simple cooperative scheduler to enable arbitrary functions to run as
cooperative threads within a single EAL thread. The subsystem provides a pthread like API
that is intended to assist in reuse of legacy code written for POSIX pthreads.

The following sections provide some detail on the features, constraints, performance and port-
ing considerations when using L-threads.

Comparison between L-threads and POSIX pthreads

The fundamental difference between the L-thread and pthread models is the way in which
threads are scheduled. The simplest way to think about this is to consider the case of a
processor with a single CPU. To run multiple threads on a single CPU, the scheduler must fre-
quently switch between the threads, in order that each thread is able to make timely progress.
This is the basis of any multitasking operating system.

This section explores the differences between the pthread model and the L-thread model as
implemented in the provided L-thread subsystem. If needed a theoretical discussion of pre-
emptive vs cooperative multi-threading can be found in any good text on operating system
design.

Scheduling and context switching

The POSIX pthread library provides an application programming interface to create and syn-
chronize threads. Scheduling policy is determined by the host OS, and may be configurable.
The OS may use sophisticated rules to determine which thread should be run next, threads
may suspend themselves or make other threads ready, and the scheduler may employ a time
slice giving each thread a maximum time quantum after which it will be preempted in favor of
another thread that is ready to run. To complicate matters further threads may be assigned
different scheduling priorities.

By contrast the L-thread subsystem is considerably simpler. Logically the L-thread scheduler
performs the same multiplexing function for L-threads within a single pthread as the OS sched-
uler does for pthreads within an application process. The L-thread scheduler is simply the main
loop of a pthread, and in so far as the host OS is concerned it is a regular pthread just like any
other. The host OS is oblivious about the existence of and not at all involved in the scheduling
of L-threads.

The other and most significant difference between the two models is that L-threads are sched-
uled cooperatively. L-threads cannot not preempt each other, nor can the L-thread scheduler

7.40. Performance Thread Sample Application 508

DPDK documentation, Release 16.04.0

preempt a running L-thread (i.e. there is no time slicing). The consequence is that programs
implemented with L-threads must possess frequent rescheduling points, meaning that they
must explicitly and of their own volition return to the scheduler at frequent intervals, in order to
allow other L-threads an opportunity to proceed.

In both models switching between threads requires that the current CPU context is saved and
a new context (belonging to the next thread ready to run) is restored. With pthreads this
context switching is handled transparently and the set of CPU registers that must be preserved
between context switches is as per an interrupt handler.

An L-thread context switch is achieved by the thread itself making a function call to the L-thread
scheduler. Thus it is only necessary to preserve the callee registers. The caller is responsible
to save and restore any other registers it is using before a function call, and restore them on
return, and this is handled by the compiler. For X86_64 on both Linux and BSD the System
V calling convention is used, this defines registers RSP, RBP, and R12-R15 as callee-save
registers (for more detailed discussion a good reference is X86 Calling Conventions).

Taking advantage of this, and due to the absence of preemption, an L-thread context switch is
achieved with less than 20 load/store instructions.

The scheduling policy for L-threads is fixed, there is no prioritization of L-threads, all L-threads
are equal and scheduling is based on a FIFO ready queue.

An L-thread is a struct containing the CPU context of the thread (saved on context switch)
and other useful items. The ready queue contains pointers to threads that are ready to run.
The L-thread scheduler is a simple loop that polls the ready queue, reads from it the next
thread ready to run, which it resumes by saving the current context (the current position in the
scheduler loop) and restoring the context of the next thread from its thread struct. Thus an
L-thread is always resumed at the last place it yielded.

A well behaved L-thread will call the context switch regularly (at least once in its main loop)
thus returning to the scheduler’s own main loop. Yielding inserts the current thread at the back
of the ready queue, and the process of servicing the ready queue is repeated, thus the system
runs by flipping back and forth the between L-threads and scheduler loop.

In the case of pthreads, the preemptive scheduling, time slicing, and support for thread prioriti-
zation means that progress is normally possible for any thread that is ready to run. This comes
at the price of a relatively heavier context switch and scheduling overhead.

With L-threads the progress of any particular thread is determined by the frequency of
rescheduling opportunities in the other L-threads. This means that an errant L-thread mo-
nopolizing the CPU might cause scheduling of other threads to be stalled. Due to the lower
cost of context switching, however, voluntary rescheduling to ensure progress of other threads,
if managed sensibly, is not a prohibitive overhead, and overall performance can exceed that of
an application using pthreads.

Mutual exclusion

With pthreads preemption means that threads that share data must observe some form of
mutual exclusion protocol.

The fact that L-threads cannot preempt each other means that in many cases mutual exclusion
devices can be completely avoided.

Locking to protect shared data can be a significant bottleneck in multi-threaded applications

7.40. Performance Thread Sample Application 509

https://en.wikipedia.org/wiki/X86_calling_conventions

DPDK documentation, Release 16.04.0

so a carefully designed cooperatively scheduled program can enjoy significant performance
advantages.

So far we have considered only the simplistic case of a single core CPU, when multiple CPUs
are considered things are somewhat more complex.

First of all it is inevitable that there must be multiple L-thread schedulers, one running on each
EAL thread. So long as these schedulers remain isolated from each other the above assertions
about the potential advantages of cooperative scheduling hold true.

A configuration with isolated cooperative schedulers is less flexible than the pthread model
where threads can be affinitized to run on any CPU. With isolated schedulers scaling of appli-
cations to utilize fewer or more CPUs according to system demand is very difficult to achieve.

The L-thread subsystem makes it possible for L-threads to migrate between schedulers running
on different CPUs. Needless to say if the migration means that threads that share data end up
running on different CPUs then this will introduce the need for some kind of mutual exclusion
system.

Of course rte_ring software rings can always be used to interconnect threads running on
different cores, however to protect other kinds of shared data structures, lock free constructs
or else explicit locking will be required. This is a consideration for the application design.

In support of this extended functionality, the L-thread subsystem implements thread safe mu-
texes and condition variables.

The cost of affinitizing and of condition variable signaling is significantly lower than the equiv-
alent pthread operations, and so applications using these features will see a performance
benefit.

Thread local storage

As with applications written for pthreads an application written for L-threads can take advantage
of thread local storage, in this case local to an L-thread. An application may save and retrieve
a single pointer to application data in the L-thread struct.

For legacy and backward compatibility reasons two alternative methods are also offered, the
first is modelled directly on the pthread get/set specific APIs, the second approach is mod-
elled on the RTE_PER_LCORE macros, whereby PER_LTHREAD macros are introduced, in both
cases the storage is local to the L-thread.

Constraints and performance implications when using L-threads

API compatibility

The L-thread subsystem provides a set of functions that are logically equivalent to the cor-
responding functions offered by the POSIX pthread library, however not all pthread functions
have a corresponding L-thread equivalent, and not all features available to pthreads are imple-
mented for L-threads.

The pthread library offers considerable flexibility via programmable attributes that can be as-
sociated with threads, mutexes, and condition variables.

By contrast the L-thread subsystem has fixed functionality, the scheduler policy cannot be
varied, and L-threads cannot be prioritized. There are no variable attributes associated with

7.40. Performance Thread Sample Application 510

DPDK documentation, Release 16.04.0

any L-thread objects. L-threads, mutexes and conditional variables, all have fixed functionality.
(Note: reserved parameters are included in the APIs to facilitate possible future support for
attributes).

The table below lists the pthread and equivalent L-thread APIs with notes on differences and/or
constraints. Where there is no L-thread entry in the table, then the L-thread subsystem pro-
vides no equivalent function.

Table 7.21: Pthread and equivalent L-thread APIs.

Pthread function L-thread function Notes
pthread_barrier_destroy
pthread_barrier_init
pthread_barrier_wait
pthread_cond_broadcast lthread_cond_broadcast See note 1
pthread_cond_destroy lthread_cond_destroy
pthread_cond_init lthread_cond_init
pthread_cond_signal lthread_cond_signal See note 1
pthread_cond_timedwait
pthread_cond_wait lthread_cond_wait See note 5
pthread_create lthread_create See notes 2, 3
pthread_detach lthread_detach See note 4
pthread_equal
pthread_exit lthread_exit
pthread_getspecific lthread_getspecific
pthread_getcpuclockid
pthread_join lthread_join
pthread_key_create lthread_key_create
pthread_key_delete lthread_key_delete
pthread_mutex_destroy lthread_mutex_destroy
pthread_mutex_init lthread_mutex_init
pthread_mutex_lock lthread_mutex_lock See note 6
pthread_mutex_trylock lthread_mutex_trylock See note 6
pthread_mutex_timedlock
pthread_mutex_unlock lthread_mutex_unlock
pthread_once
pthread_rwlock_destroy
pthread_rwlock_init
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_unlock
pthread_rwlock_wrlock
pthread_self lthread_current
pthread_setspecific lthread_setspecific
pthread_spin_init See note 10
pthread_spin_destroy See note 10
pthread_spin_lock See note 10

Continued on next page

7.40. Performance Thread Sample Application 511

DPDK documentation, Release 16.04.0

Table 7.21 – continued from previous page
Pthread function L-thread function Notes
pthread_spin_trylock See note 10
pthread_spin_unlock See note 10
pthread_cancel lthread_cancel
pthread_setcancelstate
pthread_setcanceltype
pthread_testcancel
pthread_getschedparam
pthread_setschedparam
pthread_yield lthread_yield See note 7
pthread_setaffinity_np lthread_set_affinity See notes 2, 3, 8

lthread_sleep See note 9
lthread_sleep_clks See note 9

Note 1:

Neither lthread signal nor broadcast may be called concurrently by L-threads running on differ-
ent schedulers, although multiple L-threads running in the same scheduler may freely perform
signal or broadcast operations. L-threads running on the same or different schedulers may
always safely wait on a condition variable.

Note 2:

Pthread attributes may be used to affinitize a pthread with a cpu-set. The L-thread subsystem
does not support a cpu-set. An L-thread may be affinitized only with a single CPU at any time.

Note 3:

If an L-thread is intended to run on a different NUMA node than the node that creates the
thread then, when calling lthread_create() it is advantageous to specify the destination
core as a parameter of lthread_create(). See Memory allocation and NUMA awareness
for details.

Note 4:

An L-thread can only detach itself, and cannot detach other L-threads.

Note 5:

A wait operation on a pthread condition variable is always associated with and protected by
a mutex which must be owned by the thread at the time it invokes pthread_wait(). By
contrast L-thread condition variables are thread safe (for waiters) and do not use an associated
mutex. Multiple L-threads (including L-threads running on other schedulers) can safely wait on
a L-thread condition variable. As a consequence the performance of an L-thread condition
variables is typically an order of magnitude faster than its pthread counterpart.

Note 6:

Recursive locking is not supported with L-threads, attempts to take a lock recursively will be
detected and rejected.

Note 7:

lthread_yield() will save the current context, insert the current thread to the back of the
ready queue, and resume the next ready thread. Yielding increases ready queue backlog, see
Ready queue backlog for more details about the implications of this.

7.40. Performance Thread Sample Application 512

DPDK documentation, Release 16.04.0

N.B. The context switch time as measured from immediately before the call to
lthread_yield() to the point at which the next ready thread is resumed, can be an or-
der of magnitude faster that the same measurement for pthread_yield.

Note 8:

lthread_set_affinity() is similar to a yield apart from the fact that the yielding thread
is inserted into a peer ready queue of another scheduler. The peer ready queue is actually a
separate thread safe queue, which means that threads appearing in the peer ready queue can
jump any backlog in the local ready queue on the destination scheduler.

The context switch time as measured from the time just before the call to
lthread_set_affinity() to just after the same thread is resumed on the new
scheduler can be orders of magnitude faster than the same measurement for
pthread_setaffinity_np().

Note 9:

Although there is no pthread_sleep() function, lthread_sleep() and
lthread_sleep_clks() can be used wherever sleep(), usleep() or nanosleep()
might ordinarily be used. The L-thread sleep functions suspend the current thread, start an
rte_timer and resume the thread when the timer matures. The rte_timer_manage()
entry point is called on every pass of the scheduler loop. This means that the worst case jitter
on timer expiry is determined by the longest period between context switches of any running
L-threads.

In a synthetic test with many threads sleeping and resuming then the measured jitter is typically
orders of magnitude lower than the same measurement made for nanosleep().

Note 10:

Spin locks are not provided because they are problematical in a cooperative environment, see
Locks and spinlocks for a more detailed discussion on how to avoid spin locks.

Thread local storage

Of the three L-thread local storage options the simplest and most efficient is storing a single
application data pointer in the L-thread struct.

The PER_LTHREAD macros involve a run time computation to obtain the address of the variable
being saved/retrieved and also require that the accesses are de-referenced via a pointer. This
means that code that has used RTE_PER_LCORE macros being ported to L-threads might need
some slight adjustment (see Thread local storage for hints about porting code that makes use
of thread local storage).

The get/set specific APIs are consistent with their pthread counterparts both in use and in
performance.

Memory allocation and NUMA awareness

All memory allocation is from DPDK huge pages, and is NUMA aware. Each scheduler main-
tains its own caches of objects: lthreads, their stacks, TLS, mutexes and condition variables.
These caches are implemented as unbounded lock free MPSC queues. When objects are
created they are always allocated from the caches on the local core (current EAL thread).

7.40. Performance Thread Sample Application 513

DPDK documentation, Release 16.04.0

If an L-thread has been affinitized to a different scheduler, then it can always safely free re-
sources to the caches from which they originated (because the caches are MPSC queues).

If the L-thread has been affinitized to a different NUMA node then the memory resources
associated with it may incur longer access latency.

The commonly used pattern of setting affinity on entry to a thread after it has started, means
that memory allocation for both the stack and TLS will have been made from caches on the
NUMA node on which the threads creator is running. This has the side effect that access
latency will be sub-optimal after affinitizing.

This side effect can be mitigated to some extent (although not completely) by specifying the
destination CPU as a parameter of lthread_create() this causes the L-thread’s stack and
TLS to be allocated when it is first scheduled on the destination scheduler, if the destination is
a on another NUMA node it results in a more optimal memory allocation.

Note that the lthread struct itself remains allocated from memory on the creating node, this is
unavoidable because an L-thread is known everywhere by the address of this struct.

Object cache sizing

The per lcore object caches pre-allocate objects in bulk whenever a request to allocate an
object finds a cache empty. By default 100 objects are pre-allocated, this is defined by
LTHREAD_PREALLOC in the public API header file lthread_api.h. This means that the caches
constantly grow to meet system demand.

In the present implementation there is no mechanism to reduce the cache sizes if system
demand reduces. Thus the caches will remain at their maximum extent indefinitely.

A consequence of the bulk pre-allocation of objects is that every 100 (default value) additional
new object create operations results in a call to rte_malloc(). For creation of objects such
as L-threads, which trigger the allocation of even more objects (i.e. their stacks and TLS) then
this can cause outliers in scheduling performance.

If this is a problem the simplest mitigation strategy is to dimension the system, by setting the
bulk object pre-allocation size to some large number that you do not expect to be exceeded.
This means the caches will be populated once only, the very first time a thread is created.

Ready queue backlog

One of the more subtle performance considerations is managing the ready queue backlog.
The fewer threads that are waiting in the ready queue then the faster any particular thread will
get serviced.

In a naive L-thread application with N L-threads simply looping and yielding, this backlog will
always be equal to the number of L-threads, thus the cost of a yield to a particular L-thread will
be N times the context switch time.

This side effect can be mitigated by arranging for threads to be suspended and wait to be
resumed, rather than polling for work by constantly yielding. Blocking on a mutex or condition
variable or even more obviously having a thread sleep if it has a low frequency workload are all
mechanisms by which a thread can be excluded from the ready queue until it really does need
to be run. This can have a significant positive impact on performance.

7.40. Performance Thread Sample Application 514

DPDK documentation, Release 16.04.0

Initialization, shutdown and dependencies

The L-thread subsystem depends on DPDK for huge page allocation and de-
pends on the rte_timer subsystem. The DPDK EAL initialization and
rte_timer_subsystem_init() MUST be completed before the L-thread sub system
can be used.

Thereafter initialization of the L-thread subsystem is largely transparent to the application.
Constructor functions ensure that global variables are properly initialized. Other than global
variables each scheduler is initialized independently the first time that an L-thread is created
by a particular EAL thread.

If the schedulers are to be run as isolated and independent schedulers, with no intention that L-
threads running on different schedulers will migrate between schedulers or synchronize with L-
threads running on other schedulers, then initialization consists simply of creating an L-thread,
and then running the L-thread scheduler.

If there will be interaction between L-threads running on different schedulers, then it is impor-
tant that the starting of schedulers on different EAL threads is synchronized.

To achieve this an additional initialization step is necessary, this is simply to set the number of
schedulers by calling the API function lthread_num_schedulers_set(n), where n is the
number of EAL threads that will run L-thread schedulers. Setting the number of schedulers to
a number greater than 0 will cause all schedulers to wait until the others have started before
beginning to schedule L-threads.

The L-thread scheduler is started by calling the function lthread_run() and should be called
from the EAL thread and thus become the main loop of the EAL thread.

The function lthread_run(), will not return until all threads running on the
scheduler have exited, and the scheduler has been explicitly stopped by calling
lthread_scheduler_shutdown(lcore) or lthread_scheduler_shutdown_all().

All these function do is tell the scheduler that it can exit when there are no longer any running
L-threads, neither function forces any running L-thread to terminate. Any desired application
shutdown behavior must be designed and built into the application to ensure that L-threads
complete in a timely manner.

Important Note: It is assumed when the scheduler exits that the application is terminating
for good, the scheduler does not free resources before exiting and running the scheduler a
subsequent time will result in undefined behavior.

Porting legacy code to run on L-threads

Legacy code originally written for a pthread environment may be ported to L-threads if the
considerations about differences in scheduling policy, and constraints discussed in the previous
sections can be accommodated.

This section looks in more detail at some of the issues that may have to be resolved when
porting code.

7.40. Performance Thread Sample Application 515

DPDK documentation, Release 16.04.0

pthread API compatibility

The first step is to establish exactly which pthread APIs the legacy application uses, and to
understand the requirements of those APIs. If there are corresponding L-lthread APIs, and
where the default pthread functionality is used by the application then, notwithstanding the
other issues discussed here, it should be feasible to run the application with L-threads. If the
legacy code modifies the default behavior using attributes then if may be necessary to make
some adjustments to eliminate those requirements.

Blocking system API calls

It is important to understand what other system services the application may be using, bearing
in mind that in a cooperatively scheduled environment a thread cannot block without stalling
the scheduler and with it all other cooperative threads. Any kind of blocking system call, for
example file or socket IO, is a potential problem, a good tool to analyze the application for this
purpose is the strace utility.

There are many strategies to resolve these kind of issues, each with it merits. Possible solu-
tions include:

• Adopting a polled mode of the system API concerned (if available).

• Arranging for another core to perform the function and synchronizing with that core via
constructs that will not block the L-thread.

• Affinitizing the thread to another scheduler devoted (as a matter of policy) to handling
threads wishing to make blocking calls, and then back again when finished.

Locks and spinlocks

Locks and spinlocks are another source of blocking behavior that for the same reasons as
system calls will need to be addressed.

If the application design ensures that the contending L-threads will always run on the same
scheduler then it its probably safe to remove locks and spin locks completely.

The only exception to the above rule is if for some reason the code performs any kind of context
switch whilst holding the lock (e.g. yield, sleep, or block on a different lock, or on a condition
variable). This will need to determined before deciding to eliminate a lock.

If a lock cannot be eliminated then an L-thread mutex can be substituted for either kind of lock.

An L-thread blocking on an L-thread mutex will be suspended and will cause another ready
L-thread to be resumed, thus not blocking the scheduler. When default behavior is required, it
can be used as a direct replacement for a pthread mutex lock.

Spin locks are typically used when lock contention is likely to be rare and where the period
during which the lock may be held is relatively short. When the contending L-threads are
running on the same scheduler then an L-thread blocking on a spin lock will enter an infinite
loop stopping the scheduler completely (see Infinite loops below).

If the application design ensures that contending L-threads will always run on different sched-
ulers then it might be reasonable to leave a short spin lock that rarely experiences contention
in place.

7.40. Performance Thread Sample Application 516

DPDK documentation, Release 16.04.0

If after all considerations it appears that a spin lock can neither be eliminated completely,
replaced with an L-thread mutex, or left in place as is, then an alternative is to loop on a flag,
with a call to lthread_yield() inside the loop (n.b. if the contending L-threads might ever
run on different schedulers the flag will need to be manipulated atomically).

Spinning and yielding is the least preferred solution since it introduces ready queue backlog
(see also Ready queue backlog).

Sleeps and delays

Yet another kind of blocking behavior (albeit momentary) are delay functions like sleep(),
usleep(), nanosleep() etc. All will have the consequence of stalling the L-thread scheduler
and unless the delay is very short (e.g. a very short nanosleep) calls to these functions will
need to be eliminated.

The simplest mitigation strategy is to use the L-thread sleep API functions, of which two
variants exist, lthread_sleep() and lthread_sleep_clks(). These functions start an
rte_timer against the L-thread, suspend the L-thread and cause another ready L-thread to be
resumed. The suspended L-thread is resumed when the rte_timer matures.

Infinite loops

Some applications have threads with loops that contain no inherent rescheduling opportunity,
and rely solely on the OS time slicing to share the CPU. In a cooperative environment this will
stop everything dead. These kind of loops are not hard to identify, in a debug session you will
find the debugger is always stopping in the same loop.

The simplest solution to this kind of problem is to insert an explicit lthread_yield() or
lthread_sleep() into the loop. Another solution might be to include the function performed
by the loop into the execution path of some other loop that does in fact yield, if this is possible.

Thread local storage

If the application uses thread local storage, the use case should be studied carefully.

In a legacy pthread application either or both the __thread prefix, or the pthread set/get
specific APIs may have been used to define storage local to a pthread.

In some applications it may be a reasonable assumption that the data could or in fact most
likely should be placed in L-thread local storage.

If the application (like many DPDK applications) has assumed a certain relationship between
a pthread and the CPU to which it is affinitized, there is a risk that thread local storage may
have been used to save some data items that are correctly logically associated with the CPU,
and others items which relate to application context for the thread. Only a good understanding
of the application will reveal such cases.

If the application requires an that an L-thread is to be able to move between schedulers then
care should be taken to separate these kinds of data, into per lcore, and per L-thread storage.
In this way a migrating thread will bring with it the local data it needs, and pick up the new
logical core specific values from pthread local storage at its new home.

7.40. Performance Thread Sample Application 517

DPDK documentation, Release 16.04.0

Pthread shim

A convenient way to get something working with legacy code can be to use a shim that adapts
pthread API calls to the corresponding L-thread ones. This approach will not mitigate any of
the porting considerations mentioned in the previous sections, but it will reduce the amount
of code churn that would otherwise been involved. It is a reasonable approach to evaluate
L-threads, before investing effort in porting to the native L-thread APIs.

Overview

The L-thread subsystem includes an example pthread shim. This is a partial implementation
but does contain the API stubs needed to get basic applications running. There is a simple
“hello world” application that demonstrates the use of the pthread shim.

A subtlety of working with a shim is that the application will still need to make use of the
genuine pthread library functions, at the very least in order to create the EAL threads in which
the L-thread schedulers will run. This is the case with DPDK initialization, and exit.

To deal with the initialization and shutdown scenarios, the shim is capable of switching on or
off its adaptor functionality, an application can control this behavior by the calling the function
pt_override_set(). The default state is disabled.

The pthread shim uses the dynamic linker loader and saves the loaded addresses of the gen-
uine pthread API functions in an internal table, when the shim functionality is enabled it per-
forms the adaptor function, when disabled it invokes the genuine pthread function.

The function pthread_exit() has additional special handling. The standard system header
file pthread.h declares pthread_exit() with __attribute__((noreturn)) this is an
optimization that is possible because the pthread is terminating and this enables the compiler to
omit the normal handling of stack and protection of registers since the function is not expected
to return, and in fact the thread is being destroyed. These optimizations are applied in both the
callee and the caller of the pthread_exit() function.

In our cooperative scheduling environment this behavior is inadmissible. The pthread is the
L-thread scheduler thread, and, although an L-thread is terminating, there must be a return to
the scheduler in order that the system can continue to run. Further, returning from a function
with attribute noreturn is invalid and may result in undefined behavior.

The solution is to redefine the pthread_exit function with a macro, causing it to be mapped
to a stub function in the shim that does not have the noreturn attribute. This macro is defined
in the file pthread_shim.h. The stub function is otherwise no different than any of the other
stub functions in the shim, and will switch between the real pthread_exit() function or the
lthread_exit() function as required. The only difference is that the mapping to the stub by
macro substitution.

A consequence of this is that the file pthread_shim.h must be included in legacy code
wishing to make use of the shim. It also means that dynamic linkage of a pre-compiled binary
that did not include pthread_shim.h is not be supported.

Given the requirements for porting legacy code outlined in Porting legacy code to run on L-
threads most applications will require at least some minimal adjustment and recompilation to
run on L-threads so pre-compiled binaries are unlikely to be met in practice.

In summary the shim approach adds some overhead but can be a useful tool to help establish
the feasibility of a code reuse project. It is also a fairly straightforward task to extend the shim

7.40. Performance Thread Sample Application 518

DPDK documentation, Release 16.04.0

if necessary.

Note: Bearing in mind the preceding discussions about the impact of making blocking calls
then switching the shim in and out on the fly to invoke any pthread API this might block is
something that should typically be avoided.

Building and running the pthread shim

The shim example application is located in the sample application in the performance-thread
folder

To build and run the pthread shim example

1. Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/pthread_shim

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

4. To run the pthread_shim example

lthread-pthread-shim -c core_mask -n number_of_channels

L-thread Diagnostics

When debugging you must take account of the fact that the L-threads are run in a single
pthread. The current scheduler is defined by RTE_PER_LCORE(this_sched), and the cur-
rent lthread is stored at RTE_PER_LCORE(this_sched)->current_lthread. Thus on a
breakpoint in a GDB session the current lthread can be obtained by displaying the pthread
local variable per_lcore_this_sched->current_lthread.

Another useful diagnostic feature is the possibility to trace significant events in the life of an
L-thread, this feature is enabled by changing the value of LTHREAD_DIAG from 0 to 1 in the
file lthread_diag_api.h.

Tracing of events can be individually masked, and the mask may be programmed at run time.
An unmasked event results in a callback that provides information about the event. The default
callback simply prints trace information. The default mask is 0 (all events off) the mask can be
modified by calling the function lthread_diagniostic_set_mask().

It is possible register a user callback function to implement more sophisticated diagnostic func-
tions. Object creation events (lthread, mutex, and condition variable) accept, and store in the
created object, a user supplied reference value returned by the callback function.

The lthread reference value is passed back in all subsequent event callbacks, the mutex and
APIs are provided to retrieve the reference value from mutexes and condition variables. This
enables a user to monitor, count, or filter for specific events, on specific objects, for example
to monitor for a specific thread signaling a specific condition variable, or to monitor on all timer
events, the possibilities and combinations are endless.

7.40. Performance Thread Sample Application 519

DPDK documentation, Release 16.04.0

The callback function can be set by calling the function lthread_diagnostic_enable()
supplying a callback function pointer and an event mask.

Setting LTHREAD_DIAG also enables counting of statistics about cache and queue usage, and
these statistics can be displayed by calling the function lthread_diag_stats_display().
This function also performs a consistency check on the caches and queues. The function
should only be called from the master EAL thread after all slave threads have stopped and
returned to the C main program, otherwise the consistency check will fail.

7.41 IPsec Security Gateway Sample Application

The IPsec Security Gateway application is an example of a “real world” application using DPDK
cryptodev framework.

7.41.1 Overview

The application demonstrates the implementation of a Security Gateway (not IPsec compliant,
see Constraints bellow) using DPDK based on RFC4301, RFC4303, RFC3602 and RFC2404.

Internet Key Exchange (IKE) is not implemented, so only manual setting of Security Policies
and Security Associations is supported.

The Security Policies (SP) are implemented as ACL rules, the Security Associations (SA) are
stored in a table and the Routing is implemented using LPM.

The application classify the ports between Protected and Unprotected. Thus, traffic received
in an Unprotected or Protected port is consider Inbound or Outbound respectively.

Path for IPsec Inbound traffic:

• Read packets from the port

• Classify packets between IPv4 and ESP.

• Inbound SA lookup for ESP packets based on their SPI

• Verification/Decryption

• Removal of ESP and outer IP header

• Inbound SP check using ACL of decrypted packets and any other IPv4 packet we read.

• Routing

• Write packet to port

Path for IPsec Outbound traffic:

• Read packets from the port

• Outbound SP check using ACL of all IPv4 traffic

• Outbound SA lookup for packets that need IPsec protection

• Add ESP and outer IP header

• Encryption/Digest

• Routing

7.41. IPsec Security Gateway Sample Application 520

DPDK documentation, Release 16.04.0

• Write packet to port

7.41.2 Constraints

• IPv4 traffic

• ESP tunnel mode

• EAS-CBC, HMAC-SHA1 and NULL

• Each SA must be handle by a unique lcore (1 RX queue per port)

• No chained mbufs

7.41.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ipsec-secgw

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

7.41.4 Running the Application

The application has a number of command line options:

./build/ipsec-secgw [EAL options] -- -p PORTMASK -P -u PORTMASK --config
(port,queue,lcore)[,(port,queue,lcore] --single-sa SAIDX --ep0|--ep1

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless
of the packet’s Ethernet MAC destination address. Without this option, only packets
with the Ethernet MAC destination address set to the Ethernet address of the port are
accepted (default is enabled).

• -u PORTMASK: hexadecimal bitmask of unprotected ports

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores

• –single-sa SAIDX: use a single SA for outbound traffic, bypassing the SP on both Inbound
and Outbound. This option is meant for debugging/performance purposes.

• –ep0: configure the app as Endpoint 0.

• –ep1: configure the app as Endpoint 1.

7.41. IPsec Security Gateway Sample Application 521

DPDK documentation, Release 16.04.0

Either one of –ep0 or –ep1 must be specified. The main purpose of these options is two easily
configure two systems back-to-back that would forward traffic through an IPsec tunnel.

The mapping of lcores to port/queues is similar to other l3fwd applications.

For example, given the following command line:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048
--vdev "cryptodev_null_pmd" -- -p 0xf -P -u 0x3
--config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" --ep0

where each options means:

• The -l option enables cores 20 and 21

• The -n option sets memory 4 channels

• The –socket-mem to use 2GB on socket 1

• The –vdev “cryptodev_null_pmd” option creates virtual NULL cryptodev PMD

• The -p option enables ports (detected) 0, 1, 2 and 3

• The -P option enables promiscuous mode

• The -u option sets ports 1 and 2 as unprotected, leaving 2 and 3 as protected

• The –config option enables one queue per port with the following mapping:

Port Queue lcore Description
0 0 20 Map queue 0 from port 0 to lcore 20.
1 0 20 Map queue 0 from port 1 to lcore 20.
2 0 21 Map queue 0 from port 2 to lcore 21.
3 0 21 Map queue 0 from port 3 to lcore 21.

• The –ep0 options configures the app with a given set of SP, SA and Routing entries as
explained below in more detail.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

The application would do a best effort to “map” crypto devices to cores, with hardware devices
having priority. This means that if the application is using a single core and both hardware and
software crypto devices are detected, hardware devices will be used.

A way to achieve the case where you want to force the use of virtual crypto devices is to
whitelist the Ethernet devices needed and therefore implicitly blacklisting all hardware crypto
devices.

For example, something like the following command line:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048
-w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3
--vdev "cryptodev_aesni_mb_pmd" --vdev "cryptodev_null_pmd" --
-p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"
--ep0

7.41.5 Configurations

The following sections provide some details on the default values used to initialize the SP, SA
and Routing tables. Currently all the configuration is hard coded into the application.

7.41. IPsec Security Gateway Sample Application 522

DPDK documentation, Release 16.04.0

Security Policy Initialization

As mention in the overview, the Security Policies are ACL rules. The application defines two
ACLs, one each of Inbound and Outbound, and it replicates them per socket in use.

Following are the default rules:

Endpoint 0 Outbound Security Policies:

Src Dst proto SA idx
Any 192.168.105.0/24 Any 5
Any 192.168.106.0/24 Any 6
Any 192.168.107.0/24 Any 7
Any 192.168.108.0/24 Any 8
Any 192.168.200.0/24 Any 9
Any 192.168.250.0/24 Any BYPASS

Endpoint 0 Inbound Security Policies:

Src Dst proto SA idx
Any 192.168.115.0/24 Any 5
Any 192.168.116.0/24 Any 6
Any 192.168.117.0/24 Any 7
Any 192.168.118.0/24 Any 8
Any 192.168.210.0/24 Any 9
Any 192.168.240.0/24 Any BYPASS

Endpoint 1 Outbound Security Policies:

Src Dst proto SA idx
Any 192.168.115.0/24 Any 5
Any 192.168.116.0/24 Any 6
Any 192.168.117.0/24 Any 7
Any 192.168.118.0/24 Any 8
Any 192.168.210.0/24 Any 9
Any 192.168.240.0/24 Any BYPASS

Endpoint 1 Inbound Security Policies:

Src Dst proto SA idx
Any 192.168.105.0/24 Any 5
Any 192.168.106.0/24 Any 6
Any 192.168.107.0/24 Any 7
Any 192.168.108.0/24 Any 8
Any 192.168.200.0/24 Any 9
Any 192.168.250.0/24 Any BYPASS

Security Association Initialization

The SAs are kept in a array table.

For Inbound, the SPI is used as index module the table size. This means that on a table for
100 SA, SPI 5 and 105 would use the same index and that is not currently supported.

7.41. IPsec Security Gateway Sample Application 523

DPDK documentation, Release 16.04.0

Notice that it is not an issue for Outbound traffic as we store the index and not the SPI in the
Security Policy.

All SAs configured with AES-CBC and HMAC-SHA1 share the same values for cipher block
size and key, and authentication digest size and key.

Following are the default values:

Endpoint 0 Outbound Security Associations:

SPI Cipher Auth Tunnel src Tunnel dst
5 AES-CBC HMAC-SHA1 172.16.1.5 172.16.2.5
6 AES-CBC HMAC-SHA1 172.16.1.6 172.16.2.6
7 AES-CBC HMAC-SHA1 172.16.1.7 172.16.2.7
8 AES-CBC HMAC-SHA1 172.16.1.8 172.16.2.8
9 NULL NULL 172.16.1.5 172.16.2.5

Endpoint 0 Inbound Security Associations:

SPI Cipher Auth Tunnel src Tunnel dst
5 AES-CBC HMAC-SHA1 172.16.2.5 172.16.1.5
6 AES-CBC HMAC-SHA1 172.16.2.6 172.16.1.6
7 AES-CBC HMAC-SHA1 172.16.2.7 172.16.1.7
8 AES-CBC HMAC-SHA1 172.16.2.8 172.16.1.8
9 NULL NULL 172.16.2.5 172.16.1.5

Endpoint 1 Outbound Security Associations:

SPI Cipher Auth Tunnel src Tunnel dst
5 AES-CBC HMAC-SHA1 172.16.2.5 172.16.1.5
6 AES-CBC HMAC-SHA1 172.16.2.6 172.16.1.6
7 AES-CBC HMAC-SHA1 172.16.2.7 172.16.1.7
8 AES-CBC HMAC-SHA1 172.16.2.8 172.16.1.8
9 NULL NULL 172.16.2.5 172.16.1.5

Endpoint 1 Inbound Security Associations:

SPI Cipher Auth Tunnel src Tunnel dst
5 AES-CBC HMAC-SHA1 172.16.1.5 172.16.2.5
6 AES-CBC HMAC-SHA1 172.16.1.6 172.16.2.6
7 AES-CBC HMAC-SHA1 172.16.1.7 172.16.2.7
8 AES-CBC HMAC-SHA1 172.16.1.8 172.16.2.8
9 NULL NULL 172.16.1.5 172.16.2.5

Routing Initialization

The Routing is implemented using LPM table.

Following default values:

Endpoint 0 Routing Table:

7.41. IPsec Security Gateway Sample Application 524

DPDK documentation, Release 16.04.0

Dst addr Port
172.16.2.5/32 0
172.16.2.6/32 0
172.16.2.7/32 1
172.16.2.8/32 1
192.168.115.0/24 2
192.168.116.0/24 2
192.168.117.0/24 3
192.168.118.0/24 3
192.168.210.0/24 2
192.168.240.0/24 2
192.168.250.0/24 0

Endpoint 1 Routing Table:

Dst addr Port
172.16.1.5/32 2
172.16.1.6/32 2
172.16.1.7/32 3
172.16.1.8/32 3
192.168.105.0/24 0
192.168.106.0/24 0
192.168.107.0/24 1
192.168.108.0/24 1
192.168.200.0/24 0
192.168.240.0/24 2
192.168.250.0/24 0

Figures

Fig. 7.1 Packet Flow

Fig. 7.2 Kernel NIC Application Packet Flow

Fig. 7.4 Performance Benchmark Setup (Basic Environment)

Fig. 7.5 Performance Benchmark Setup (Virtualized Environment)

Fig. 7.6 Performance Benchmark Setup (Basic Environment)

Fig. 7.7 Performance Benchmark Setup (Virtualized Environment)

Fig. 7.3 Encryption flow Through the L2 Forwarding with Crypto Application

Fig. 7.8 A typical IPv4 ACL rule

Fig. 7.9 Rules example

Fig. 7.10 Load Balancer Application Architecture

Fig. 7.11 Example Data Flow in a Symmetric Multi-process Application

Fig. 7.12 Example Data Flow in a Client-Server Symmetric Multi-process Application

Fig. 7.13 Master-slave Process Workflow

Fig. 7.14 Slave Process Recovery Process Flow

Fig. 7.15 QoS Scheduler Application Architecture

7.41. IPsec Security Gateway Sample Application 525

DPDK documentation, Release 16.04.0

Fig. 7.16 Intel® QuickAssist Technology Application Block Diagram

Fig. 7.17 Pipeline Overview

Fig. 7.18 Ring-based Processing Pipeline Performance Setup

Fig. 7.19 Threads and Pipelines

Fig. 7.20 Packet Flow Through the VMDQ and DCB Sample Application

Fig. 7.21 System Architecture for Virtio-based Networking (virtio-net).

Fig. 7.22 Virtio with Linux

Fig. 7.23 Vhost-net Architectural Overview

Fig. 7.24 Packet Flow Through the vhost-net Sample Application

Fig. 7.25 Packet Flow on TX in DPDK-testpmd

Fig. 7.29 Test Pipeline Application

Fig. 7.30 Performance Benchmarking Setup (Basic Environment)

Fig. 7.31 Distributor Sample Application Layout

Fig. 7.32 Highlevel Solution

Fig. 7.33 VM request to scale frequency Fig. 7.34 Overlay Networking. Fig. 7.35 TEP termi-
nation Framework Overview

Fig. 7.36 PTP Synchronization Protocol

Tables

Table 7.1 Output Traffic Marking

Table 7.2 Entity Types

Table 7.20 Table Types

7.41. IPsec Security Gateway Sample Application 526

CHAPTER 8

Testpmd Application User Guide

8.1 Introduction

This document is a user guide for the testpmd example application that is shipped as part of
the Data Plane Development Kit.

The testpmd application can be used to test the DPDK in a packet forwarding mode and also
to access NIC hardware features such as Flow Director. It also serves as a example of how to
build a more fully-featured application using the DPDK SDK.

The guide shows how to build and run the testpmd application and how to configure the appli-
cation from the command line and the run-time environment.

8.2 Compiling the Application

The testpmd application is compiled as part of the main compilation of the DPDK libraries
and tools. Refer to the DPDK Getting Started Guides for details. The basic compilation steps
are:

1. Set the required environmental variables and go to the source directory:

export RTE_SDK=/path/to/rte_sdk
cd $RTE_SDK

2. Set the compilation target. For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make install T=$RTE_TARGET

The compiled application will be located at:

$RTE_SDK/$RTE_TARGET/build/app/testpmd

8.3 Running the Application

8.3.1 EAL Command-line Options

The following are the EAL command-line options that can be used in conjunction with the
testpmd, or any other DPDK application. See the DPDK Getting Started Guides for more

527

DPDK documentation, Release 16.04.0

information on these options.

• -c COREMASK

Set the hexadecimal bitmask of the cores to run on.

• -l CORELIST

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...] where c1, c2, etc are core in-
dexes between 0 and 128.

• --lcores COREMAP

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group. The - character is used
as a range separator and , is used as a single number separator. The grouping () can
be omitted for single element group. The @ can be omitted if cpus and lcores have the
same value.

• --master-lcore ID

Core ID that is used as master.

• -n NUM

Set the number of memory channels to use.

• -b, --pci-blacklist domain:bus:devid.func

Blacklist a PCI devise to prevent EAL from using it. Multiple -b options are allowed.

• -d LIB.so

Load an external driver. Multiple -d options are allowed.

• -w, --pci-whitelist domain:bus:devid:func

Add a PCI device in white list.

• -m MB

Memory to allocate. See also --socket-mem.

• -r NUM

Set the number of memory ranks (auto-detected by default).

• -v

Display the version information on startup.

• --xen-dom0

Support application running on Xen Domain0 without hugetlbfs.

• --syslog

Set the syslog facility.

8.3. Running the Application 528

DPDK documentation, Release 16.04.0

• --socket-mem

Set the memory to allocate on specific sockets (use comma separated values).

• --huge-dir

Specify the directory where the hugetlbfs is mounted.

• --proc-type

Set the type of the current process.

• --file-prefix

Prefix for hugepage filenames.

• -vmware-tsc-map

Use VMware TSC map instead of native RDTSC.

• --vdev

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'eth_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

• --base-virtaddr

Specify base virtual address.

• --create-uio-dev

Create /dev/uioX (usually done by hotplug).

• --no-shconf

No shared config (mmap-ed files).

• --no-pci

Disable pci.

• --no-hpet

Disable hpet.

• --no-huge

Use malloc instead of hugetlbfs.

8.3.2 Testpmd Command-line Options

The following are the command-line options for the testpmd applications. They must be sepa-
rated from the EAL options, shown in the previous section, with a -- separator:

sudo ./testpmd -c 0xF -n 4 -- -i --portmask=0x1 --nb-cores=2

The commandline options are:

8.3. Running the Application 529

DPDK documentation, Release 16.04.0

• -i, --interactive

Run testpmd in interactive mode. In this mode, the testpmd starts with a prompt that can
be used to start and stop forwarding, configure the application and display stats on the
current packet processing session. See Testpmd Runtime Functions for more details.

In non-interactive mode, the application starts with the configuration specified on the
command-line and immediately enters forwarding mode.

• -h, --help

Display a help message and quit.

• -a, --auto-start

Start forwarding on initialization.

• --nb-cores=N

Set the number of forwarding cores, where 1 <= N <= “number of cores” or
CONFIG_RTE_MAX_LCORE from the configuration file. The default value is 1.

• --nb-ports=N

Set the number of forwarding ports, where 1 <= N <= “number of ports” on the board
or CONFIG_RTE_MAX_ETHPORTS from the configuration file. The default value is the
number of ports on the board.

• --coremask=0xXX

Set the hexadecimal bitmask of the cores running the packet forwarding test. The master
lcore is reserved for command line parsing only and cannot be masked on for packet
forwarding.

• --portmask=0xXX

Set the hexadecimal bitmask of the ports used by the packet forwarding test.

• --numa

Enable NUMA-aware allocation of RX/TX rings and of RX memory buffers (mbufs).

• --port-numa-config=(port,socket)[,(port,socket)]

Specify the socket on which the memory pool to be used by the port will be allocated.

• --ring-numa-config=(port,flag,socket)[,(port,flag,socket)]

Specify the socket on which the TX/RX rings for the port will be allocated. Where flag is
1 for RX, 2 for TX, and 3 for RX and TX.

• --socket-num=N

Set the socket from which all memory is allocated in NUMA mode, where 0 <= N <
number of sockets on the board.

• --mbuf-size=N

Set the data size of the mbufs used to N bytes, where N < 65536. The default value is
2048.

• --total-num-mbufs=N

Set the number of mbufs to be allocated in the mbuf pools, where N > 1024.

8.3. Running the Application 530

DPDK documentation, Release 16.04.0

• --max-pkt-len=N

Set the maximum packet size to N bytes, where N >= 64. The default value is 1518.

• --eth-peers-configfile=name

Use a configuration file containing the Ethernet addresses of the peer ports. The config-
uration file should contain the Ethernet addresses on separate lines:

XX:XX:XX:XX:XX:01
XX:XX:XX:XX:XX:02
...

• --eth-peer=N,XX:XX:XX:XX:XX:XX

Set the MAC address XX:XX:XX:XX:XX:XX of the peer port N, where 0 <= N <
CONFIG_RTE_MAX_ETHPORTS from the configuration file.

• --pkt-filter-mode=mode

Set Flow Director mode where mode is either none (the default), signature or
perfect. See flow_director_filter for more details.

• --pkt-filter-report-hash=mode

Set Flow Director hash match reporting mode where mode is none, match (the default)
or always.

• --pkt-filter-size=N

Set Flow Director allocated memory size, where N is 64K, 128K or 256K. Sizes are in
kilobytes. The default is 64.

• --pkt-filter-flexbytes-offset=N

Set the flexbytes offset. The offset is defined in words (not bytes) counted from the first
byte of the destination Ethernet MAC address, where N is 0 <= N <= 32. The default
value is 0x6.

• --pkt-filter-drop-queue=N

Set the drop-queue. In perfect filter mode, when a rule is added with queue = -1, the
packet will be enqueued into the RX drop-queue. If the drop-queue does not exist, the
packet is dropped. The default value is N=127.

• --crc-strip

Enable hardware CRC stripping.

• --enable-rx-cksum

Enable hardware RX checksum offload.

• --disable-hw-vlan

Disable hardware VLAN.

• --disable-hw-vlan-filter

Disable hardware VLAN filter.

• --disable-hw-vlan-strip

Disable hardware VLAN strip.

8.3. Running the Application 531

DPDK documentation, Release 16.04.0

• --disable-hw-vlan-extend

Disable hardware VLAN extend.

• --enable-drop-en

Enable per-queue packet drop for packets with no descriptors.

• --disable-rss

Disable RSS (Receive Side Scaling).

• --port-topology=mode

Set port topology, where mode is paired (the default) or chained.

In paired mode, the forwarding is between pairs of ports, for example: (0,1), (2,3), (4,5).

In chained mode, the forwarding is to the next available port in the port mask, for exam-
ple: (0,1), (1,2), (2,0).

The ordering of the ports can be changed using the portlist testpmd runtime function.

• --forward-mode=mode

Set the forwarding mode where mode is one of the following:

io (the default)
mac
mac_retry
mac_swap
flowgen
rxonly
txonly
csum
icmpecho
ieee1588

• --rss-ip

Set RSS functions for IPv4/IPv6 only.

• --rss-udp

Set RSS functions for IPv4/IPv6 and UDP.

• --rxq=N

Set the number of RX queues per port to N, where 1 <= N <= 65535. The default value
is 1.

• --rxd=N

Set the number of descriptors in the RX rings to N, where N > 0. The default value is
128.

• --txq=N

Set the number of TX queues per port to N, where 1 <= N <= 65535. The default value
is 1.

• --txd=N

Set the number of descriptors in the TX rings to N, where N > 0. The default value is 512.

8.3. Running the Application 532

DPDK documentation, Release 16.04.0

• --burst=N

Set the number of packets per burst to N, where 1 <= N <= 512. The default value is 16.

• --mbcache=N

Set the cache of mbuf memory pools to N, where 0 <= N <= 512. The default value is 16.

• --rxpt=N

Set the prefetch threshold register of RX rings to N, where N >= 0. The default value is
8.

• --rxht=N

Set the host threshold register of RX rings to N, where N >= 0. The default value is 8.

• --rxfreet=N

Set the free threshold of RX descriptors to N, where 0 <= N < value of –rxd. The default
value is 0.

• --rxwt=N

Set the write-back threshold register of RX rings to N, where N >= 0. The default value
is 4.

• --txpt=N

Set the prefetch threshold register of TX rings to N, where N >= 0. The default value is
36.

• --txht=N

Set the host threshold register of TX rings to N, where N >= 0. The default value is 0.

• --txwt=N

Set the write-back threshold register of TX rings to N, where N >= 0. The default value is
0.

• --txfreet=N

Set the transmit free threshold of TX rings to N, where 0 <= N <= value of --txd. The
default value is 0.

• --txrst=N

Set the transmit RS bit threshold of TX rings to N, where 0 <= N <= value of --txd. The
default value is 0.

• --txqflags=0xXXXXXXXX

Set the hexadecimal bitmask of TX queue flags, where 0 <= N <= 0x7FFFFFFF. The
default value is 0.

Note: When using hardware offload functions such as vlan or checksum add
txqflags=0 to force the full-featured TX code path. In some PMDs this may already be
the default.

8.3. Running the Application 533

DPDK documentation, Release 16.04.0

• --rx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the RX queues statistics counters mapping 0 <= mapping <= 15.

• --tx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the TX queues statistics counters mapping 0 <= mapping <= 15.

• --no-flush-rx

Don’t flush the RX streams before starting forwarding. Used mainly with the PCAP PMD.

• --txpkts=X[,Y]

Set TX segment sizes.

• --disable-link-check

Disable check on link status when starting/stopping ports.

8.4 Testpmd Runtime Functions

Where the testpmd application is started in interactive mode, (-i|--interactive), it dis-
plays a prompt that can be used to start and stop forwarding, configure the application, display
statistics, set the Flow Director and other tasks:

testpmd>

The testpmd prompt has some, limited, readline support. Common bash command-line func-
tions such as Ctrl+a and Ctrl+e to go to the start and end of the prompt line are supported
as well as access to the command history via the up-arrow.

There is also support for tab completion. If you type a partial command and hit <TAB> you get
a list of the available completions:

testpmd> show port <TAB>

info [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap|dcb_tc X
info [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap|dcb_tc all
stats [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap|dcb_tc X
stats [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap|dcb_tc all
...

Note: Some examples in this document are too long to fit on one line are are shown wrapped
at “\” for display purposes:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) (port_id)

In the real testpmd> prompt these commands should be on a single line.

8.4.1 Help Functions

The testpmd has on-line help for the functions that are available at runtime. These are divided
into sections and can be accessed using help, help section or help all:

8.4. Testpmd Runtime Functions 534

DPDK documentation, Release 16.04.0

testpmd> help

help control : Start and stop forwarding.
help display : Displaying port, stats and config information.
help config : Configuration information.
help ports : Configuring ports.
help registers : Reading and setting port registers.
help filters : Filters configuration help.
help all : All of the above sections.

8.4.2 Control Functions

start

Start packet forwarding with current configuration:

testpmd> start

start tx_first

Start packet forwarding with current configuration after sending one burst of packets:

testpmd> start tx_first

stop

Stop packet forwarding, and display accumulated statistics:

testpmd> stop

quit

Quit to prompt:

testpmd> quit

8.4.3 Display Functions

The functions in the following sections are used to display information about the testpmd con-
figuration or the NIC status.

show port

Display information for a given port or all ports:

testpmd> show port (info|stats|fdir|stat_qmap|dcb_tc) (port_id|all)

The available information categories are:

• info: General port information such as MAC address.

• stats: RX/TX statistics.

• fdir: Flow Director information and statistics.

8.4. Testpmd Runtime Functions 535

DPDK documentation, Release 16.04.0

• stat_qmap: Queue statistics mapping.

• dcb_tc: DCB information such as TC mapping.

For example:

testpmd> show port info 0

********************* Infos for port 0 *********************

MAC address: XX:XX:XX:XX:XX:XX
Connect to socket: 0
memory allocation on the socket: 0
Link status: up
Link speed: 40000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 64
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:

strip on
filter on
qinq(extend) off

Redirection table size: 512
Supported flow types:

ipv4-frag
ipv4-tcp
ipv4-udp
ipv4-sctp
ipv4-other
ipv6-frag
ipv6-tcp
ipv6-udp
ipv6-sctp
ipv6-other
l2_payload

show port rss reta

Display the rss redirection table entry indicated by masks on port X:

testpmd> show port (port_id) rss reta (size) (mask0, mask1...)

size is used to indicate the hardware supported reta size

show port rss-hash

Display the RSS hash functions and RSS hash key of a port:

testpmd> show port (port_id) rss-hash ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2-payload|ipv6-ex|ipv6-tcp-ex|ipv6-udp-ex [key]

clear port

Clear the port statistics for a given port or for all ports:

testpmd> clear port (info|stats|fdir|stat_qmap) (port_id|all)

For example:

testpmd> clear port stats all

8.4. Testpmd Runtime Functions 536

DPDK documentation, Release 16.04.0

show (rxq|txq)

Display information for a given port’s RX/TX queue:

testpmd> show (rxq|txq) info (port_id) (queue_id)

show config

Displays the configuration of the application. The configuration comes from the command-line,
the runtime or the application defaults:

testpmd> show config (rxtx|cores|fwd|txpkts)

The available information categories are:

• rxtx: RX/TX configuration items.

• cores: List of forwarding cores.

• fwd: Packet forwarding configuration.

• txpkts: Packets to TX configuration.

For example:

testpmd> show config rxtx

io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=2 - nb forwarding ports=1
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

set fwd

Set the packet forwarding mode:

testpmd> set fwd (io|mac|mac_retry|macswap|flowgen| \
rxonly|txonly|csum|icmpecho)

The available information categories are:

• io: Forwards packets “as-is” in I/O mode. This is the fastest possible forwarding opera-
tion as it does not access packets data. This is the default mode.

• mac: Changes the source and the destination Ethernet addresses of packets before
forwarding them.

• mac_retry: Same as “mac” forwarding mode, but includes retries if the destination
queue is full.

• macswap: MAC swap forwarding mode. Swaps the source and the destination Ethernet
addresses of packets before forwarding them.

• flowgen: Multi-flow generation mode. Originates a number of flows (with varying desti-
nation IP addresses), and terminate receive traffic.

• rxonly: Receives packets but doesn’t transmit them.

8.4. Testpmd Runtime Functions 537

DPDK documentation, Release 16.04.0

• txonly: Generates and transmits packets without receiving any.

• csum: Changes the checksum field with hardware or software methods depending on
the offload flags on the packet.

• icmpecho: Receives a burst of packets, lookup for IMCP echo requests and, if any, send
back ICMP echo replies.

• ieee1588: Demonstrate L2 IEEE1588 V2 PTP timestamping for RX and TX. Requires
CONFIG_RTE_LIBRTE_IEEE1588=y.

Note: TX timestamping is only available in the “Full Featured” TX path. To force testpmd into
this mode set --txqflags=0.

Example:

testpmd> set fwd rxonly

Set rxonly packet forwarding mode

read rxd

Display an RX descriptor for a port RX queue:

testpmd> read rxd (port_id) (queue_id) (rxd_id)

For example:

testpmd> read rxd 0 0 4
0x0000000B - 0x001D0180 / 0x0000000B - 0x001D0180

read txd

Display a TX descriptor for a port TX queue:

testpmd> read txd (port_id) (queue_id) (txd_id)

For example:

testpmd> read txd 0 0 4
0x00000001 - 0x24C3C440 / 0x000F0000 - 0x2330003C

8.4.4 Configuration Functions

The testpmd application can be configured from the runtime as well as from the command-line.

This section details the available configuration functions that are available.

Note: Configuration changes only become active when forwarding is started/restarted.

set default

Reset forwarding to the default configuration:

testpmd> set default

8.4. Testpmd Runtime Functions 538

DPDK documentation, Release 16.04.0

set verbose

Set the debug verbosity level:

testpmd> set verbose (level)

Currently the only available levels are 0 (silent except for error) and 1 (fully verbose).

set nbport

Set the number of ports used by the application:

set nbport (num)

This is equivalent to the --nb-ports command-line option.

set nbcore

Set the number of cores used by the application:

testpmd> set nbcore (num)

This is equivalent to the --nb-cores command-line option.

Note: The number of cores used must not be greater than number of ports used multiplied by
the number of queues per port.

set coremask

Set the forwarding cores hexadecimal mask:

testpmd> set coremask (mask)

This is equivalent to the --coremask command-line option.

Note: The master lcore is reserved for command line parsing only and cannot be masked on
for packet forwarding.

set portmask

Set the forwarding ports hexadecimal mask:

testpmd> set portmask (mask)

This is equivalent to the --portmask command-line option.

set burst

Set number of packets per burst:

testpmd> set burst (num)

8.4. Testpmd Runtime Functions 539

DPDK documentation, Release 16.04.0

This is equivalent to the --burst command-line option.

In mac_retry forwarding mode, the transmit delay time and number of retries can also be set:

testpmd> set burst tx delay (micrseconds) retry (num)

set txpkts

Set the length of each segment of the TX-ONLY packets:

testpmd> set txpkts (x[,y]*)

Where x[,y]* represents a CSV list of values, without white space.

set txsplit

Set the split policy for the TX packets, applicable for TX-ONLY and CSUM forwarding modes:

testpmd> set txsplit (off|on|rand)

Where:

• off disable packet copy & split for CSUM mode.

• on split outgoing packet into multiple segments. Size of each segment and number of
segments per packet is determined by set txpkts command (see above).

• rand same as ‘on’, but number of segments per each packet is a random value between
1 and total number of segments.

set corelist

Set the list of forwarding cores:

testpmd> set corelist (x[,y]*)

For example, to change the forwarding cores:

testpmd> set corelist 3,1
testpmd> show config fwd

io packet forwarding - ports=2 - cores=2 - streams=2 - NUMA support disabled
Logical Core 3 (socket 0) forwards packets on 1 streams:
RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

Note: The cores are used in the same order as specified on the command line.

set portlist

Set the list of forwarding ports:

testpmd> set portlist (x[,y]*)

For example, to change the port forwarding:

8.4. Testpmd Runtime Functions 540

DPDK documentation, Release 16.04.0

testpmd> set portlist 0,2,1,3
testpmd> show config fwd

io packet forwarding - ports=4 - cores=1 - streams=4
Logical Core 3 (socket 0) forwards packets on 4 streams:
RX P=0/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:01
RX P=2/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
RX P=1/Q=0 (socket 0) -> TX P=3/Q=0 (socket 0) peer=02:00:00:00:00:03
RX P=3/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:02

vlan set strip

Set the VLAN strip on a port:

testpmd> vlan set strip (on|off) (port_id)

vlan set stripq

Set the VLAN strip for a queue on a port:

testpmd> vlan set stripq (on|off) (port_id,queue_id)

vlan set filter

Set the VLAN filter on a port:

testpmd> vlan set filter (on|off) (port_id)

vlan set qinq

Set the VLAN QinQ (extended queue in queue) on for a port:

testpmd> vlan set qinq (on|off) (port_id)

vlan set tpid

Set the inner or outer VLAN TPID for packet filtering on a port:

testpmd> vlan set (inner|outer) tpid (value) (port_id)

Note: TPID value must be a 16-bit number (value <= 65536).

rx_vlan add

Add a VLAN ID, or all identifiers, to the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan add (vlan_id|all) (port_id)

8.4. Testpmd Runtime Functions 541

DPDK documentation, Release 16.04.0

Note: VLAN filter must be set on that port. VLAN ID < 4096. Depending on the NIC used,
number of vlan_ids may be limited to the maximum entries in VFTA table. This is important if
enabling all vlan_ids.

rx_vlan rm

Remove a VLAN ID, or all identifiers, from the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan rm (vlan_id|all) (port_id)

rx_vlan add (for VF)

Add a VLAN ID, to the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan add (vlan_id) port (port_id) vf (vf_mask)

rx_vlan rm (for VF)

Remove a VLAN ID, from the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan rm (vlan_id) port (port_id) vf (vf_mask)

tunnel_filter add

Add a tunnel filter on a port:

testpmd> tunnel_filter add (port_id) (outer_mac) (inner_mac) (ip_addr) \
(inner_vlan) (vxlan|nvgre|ipingre) (imac-ivlan|imac-ivlan-tenid|\
imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

The available information categories are:

• vxlan: Set tunnel type as VXLAN.

• nvgre: Set tunnel type as NVGRE.

• ipingre: Set tunnel type as IP-in-GRE.

• imac-ivlan: Set filter type as Inner MAC and VLAN.

• imac-ivlan-tenid: Set filter type as Inner MAC, VLAN and tenant ID.

• imac-tenid: Set filter type as Inner MAC and tenant ID.

• imac: Set filter type as Inner MAC.

• omac-imac-tenid: Set filter type as Outer MAC, Inner MAC and tenant ID.

• oip: Set filter type as Outer IP.

• iip: Set filter type as Inner IP.

Example:

8.4. Testpmd Runtime Functions 542

DPDK documentation, Release 16.04.0

testpmd> tunnel_filter add 0 68:05:CA:28:09:82 00:00:00:00:00:00 \
192.168.2.2 0 ipingre oip 1 1

Set an IP-in-GRE tunnel on port 0, and the filter type is Outer IP.

tunnel_filter remove

Remove a tunnel filter on a port:

testpmd> tunnel_filter rm (port_id) (outer_mac) (inner_mac) (ip_addr) \
(inner_vlan) (vxlan|nvgre|ipingre) (imac-ivlan|imac-ivlan-tenid|\
imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

rx_vxlan_port add

Add an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port add (udp_port) (port_id)

rx_vxlan_port remove

Remove an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port rm (udp_port) (port_id)

tx_vlan set

Set hardware insertion of VLAN IDs in packets sent on a port:

testpmd> tx_vlan set (port_id) vlan_id[, vlan_id_outer]

For example, set a single VLAN ID (5) insertion on port 0:

tx_vlan set 0 5

Or, set double VLAN ID (inner: 2, outer: 3) insertion on port 1:

tx_vlan set 1 2 3

tx_vlan set pvid

Set port based hardware insertion of VLAN ID in packets sent on a port:

testpmd> tx_vlan set pvid (port_id) (vlan_id) (on|off)

tx_vlan reset

Disable hardware insertion of a VLAN header in packets sent on a port:

testpmd> tx_vlan reset (port_id)

8.4. Testpmd Runtime Functions 543

DPDK documentation, Release 16.04.0

csum set

Select hardware or software calculation of the checksum when transmitting a packet using the
csum forwarding engine:

testpmd> csum set (ip|udp|tcp|sctp|outer-ip) (hw|sw) (port_id)

Where:

• ip|udp|tcp|sctp always relate to the inner layer.

• outer-ip relates to the outer IP layer (only for IPv4) in the case where the packet is rec-
ognized as a tunnel packet by the forwarding engine (vxlan, gre and ipip are supported).
See also the csum parse-tunnel command.

Note: Check the NIC Datasheet for hardware limits.

csum parse-tunnel

Define how tunneled packets should be handled by the csum forward engine:

testpmd> csum parse-tunnel (on|off) (tx_port_id)

If enabled, the csum forward engine will try to recognize supported tunnel headers (vxlan, gre,
ipip).

If disabled, treat tunnel packets as non-tunneled packets (a inner header is handled as a packet
payload).

Note: The port argument is the TX port like in the csum set command.

Example:

Consider a packet in packet like the following:

eth_out/ipv4_out/udp_out/vxlan/eth_in/ipv4_in/tcp_in

• If parse-tunnel is enabled, the ip|udp|tcp|sctp parameters of csum set com-
mand relate to the inner headers (here ipv4_in and tcp_in), and the outer-ip
parameter relates to the outer headers (here ipv4_out).

• If parse-tunnel is disabled, the ip|udp|tcp|sctp parameters of csum set
command relate to the outer headers, here ipv4_out and udp_out.

csum show

Display tx checksum offload configuration:

testpmd> csum show (port_id)

tso set

Enable TCP Segmentation Offload (TSO) in the csum forwarding engine:

8.4. Testpmd Runtime Functions 544

DPDK documentation, Release 16.04.0

testpmd> tso set (segsize) (port_id)

Note: Check the NIC datasheet for hardware limits.

tso show

Display the status of TCP Segmentation Offload:

testpmd> tso show (port_id)

mac_addr add

Add an alternative MAC address to a port:

testpmd> mac_addr add (port_id) (XX:XX:XX:XX:XX:XX)

mac_addr remove

Remove a MAC address from a port:

testpmd> mac_addr remove (port_id) (XX:XX:XX:XX:XX:XX)

mac_addr add(for VF)

Add an alternative MAC address for a VF to a port:

testpmd> mac_add add port (port_id) vf (vf_id) (XX:XX:XX:XX:XX:XX)

set port-uta

Set the unicast hash filter(s) on/off for a port:

testpmd> set port (port_id) uta (XX:XX:XX:XX:XX:XX|all) (on|off)

set promisc

Set the promiscuous mode on for a port or for all ports. In promiscuous mode packets are not
dropped if they aren’t for the specified MAC address:

testpmd> set promisc (port_id|all) (on|off)

set allmulti

Set the allmulti mode for a port or for all ports:

testpmd> set allmulti (port_id|all) (on|off)

Same as the ifconfig (8) option. Controls how multicast packets are handled.

8.4. Testpmd Runtime Functions 545

DPDK documentation, Release 16.04.0

set flow_ctrl rx

Set the link flow control parameter on a port:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) mac_ctrl_frame_fwd (on|off) \
autoneg (on|off) (port_id)

Where:

• high_water (integer): High threshold value to trigger XOFF.

• low_water (integer): Low threshold value to trigger XON.

• pause_time (integer): Pause quota in the Pause frame.

• send_xon (0/1): Send XON frame.

• mac_ctrl_frame_fwd: Enable receiving MAC control frames.

• autoneg: Change the auto-negotiation para mete.

set pfc_ctrl rx

Set the priority flow control parameter on a port:

testpmd> set pfc_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (priority) (port_id)

Where:

• high_water (integer): High threshold value.

• low_water (integer): Low threshold value.

• pause_time (integer): Pause quota in the Pause frame.

• priority (0-7): VLAN User Priority.

set stat_qmap

Set statistics mapping (qmapping 0..15) for RX/TX queue on port:

testpmd> set stat_qmap (tx|rx) (port_id) (queue_id) (qmapping)

For example, to set rx queue 2 on port 0 to mapping 5:

testpmd>set stat_qmap rx 0 2 5

set port - rx/tx (for VF)

Set VF receive/transmit from a port:

testpmd> set port (port_id) vf (vf_id) (rx|tx) (on|off)

8.4. Testpmd Runtime Functions 546

DPDK documentation, Release 16.04.0

set port - mac address filter (for VF)

Add/Remove unicast or multicast MAC addr filter for a VF:

testpmd> set port (port_id) vf (vf_id) (mac_addr) \
(exact-mac|exact-mac-vlan|hashmac|hashmac-vlan) (on|off)

set port - rx mode(for VF)

Set the VF receive mode of a port:

testpmd> set port (port_id) vf (vf_id) \
rxmode (AUPE|ROPE|BAM|MPE) (on|off)

The available receive modes are:

• AUPE: Accepts untagged VLAN.

• ROPE: Accepts unicast hash.

• BAM: Accepts broadcast packets.

• MPE: Accepts all multicast packets.

set port - tx_rate (for Queue)

Set TX rate limitation for a queue on a port:

testpmd> set port (port_id) queue (queue_id) rate (rate_value)

set port - tx_rate (for VF)

Set TX rate limitation for queues in VF on a port:

testpmd> set port (port_id) vf (vf_id) rate (rate_value) queue_mask (queue_mask)

set port - mirror rule

Set pool or vlan type mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
(pool-mirror-up|pool-mirror-down|vlan-mirror) \
(poolmask|vlanid[,vlanid]*) dst-pool (pool_id) (on|off)

Set link mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
(uplink-mirror|downlink-mirror) dst-pool (pool_id) (on|off)

For example to enable mirror traffic with vlan 0,1 to pool 0:

set port 0 mirror-rule 0 vlan-mirror 0,1 dst-pool 0 on

reset port - mirror rule

Reset a mirror rule for a port:

testpmd> reset port (port_id) mirror-rule (rule_id)

8.4. Testpmd Runtime Functions 547

DPDK documentation, Release 16.04.0

set flush_rx

Set the flush on RX streams before forwarding. The default is flush on. Mainly used with PCAP
drivers to turn off the default behavior of flushing the first 512 packets on RX streams:

testpmd> set flush_rx off

set bypass mode

Set the bypass mode for the lowest port on bypass enabled NIC:

testpmd> set bypass mode (normal|bypass|isolate) (port_id)

set bypass event

Set the event required to initiate specified bypass mode for the lowest port on a bypass en-
abled:

testpmd> set bypass event (timeout|os_on|os_off|power_on|power_off) \
mode (normal|bypass|isolate) (port_id)

Where:

• timeout: Enable bypass after watchdog timeout.

• os_on: Enable bypass when OS/board is powered on.

• os_off: Enable bypass when OS/board is powered off.

• power_on: Enable bypass when power supply is turned on.

• power_off: Enable bypass when power supply is turned off.

set bypass timeout

Set the bypass watchdog timeout to n seconds where 0 = instant:

testpmd> set bypass timeout (0|1.5|2|3|4|8|16|32)

show bypass config

Show the bypass configuration for a bypass enabled NIC using the lowest port on the NIC:

testpmd> show bypass config (port_id)

set link up

Set link up for a port:

testpmd> set link-up port (port id)

set link down

Set link down for a port:

testpmd> set link-down port (port id)

8.4. Testpmd Runtime Functions 548

DPDK documentation, Release 16.04.0

E-tag set

Enable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion on port-tag-id (value) port (port_id) vf (vf_id)

Disable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion off port (port_id) vf (vf_id)

Enable/disable E-tag stripping on a port:

testpmd> E-tag set stripping (on|off) port (port_id)

Enable/disable E-tag based forwarding on a port:

testpmd> E-tag set forwarding (on|off) port (port_id)

Add an E-tag forwarding filter on a port:

testpmd> E-tag set filter add e-tag-id (value) dst-pool (pool_id) port (port_id)

Delete an E-tag forwarding filter on a port:: testpmd> E-tag set filter del e-tag-id (value)
port (port_id)

8.4.5 Port Functions

The following sections show functions for configuring ports.

Note: Port configuration changes only become active when forwarding is started/restarted.

port attach

Attach a port specified by pci address or virtual device args.

To attach a new pci device, the device should be recognized by kernel first. Then it should be
moved under DPDK management. Finally the port can be attached to testpmd.

For example, to move a pci device using ixgbe under DPDK management:

Check the status of the available devices.
./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo ./tools/dpdk_nic_bind.py -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
./tools/dpdk_nic_bind.py --status
Network devices using DPDK-compatible driver

8.4. Testpmd Runtime Functions 549

DPDK documentation, Release 16.04.0

==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

To attach a port created by virtual device, above steps are not needed.

port attach (identifier)

For example, to attach a port whose pci address is 0000:0a:00.0.

testpmd> port attach 0000:0a:00.0
Attaching a new port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x7f83bfa00000
EAL: PCI memory mapped at 0x7f83bfa80000
PMD: eth_ixgbe_dev_init(): MAC: 2, PHY: 18, SFP+: 5
PMD: eth_ixgbe_dev_init(): port 0 vendorID=0x8086 deviceID=0x10fb
Port 0 is attached. Now total ports is 1
Done

For example, to attach a port created by pcap PMD.

testpmd> port attach eth_pcap0
Attaching a new port...
PMD: Initializing pmd_pcap for eth_pcap0
PMD: Creating pcap-backed ethdev on numa socket 0
Port 0 is attached. Now total ports is 1
Done

In this case, identifier is eth_pcap0. This identifier format is the same as --vdev format of
DPDK applications.

For example, to re-attach a bonded port which has been previously detached, the mode and
slave parameters must be given.

testpmd> port attach eth_bond_0,mode=0,slave=1
Attaching a new port...
EAL: Initializing pmd_bond for eth_bond_0
EAL: Create bonded device eth_bond_0 on port 0 in mode 0 on socket 0.
Port 0 is attached. Now total ports is 1
Done

port detach

Detach a specific port.

Before detaching a port, the port should be closed:

testpmd> port detach (port_id)

For example, to detach a pci device port 0.

testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: remove driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory unmapped at 0x7f83bfa00000
EAL: PCI memory unmapped at 0x7f83bfa80000
Done

8.4. Testpmd Runtime Functions 550

DPDK documentation, Release 16.04.0

For example, to detach a virtual device port 0.

testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
PMD: Closing pcap ethdev on numa socket 0
Port 'eth_pcap0' is detached. Now total ports is 0
Done

To remove a pci device completely from the system, first detach the port from testpmd. Then
the device should be moved under kernel management. Finally the device can be removed
using kernel pci hotplug functionality.

For example, to move a pci device under kernel management:

sudo ./tools/dpdk_nic_bind.py -b ixgbe 0000:0a:00.0

./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=igb_uio

To remove a port created by a virtual device, above steps are not needed.

port start

Start all ports or a specific port:

testpmd> port start (port_id|all)

port stop

Stop all ports or a specific port:

testpmd> port stop (port_id|all)

port close

Close all ports or a specific port:

testpmd> port close (port_id|all)

port start/stop queue

Start/stop a rx/tx queue on a specific port:

testpmd> port (port_id) (rxq|txq) (queue_id) (start|stop)

Only take effect when port is started.

8.4. Testpmd Runtime Functions 551

DPDK documentation, Release 16.04.0

port config - speed

Set the speed and duplex mode for all ports or a specific port:

testpmd> port config (port_id|all) speed (10|100|1000|10000|40000|100000|auto) \
duplex (half|full|auto)

port config - queues/descriptors

Set number of queues/descriptors for rxq, txq, rxd and txd:

testpmd> port config all (rxq|txq|rxd|txd) (value)

This is equivalent to the --rxq, --txq, --rxd and --txd command-line options.

port config - max-pkt-len

Set the maximum packet length:

testpmd> port config all max-pkt-len (value)

This is equivalent to the --max-pkt-len command-line option.

port config - CRC Strip

Set hardware CRC stripping on or off for all ports:

testpmd> port config all crc-strip (on|off)

CRC stripping is off by default.

The on option is equivalent to the --crc-strip command-line option.

port config - RX Checksum

Set hardware RX checksum offload to on or off for all ports:

testpmd> port config all rx-cksum (on|off)

Checksum offload is off by default.

The on option is equivalent to the --enable-rx-cksum command-line option.

port config - VLAN

Set hardware VLAN on or off for all ports:

testpmd> port config all hw-vlan (on|off)

Hardware VLAN is on by default.

The off option is equivalent to the --disable-hw-vlan command-line option.

8.4. Testpmd Runtime Functions 552

DPDK documentation, Release 16.04.0

port config - VLAN filter

Set hardware VLAN filter on or off for all ports:

testpmd> port config all hw-vlan-filter (on|off)

Hardware VLAN filter is on by default.

The off option is equivalent to the --disable-hw-vlan-filter command-line option.

port config - VLAN strip

Set hardware VLAN strip on or off for all ports:

testpmd> port config all hw-vlan-strip (on|off)

Hardware VLAN strip is on by default.

The off option is equivalent to the --disable-hw-vlan-strip command-line option.

port config - VLAN extend

Set hardware VLAN extend on or off for all ports:

testpmd> port config all hw-vlan-extend (on|off)

Hardware VLAN extend is off by default.

The off option is equivalent to the --disable-hw-vlan-extend command-line option.

port config - Drop Packets

Set packet drop for packets with no descriptors on or off for all ports:

testpmd> port config all drop-en (on|off)

Packet dropping for packets with no descriptors is off by default.

The on option is equivalent to the --enable-drop-en command-line option.

port config - RSS

Set the RSS (Receive Side Scaling) mode on or off:

testpmd> port config all rss (all|ip|tcp|udp|sctp|ether|none)

RSS is on by default.

The none option is equivalent to the --disable-rss command-line option.

port config - RSS Reta

Set the RSS (Receive Side Scaling) redirection table:

testpmd> port config all rss reta (hash,queue)[,(hash,queue)]

8.4. Testpmd Runtime Functions 553

DPDK documentation, Release 16.04.0

port config - DCB

Set the DCB mode for an individual port:

testpmd> port config (port_id) dcb vt (on|off) (traffic_class) pfc (on|off)

The traffic class should be 4 or 8.

port config - Burst

Set the number of packets per burst:

testpmd> port config all burst (value)

This is equivalent to the --burst command-line option.

port config - Threshold

Set thresholds for TX/RX queues:

testpmd> port config all (threshold) (value)

Where the threshold type can be:

• txpt: Set the prefetch threshold register of the TX rings, 0 <= value <= 255.

• txht: Set the host threshold register of the TX rings, 0 <= value <= 255.

• txwt: Set the write-back threshold register of the TX rings, 0 <= value <= 255.

• rxpt: Set the prefetch threshold register of the RX rings, 0 <= value <= 255.

• rxht: Set the host threshold register of the RX rings, 0 <= value <= 255.

• rxwt: Set the write-back threshold register of the RX rings, 0 <= value <= 255.

• txfreet: Set the transmit free threshold of the TX rings, 0 <= value <= txd.

• rxfreet: Set the transmit free threshold of the RX rings, 0 <= value <= rxd.

• txrst: Set the transmit RS bit threshold of TX rings, 0 <= value <= txd.

These threshold options are also available from the command-line.

port config - E-tag

Set the value of ether-type for E-tag:

testpmd> port config (port_id|all) l2-tunnel E-tag ether-type (value)

Enable/disable the E-tag support:

testpmd> port config (port_id|all) l2-tunnel E-tag (enable|disable)

8.4.6 Link Bonding Functions

The Link Bonding functions make it possible to dynamically create and manage link bonding
devices from within testpmd interactive prompt.

8.4. Testpmd Runtime Functions 554

DPDK documentation, Release 16.04.0

create bonded device

Create a new bonding device:

testpmd> create bonded device (mode) (socket)

For example, to create a bonded device in mode 1 on socket 0:

testpmd> create bonded 1 0
created new bonded device (port X)

add bonding slave

Adds Ethernet device to a Link Bonding device:

testpmd> add bonding slave (slave id) (port id)

For example, to add Ethernet device (port 6) to a Link Bonding device (port 10):

testpmd> add bonding slave 6 10

remove bonding slave

Removes an Ethernet slave device from a Link Bonding device:

testpmd> remove bonding slave (slave id) (port id)

For example, to remove Ethernet slave device (port 6) to a Link Bonding device (port 10):

testpmd> remove bonding slave 6 10

set bonding mode

Set the Link Bonding mode of a Link Bonding device:

testpmd> set bonding mode (value) (port id)

For example, to set the bonding mode of a Link Bonding device (port 10) to broadcast (mode
3):

testpmd> set bonding mode 3 10

set bonding primary

Set an Ethernet slave device as the primary device on a Link Bonding device:

testpmd> set bonding primary (slave id) (port id)

For example, to set the Ethernet slave device (port 6) as the primary port of a Link Bonding
device (port 10):

testpmd> set bonding primary 6 10

8.4. Testpmd Runtime Functions 555

DPDK documentation, Release 16.04.0

set bonding mac

Set the MAC address of a Link Bonding device:

testpmd> set bonding mac (port id) (mac)

For example, to set the MAC address of a Link Bonding device (port 10) to 00:00:00:00:00:01:

testpmd> set bonding mac 10 00:00:00:00:00:01

set bonding xmit_balance_policy

Set the transmission policy for a Link Bonding device when it is in Balance XOR mode:

testpmd> set bonding xmit_balance_policy (port_id) (l2|l23|l34)

For example, set a Link Bonding device (port 10) to use a balance policy of layer 3+4 (IP
addresses & UDP ports):

testpmd> set bonding xmit_balance_policy 10 l34

set bonding mon_period

Set the link status monitoring polling period in milliseconds for a bonding device.

This adds support for PMD slave devices which do not support link status interrupts. When the
mon_period is set to a value greater than 0 then all PMD’s which do not support link status ISR
will be queried every polling interval to check if their link status has changed:

testpmd> set bonding mon_period (port_id) (value)

For example, to set the link status monitoring polling period of bonded device (port 5) to 150ms:

testpmd> set bonding mon_period 5 150

show bonding config

Show the current configuration of a Link Bonding device:

testpmd> show bonding config (port id)

For example, to show the configuration a Link Bonding device (port 9) with 3 slave devices (1,
3, 4) in balance mode with a transmission policy of layer 2+3:

testpmd> show bonding config 9
Bonding mode: 2
Balance Xmit Policy: BALANCE_XMIT_POLICY_LAYER23
Slaves (3): [1 3 4]
Active Slaves (3): [1 3 4]
Primary: [3]

8.4.7 Register Functions

The Register Functions can be used to read from and write to registers on the network card
referenced by a port number. This is mainly useful for debugging purposes. Reference should
be made to the appropriate datasheet for the network card for details on the register addresses
and fields that can be accessed.

8.4. Testpmd Runtime Functions 556

DPDK documentation, Release 16.04.0

read reg

Display the value of a port register:

testpmd> read reg (port_id) (address)

For example, to examine the Flow Director control register (FDIRCTL, 0x0000EE000) on an
Intel 82599 10 GbE Controller:

testpmd> read reg 0 0xEE00
port 0 PCI register at offset 0xEE00: 0x4A060029 (1241907241)

read regfield

Display a port register bit field:

testpmd> read regfield (port_id) (address) (bit_x) (bit_y)

For example, reading the lowest two bits from the register in the example above:

testpmd> read regfield 0 0xEE00 0 1
port 0 PCI register at offset 0xEE00: bits[0, 1]=0x1 (1)

read regbit

Display a single port register bit:

testpmd> read regbit (port_id) (address) (bit_x)

For example, reading the lowest bit from the register in the example above:

testpmd> read regbit 0 0xEE00 0
port 0 PCI register at offset 0xEE00: bit 0=1

write reg

Set the value of a port register:

testpmd> write reg (port_id) (address) (value)

For example, to clear a register:

testpmd> write reg 0 0xEE00 0x0
port 0 PCI register at offset 0xEE00: 0x00000000 (0)

write regfield

Set bit field of a port register:

testpmd> write regfield (port_id) (address) (bit_x) (bit_y) (value)

For example, writing to the register cleared in the example above:

testpmd> write regfield 0 0xEE00 0 1 2
port 0 PCI register at offset 0xEE00: 0x00000002 (2)

8.4. Testpmd Runtime Functions 557

DPDK documentation, Release 16.04.0

write regbit

Set single bit value of a port register:

testpmd> write regbit (port_id) (address) (bit_x) (value)

For example, to set the high bit in the register from the example above:

testpmd> write regbit 0 0xEE00 31 1
port 0 PCI register at offset 0xEE00: 0x8000000A (2147483658)

8.4.8 Filter Functions

This section details the available filter functions that are available.

ethertype_filter

Add or delete a L2 Ethertype filter, which identify packets by their L2 Ethertype mainly assign
them to a receive queue:

ethertype_filter (port_id) (add|del) (mac_addr|mac_ignr) (mac_address) \
ethertype (ether_type) (drop|fwd) queue (queue_id)

The available information parameters are:

• port_id: The port which the Ethertype filter assigned on.

• mac_addr: Compare destination mac address.

• mac_ignr: Ignore destination mac address match.

• mac_address: Destination mac address to match.

• ether_type: The EtherType value want to match, for example 0x0806 for ARP packet.
0x0800 (IPv4) and 0x86DD (IPv6) are invalid.

• queue_id: The receive queue associated with this EtherType filter. It is meaningless
when deleting or dropping.

Example, to add/remove an ethertype filter rule:

testpmd> ethertype_filter 0 add mac_ignr 00:11:22:33:44:55 \
ethertype 0x0806 fwd queue 3

testpmd> ethertype_filter 0 del mac_ignr 00:11:22:33:44:55 \
ethertype 0x0806 fwd queue 3

2tuple_filter

Add or delete a 2-tuple filter, which identifies packets by specific protocol and destination
TCP/UDP port and forwards packets into one of the receive queues:

2tuple_filter (port_id) (add|del) dst_port (dst_port_value) \
protocol (protocol_value) mask (mask_value) \
tcp_flags (tcp_flags_value) priority (prio_value) \
queue (queue_id)

The available information parameters are:

• port_id: The port which the 2-tuple filter assigned on.

8.4. Testpmd Runtime Functions 558

DPDK documentation, Release 16.04.0

• dst_port_value: Destination port in L4.

• protocol_value: IP L4 protocol.

• mask_value: Participates in the match or not by bit for field above, 1b means participate.

• tcp_flags_value: TCP control bits. The non-zero value is invalid, when the pro_value
is not set to 0x06 (TCP).

• prio_value: Priority of this filter.

• queue_id: The receive queue associated with this 2-tuple filter.

Example, to add/remove an 2tuple filter rule:

testpmd> 2tuple_filter 0 add dst_port 32 protocol 0x06 mask 0x03 \
tcp_flags 0x02 priority 3 queue 3

testpmd> 2tuple_filter 0 del dst_port 32 protocol 0x06 mask 0x03 \
tcp_flags 0x02 priority 3 queue 3

5tuple_filter

Add or delete a 5-tuple filter, which consists of a 5-tuple (protocol, source and destination IP
addresses, source and destination TCP/UDP/SCTP port) and routes packets into one of the
receive queues:

5tuple_filter (port_id) (add|del) dst_ip (dst_address) src_ip \
(src_address) dst_port (dst_port_value) \
src_port (src_port_value) protocol (protocol_value) \
mask (mask_value) tcp_flags (tcp_flags_value) \
priority (prio_value) queue (queue_id)

The available information parameters are:

• port_id: The port which the 5-tuple filter assigned on.

• dst_address: Destination IP address.

• src_address: Source IP address.

• dst_port_value: TCP/UDP destination port.

• src_port_value: TCP/UDP source port.

• protocol_value: L4 protocol.

• mask_value: Participates in the match or not by bit for field above, 1b means participate

• tcp_flags_value: TCP control bits. The non-zero value is invalid, when the proto-
col_value is not set to 0x06 (TCP).

• prio_value: The priority of this filter.

• queue_id: The receive queue associated with this 5-tuple filter.

Example, to add/remove an 5tuple filter rule:

testpmd> 5tuple_filter 0 add dst_ip 2.2.2.5 src_ip 2.2.2.4 \
dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
flags 0x0 priority 3 queue 3

testpmd> 5tuple_filter 0 del dst_ip 2.2.2.5 src_ip 2.2.2.4 \

8.4. Testpmd Runtime Functions 559

DPDK documentation, Release 16.04.0

dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
flags 0x0 priority 3 queue 3

syn_filter

Using the SYN filter, TCP packets whose SYN flag is set can be forwarded to a separate
queue:

syn_filter (port_id) (add|del) priority (high|low) queue (queue_id)

The available information parameters are:

• port_id: The port which the SYN filter assigned on.

• high: This SYN filter has higher priority than other filters.

• low: This SYN filter has lower priority than other filters.

• queue_id: The receive queue associated with this SYN filter

Example:

testpmd> syn_filter 0 add priority high queue 3

flex_filter

With flex filter, packets can be recognized by any arbitrary pattern within the first 128 bytes of
the packet and routed into one of the receive queues:

flex_filter (port_id) (add|del) len (len_value) bytes (bytes_value) \
mask (mask_value) priority (prio_value) queue (queue_id)

The available information parameters are:

• port_id: The port which the Flex filter is assigned on.

• len_value: Filter length in bytes, no greater than 128.

• bytes_value: A string in hexadecimal, means the value the flex filter needs to match.

• mask_value: A string in hexadecimal, bit 1 means corresponding byte participates in
the match.

• prio_value: The priority of this filter.

• queue_id: The receive queue associated with this Flex filter.

Example:

testpmd> flex_filter 0 add len 16 bytes 0x00000000000000000000000008060000 \
mask 000C priority 3 queue 3

testpmd> flex_filter 0 del len 16 bytes 0x00000000000000000000000008060000 \
mask 000C priority 3 queue 3

flow_director_filter

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues.

8.4. Testpmd Runtime Functions 560

DPDK documentation, Release 16.04.0

Four types of filtering are supported which are referred to as Perfect Match, Signature, Perfect-
mac-vlan and Perfect-tunnel filters, the match mode is set by the --pkt-filter-mode
command-line parameter:

• Perfect match filters. The hardware checks a match between the masked fields of the
received packets and the programmed filters. The masked fields are for IP flow.

• Signature filters. The hardware checks a match between a hash-based signature of the
masked fields of the received packet.

• Perfect-mac-vlan match filters. The hardware checks a match between the masked fields
of the received packets and the programmed filters. The masked fields are for MAC VLAN
flow.

• Perfect-tunnel match filters. The hardware checks a match between the masked fields of
the received packets and the programmed filters. The masked fields are for tunnel flow.

The Flow Director filters can match the different fields for different type of packet: flow type,
specific input set per flow type and the flexible payload.

The Flow Director can also mask out parts of all of these fields so that filters are only applied
to certain fields or parts of the fields.

Different NICs may have different capabilities, command show port fdir (port_id) can be used
to acquire the information.

Commands to add flow director filters of different flow types:

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-other|ipv4-frag|ipv6-other|ipv6-frag) \
src (src_ip_address) dst (dst_ip_address) \
tos (tos_value) proto (proto_value) ttl (ttl_value) \
vlan (vlan_value) flexbytes (flexbytes_value) \
(drop|fwd) pf|vf(vf_id) queue (queue_id) \
fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-tcp|ipv4-udp|ipv6-tcp|ipv6-udp) \
src (src_ip_address) (src_port) \
dst (dst_ip_address) (dst_port) \
tos (tos_value) ttl (ttl_value) \
vlan (vlan_value) flexbytes (flexbytes_value) \
(drop|fwd) queue pf|vf(vf_id) (queue_id) \
fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-sctp|ipv6-sctp) \
src (src_ip_address) (src_port) \
dst (dst_ip_address) (dst_port) \
tos (tos_value) ttl (ttl_value) \
tag (verification_tag) vlan (vlan_value) \
flexbytes (flexbytes_value) (drop|fwd) \
pf|vf(vf_id) queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) flow l2_payload \
ether (ethertype) flexbytes (flexbytes_value) \
(drop|fwd) pf|vf(vf_id) queue (queue_id)
fd_id (fd_id_value)

flow_director_filter (port_id) mode MAC-VLAN (add|del|update) \
mac (mac_address) vlan (vlan_value) \
flexbytes (flexbytes_value) (drop|fwd) \

8.4. Testpmd Runtime Functions 561

DPDK documentation, Release 16.04.0

queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode Tunnel (add|del|update) \
mac (mac_address) vlan (vlan_value) \
tunnel (NVGRE|VxLAN) tunnel-id (tunnel_id_value) \
flexbytes (flexbytes_value) (drop|fwd) \
queue (queue_id) fd_id (fd_id_value)

For example, to add an ipv4-udp flow type filter:

testpmd> flow_director_filter 0 add flow ipv4-udp src 2.2.2.3 32 \
dst 2.2.2.5 33 tos 2 ttl 40 vlan 0x1 flexbytes (0x88,0x48) \
fwd pf queue 1 fd_id 1

For example, add an ipv4-other flow type filter:

testpmd> flow_director_filter 0 add flow ipv4-other src 2.2.2.3 \
dst 2.2.2.5 tos 2 proto 20 ttl 40 vlan 0x1 \
flexbytes (0x88,0x48) fwd pf queue 1 fd_id 1

flush_flow_director

Flush all flow director filters on a device:

testpmd> flush_flow_director (port_id)

Example, to flush all flow director filter on port 0:

testpmd> flush_flow_director 0

flow_director_mask

Set flow director’s input masks:

flow_director_mask (port_id) mode IP vlan (vlan_value) \
src_mask (ipv4_src) (ipv6_src) (src_port) \
dst_mask (ipv4_dst) (ipv6_dst) (dst_port)

flow_director_mask (port_id) mode MAC-VLAN vlan (vlan_value) \
mac (mac_value)

flow_director_mask (port_id) mode Tunnel vlan (vlan_value) \
mac (mac_value) tunnel-type (tunnel_type_value) \
tunnel-id (tunnel_id_value)

Example, to set flow director mask on port 0:

testpmd> flow_director_mask 0 vlan 0xefff \
src_mask 255.255.255.255 \

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF \
dst_mask 255.255.255.255 \

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF

flow_director_flex_mask

set masks of flow director’s flexible payload based on certain flow type:

testpmd> flow_director_flex_mask (port_id) \
flow (none|ipv4-other|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \

ipv6-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp| \
l2_payload|all) (mask)

8.4. Testpmd Runtime Functions 562

DPDK documentation, Release 16.04.0

Example, to set flow director’s flex mask for all flow type on port 0:

testpmd> flow_director_flex_mask 0 flow all \
(0xff,0xff,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

flow_director_flex_payload

Configure flexible payload selection:

flow_director_flex_payload (port_id) (raw|l2|l3|l4) (config)

For example, to select the first 16 bytes from the offset 4 (bytes) of packet’s payload as flexible
payload:

testpmd> flow_director_flex_payload 0 l4 \
(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

get_sym_hash_ena_per_port

Get symmetric hash enable configuration per port:

get_sym_hash_ena_per_port (port_id)

For example, to get symmetric hash enable configuration of port 1:

testpmd> get_sym_hash_ena_per_port 1

set_sym_hash_ena_per_port

Set symmetric hash enable configuration per port to enable or disable:

set_sym_hash_ena_per_port (port_id) (enable|disable)

For example, to set symmetric hash enable configuration of port 1 to enable:

testpmd> set_sym_hash_ena_per_port 1 enable

get_hash_global_config

Get the global configurations of hash filters:

get_hash_global_config (port_id)

For example, to get the global configurations of hash filters of port 1:

testpmd> get_hash_global_config 1

set_hash_global_config

Set the global configurations of hash filters:

set_hash_global_config (port_id) (toeplitz|simple_xor|default) \
(ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag| \
ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2_payload) \
(enable|disable)

For example, to enable simple_xor for flow type of ipv6 on port 2:

testpmd> set_hash_global_config 2 simple_xor ipv6 enable

8.4. Testpmd Runtime Functions 563

DPDK documentation, Release 16.04.0

set_hash_input_set

Set the input set for hash:

set_hash_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload) (ovlan|ivlan|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6|ipv4-tos| \
ipv4-proto|ipv6-tc|ipv6-next-header|udp-src-port|udp-dst-port| \
tcp-src-port|tcp-dst-port|sctp-src-port|sctp-dst-port|sctp-veri-tag| \
udp-key|gre-key|fld-1st|fld-2nd|fld-3rd|fld-4th|fld-5th|fld-6th|fld-7th| \
fld-8th|none) (select|add)

For example, to add source IP to hash input set for flow type of ipv4-udp on port 0:

testpmd> set_hash_input_set 0 ipv4-udp src-ipv4 add

set_fdir_input_set

The Flow Director filters can match the different fields for different type of packet, i.e. specific
input set on per flow type and the flexible payload. This command can be used to change input
set for each flow type.

Set the input set for flow director:

set_fdir_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload) (ivlan|ethertype|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6|ipv4-tos| \
ipv4-proto|ipv4-ttl|ipv6-tc|ipv6-next-header|ipv6-hop-limits| \
tudp-src-port|udp-dst-port|cp-src-port|tcp-dst-port|sctp-src-port| \
sctp-dst-port|sctp-veri-tag|none) (select|add)

For example to add source IP to FD input set for flow type of ipv4-udp on port 0:

testpmd> set_fdir_input_set 0 ipv4-udp src-ipv4 add

global_config

Set different GRE key length for input set:

global_config (port_id) gre-key-len (number in bytes)

For example to set GRE key length for input set to 4 bytes on port 0:

testpmd> global_config 0 gre-key-len 4

8.4. Testpmd Runtime Functions 564

CHAPTER 9

FAQ

This document contains some Frequently Asked Questions that arise when working with
DPDK.

9.1 What does “EAL: map_all_hugepages(): open failed: Permis-
sion denied Cannot init memory” mean?

This is most likely due to the test application not being run with sudo to promote the user to a
superuser. Alternatively, applications can also be run as regular user. For more information,
please refer to DPDK Getting Started Guide.

9.2 If I want to change the number of TLB Hugepages allocated,
how do I remove the original pages allocated?

The number of pages allocated can be seen by executing the following command:

grep Huge /proc/meminfo

Once all the pages are mmapped by an application, they stay that way. If you start a test
application with less than the maximum, then you have free pages. When you stop and restart
the test application, it looks to see if the pages are available in the /dev/huge directory and
mmaps them. If you look in the directory, you will see n number of 2M pages files. If you
specified 1024, you will see 1024 page files. These are then placed in memory segments to
get contiguous memory.

If you need to change the number of pages, it is easier to first remove the pages. The
tools/setup.sh script provides an option to do this. See the “Quick Start Setup Script” sec-
tion in the DPDK Getting Started Guide for more information.

9.3 If I execute “l2fwd -c f -m 64 -n 3 – -p 3”, I get the following out-
put, indicating that there are no socket 0 hugepages to allocate
the mbuf and ring structures to?

I have set up a total of 1024 Hugepages (that is, allocated 512 2M pages to each NUMA node).

565

DPDK documentation, Release 16.04.0

The -m command line parameter does not guarantee that huge pages will be reserved on
specific sockets. Therefore, allocated huge pages may not be on socket 0. To request memory
to be reserved on a specific socket, please use the –socket-mem command-line parameter
instead of -m.

9.4 I am running a 32-bit DPDK application on a NUMA system, and
sometimes the application initializes fine but cannot allocate
memory. Why is that happening?

32-bit applications have limitations in terms of how much virtual memory is available, hence
the number of hugepages they are able to allocate is also limited (1 GB per page size). If your
system has a lot (>1 GB per page size) of hugepage memory, not all of it will be allocated.
Due to hugepages typically being allocated on a local NUMA node, the hugepages allocation
the application gets during the initialization depends on which NUMA node it is running on (the
EAL does not affinitize cores until much later in the initialization process). Sometimes, the
Linux OS runs the DPDK application on a core that is located on a different NUMA node from
DPDK master core and therefore all the hugepages are allocated on the wrong socket.

To avoid this scenario, either lower the amount of hugepage memory available to 1 GB per
page size (or less), or run the application with taskset affinitizing the application to a would-be
master core.

For example, if your EAL coremask is 0xff0, the master core will usually be the first core in the
coremask (0x10); this is what you have to supply to taskset:

taskset 0x10 ./l2fwd -c 0xff0 -n 2

In this way, the hugepages have a greater chance of being allocated to the correct socket.
Additionally, a --socket-mem option could be used to ensure the availability of memory for
each socket, so that if hugepages were allocated on the wrong socket, the application simply
will not start.

9.5 On application startup, there is a lot of EAL information
printed. Is there any way to reduce this?

Yes, each EAL has a configuration file that is located in the /config directory. Within each
configuration file, you will find CONFIG_RTE_LOG_LEVEL=8. You can change this to a lower
value, such as 6 to reduce this printout of debug information. The following is a list of LOG
levels that can be found in the rte_log.h file. You must remove, then rebuild, the EAL directory
for the change to become effective as the configuration file creates the rte_config.h file in the
EAL directory.

#define RTE_LOG_EMERG 1U /* System is unusable. */
#define RTE_LOG_ALERT 2U /* Action must be taken immediately. */
#define RTE_LOG_CRIT 3U /* Critical conditions. */
#define RTE_LOG_ERR 4U /* Error conditions. */
#define RTE_LOG_WARNING 5U /* Warning conditions. */
#define RTE_LOG_NOTICE 6U /* Normal but significant condition. */
#define RTE_LOG_INFO 7U /* Informational. */
#define RTE_LOG_DEBUG 8U /* Debug-level messages. */

9.4. I am running a 32-bit DPDK application on a NUMA system, and sometimes the
application initializes fine but cannot allocate memory. Why is that happening?

566

DPDK documentation, Release 16.04.0

9.6 How can I tune my network application to achieve lower la-
tency?

Traditionally, there is a trade-off between throughput and latency. An application can be tuned
to achieve a high throughput, but the end-to-end latency of an average packet typically in-
creases as a result. Similarly, the application can be tuned to have, on average, a low end-to-
end latency at the cost of lower throughput.

To achieve higher throughput, the DPDK attempts to aggregate the cost of processing each
packet individually by processing packets in bursts. Using the testpmd application as an exam-
ple, the “burst” size can be set on the command line to a value of 16 (also the default value).
This allows the application to request 16 packets at a time from the PMD. The testpmd appli-
cation then immediately attempts to transmit all the packets that were received, in this case, all
16 packets. The packets are not transmitted until the tail pointer is updated on the correspond-
ing TX queue of the network port. This behavior is desirable when tuning for high throughput
because the cost of tail pointer updates to both the RX and TX queues can be spread across
16 packets, effectively hiding the relatively slow MMIO cost of writing to the PCIe* device.

However, this is not very desirable when tuning for low latency, because the first packet that
was received must also wait for the other 15 packets to be received. It cannot be transmitted
until the other 15 packets have also been processed because the NIC will not know to transmit
the packets until the TX tail pointer has been updated, which is not done until all 16 packets
have been processed for transmission.

To consistently achieve low latency even under heavy system load, the application developer
should avoid processing packets in bunches. The testpmd application can be configured from
the command line to use a burst value of 1. This allows a single packet to be processed at a
time, providing lower latency, but with the added cost of lower throughput.

9.7 Without NUMA enabled, my network throughput is low, why?

I have a dual Intel® Xeon® E5645 processors 2.40 GHz with four Intel® 82599 10 Gigabit
Ethernet NICs. Using eight logical cores on each processor with RSS set to distribute network
load from two 10 GbE interfaces to the cores on each processor.

Without NUMA enabled, memory is allocated from both sockets, since memory is interleaved.
Therefore, each 64B chunk is interleaved across both memory domains.

The first 64B chunk is mapped to node 0, the second 64B chunk is mapped to node 1, the third
to node 0, the fourth to node 1. If you allocated 256B, you would get memory that looks like
this:

256B buffer
Offset 0x00 - Node 0
Offset 0x40 - Node 1
Offset 0x80 - Node 0
Offset 0xc0 - Node 1

Therefore, packet buffers and descriptor rings are allocated from both memory domains, thus
incurring QPI bandwidth accessing the other memory and much higher latency. For best per-
formance with NUMA disabled, only one socket should be populated.

9.6. How can I tune my network application to achieve lower latency? 567

DPDK documentation, Release 16.04.0

9.8 I am getting errors about not being able to open files. Why?

As the DPDK operates, it opens a lot of files, which can result in reaching the open files limits,
which is set using the ulimit command or in the limits.conf file. This is especially true when
using a large number (>512) of 2 MB huge pages. Please increase the open file limit if your
application is not able to open files. This can be done either by issuing a ulimit command or
editing the limits.conf file. Please consult Linux manpages for usage information.

9.9 VF driver for IXGBE devices cannot be initialized

Some versions of Linux IXGBE driver do not assign a random MAC address to VF devices at
initialization. In this case, this has to be done manually on the VM host, using the following
command:

ip link set <interface> vf <VF function> mac <MAC address>

where <interface> being the interface providing the virtual functions for example, eth0, <VF
function> being the virtual function number, for example 0, and <MAC address> being the
desired MAC address.

9.10 Is it safe to add an entry to the hash table while running?

Currently the table implementation is not a thread safe implementation and assumes that lock-
ing between threads and processes is handled by the user’s application. This is likely to be
supported in future releases.

9.11 What is the purpose of setting iommu=pt?

DPDK uses a 1:1 mapping and does not support IOMMU. IOMMU allows for simpler VM phys-
ical address translation. The second role of IOMMU is to allow protection from unwanted
memory access by an unsafe device that has DMA privileges. Unfortunately, the protection
comes with an extremely high performance cost for high speed NICs.

Setting iommu=pt disables IOMMU support for the hypervisor.

9.12 When trying to send packets from an application to itself,
meaning smac==dmac, using Intel(R) 82599 VF packets are
lost.

Check on register LLE(PFVMTXSSW[n]), which allows an individual pool to send traffic and
have it looped back to itself.

9.8. I am getting errors about not being able to open files. Why? 568

DPDK documentation, Release 16.04.0

9.13 Can I split packet RX to use DPDK and have an application’s
higher order functions continue using Linux pthread?

The DPDK’s lcore threads are Linux pthreads bound onto specific cores. Configure the DPDK
to do work on the same cores and run the application’s other work on other cores using the
DPDK’s “coremask” setting to specify which cores it should launch itself on.

9.14 Is it possible to exchange data between DPDK processes and
regular userspace processes via some shared memory or IPC
mechanism?

Yes - DPDK processes are regular Linux/BSD processes, and can use all OS provided IPC
mechanisms.

9.15 Can the multiple queues in Intel(R) I350 be used with DPDK?

I350 has RSS support and 8 queue pairs can be used in RSS mode. It should work with
multi-queue DPDK applications using RSS.

9.16 How can hugepage-backed memory be shared among multi-
ple processes?

See the Primary and Secondary examples in the multi-process sample application.

9.13. Can I split packet RX to use DPDK and have an application’s higher order
functions continue using Linux pthread?

569

CHAPTER 10

Release Notes

10.1 Description of Release

This document contains the release notes for Data Plane Development Kit (DPDK) release
version 16.04.0 and previous releases.

It lists new features, fixed bugs, API and ABI changes and known issues.

For instructions on compiling and running the release, see the DPDK Getting Started Guide.

10.2 DPDK Release 16.04

10.2.1 New Features

• Added function to check primary process state.

A new function rte_eal_primary_proc_alive() has been added to allow the user
to detect if a primary process is running. Use cases for this feature include fault detection,
and monitoring using secondary processes.

• Enabled bulk allocation of mbufs.

A new function rte_pktmbuf_alloc_bulk() has been added to allow the user to bulk
allocate mbufs.

• Added device link speed capabilities.

The structure rte_eth_dev_info now has a speed_capa bitmap, which allows the
application to determine the supported speeds of each device.

• Added bitmap of link speeds to advertise.

Added a feature to allow the definition of a set of advertised speeds for auto-negotiation,
explicitly disabling link auto-negotiation (single speed) and full auto-negotiation.

• Added new poll-mode driver for Amazon Elastic Network Adapters (ENA).

The driver operates for a variety of ENA adapters through feature negotiation with the
adapter and upgradable commands set. The ENA driver handles PCI Physical and Virtual
ENA functions.

• Restored vmxnet3 TX data ring.

570

DPDK documentation, Release 16.04.0

TX data ring has been shown to improve small packet forwarding performance on the
vSphere environment.

• Added vmxnet3 TX L4 checksum offload.

Added support for TCP/UDP checksum offload to vmxnet3.

• Added vmxnet3 TSO support.

Added support for TSO to vmxnet3.

• Added vmxnet3 support for jumbo frames.

Added support for linking multi-segment buffers together to handle Jumbo packets.

• Enabled Virtio 1.0 support.

Enabled Virtio 1.0 support for Virtio pmd driver.

• Supported Virtio for ARM.

Enabled Virtio support for ARMv7/v8. Tested for ARM64. Virtio for ARM supports VFIO-
noiommu mode only. Virtio can work with other non-x86 architectures as well, like Pow-
erPC.

• Supported Virtio offload in vhost-user.

Added the offload and negotiation of checksum and TSO between vhost-user and vanilla
Linux Virtio guest.

• Added vhost-user live migration support.

• Added vhost driver.

Added a virtual PMD that wraps librte_vhost.

• Added multicast promiscuous mode support on VF for ixgbe.

Added multicast promiscuous mode support for the ixgbe VF driver so all VFs can receive
the multicast packets.

Please note if you want to use this promiscuous mode, you need both PF and VF driver
to support it. The reason is that this VF feature is configured in the PF. If you use kernel
PF driver and the dpdk VF driver, make sure the kernel PF driver supports VF multicast
promiscuous mode. If you use dpdk PF and dpdk VF ensure the PF driver is the same
version as the VF.

• Added support for E-tag on X550.

E-tag is defined in 802.1BR - Bridge Port Extension.

This feature is for the VF, but the settings are on the PF. It means the CLIs should be
used on the PF, but some of their effects will be shown on the VF. The forwarding of E-tag
packets based on GRP and E-CID_base will have an effect on the PF. Theoretically, the
E-tag packets can be forwarded to any pool/queue but normally we’d like to forward the
packets to the pools/queues belonging to the VFs. And E-tag insertion and stripping will
have an effect on VFs. When a VF receives E-tag packets it should strip the E-tag. When
the VF transmits packets, it should insert the E-tag. Both actions can be offloaded.

When we want to use this E-tag support feature, the forwarding should be enabled to
forward the packets received by the PF to the indicated VFs. And insertion and stripping
should be enabled for VFs to offload the effort to hardware.

10.2. DPDK Release 16.04 571

http://www.ieee802.org/1/pages/802.1br.html

DPDK documentation, Release 16.04.0

Features added:

– Support E-tag offloading of insertion and stripping.

– Support Forwarding E-tag packets to pools based on GRP and E-CID_base.

• Added support for VxLAN and NVGRE checksum off-load on X550.

– Added support for VxLAN and NVGRE RX/TX checksum off-load on X550. RX/TX
checksum off-load is provided on both inner and outer IP header and TCP header.

– Added functions to support VxLAN port configuration. The default VxLAN port num-
ber is 4789 but this can be updated programmatically.

• Added support for new X550EM_a devices.

Added support for new X550EM_a devices and their MAC types, X550EM_a and
X550EM_a_vf. Updated the relevant PMD to use the new devices and MAC types.

• Added x550em_x V2 device support.

Added support for x550em_x V2 device. Only x550em_x V1 was supported before. A
mask for V1 and V2 is defined and used to support both.

• Supported link speed auto-negotiation on X550EM_X

Normally the auto-negotiation is supported by firmware and software doesn’t care about
it. But on x550em_x, firmware doesn’t support auto-negotiation. As the ports of
x550em_x are 10GbE, if we connect the port with a peer which is 1GbE, the link will
always be down. We added the support for auto-negotiation by software to avoid this link
down issue.

• Added software-firmware sync on X550EM_a.

Added support for software-firmware sync for resource sharing. Use the PHY token,
shared between software-firmware for PHY access on X550EM_a.

• Updated the i40e base driver.

The i40e base driver was updated with changes including the following:

– Use RX control AQ commands to read/write RX control registers.

– Add new X722 device IDs, and removed X710 one was never used.

– Expose registers for HASH/FD input set configuring.

• Enabled PCI extended tag for i40e.

Enabled extended tag for i40e by checking and writing corresponding PCI config space
bytes, to boost the performance. The legacy method of reading/writing sysfile supported
by kernel module igb_uio is now deprecated.

• Added i40e support for setting mac addresses.

• Added dump of i40e registers and EEPROM.

• Supported ether type setting of single and double VLAN for i40e

• Added VMDQ DCB mode in i40e.

Added support for DCB in VMDQ mode to i40e driver.

• Added i40e VEB switching support.

10.2. DPDK Release 16.04 572

DPDK documentation, Release 16.04.0

• Added Flow director enhancements in i40e.

• Added PF reset event reporting in i40e VF driver.

• Added fm10k RX interrupt support.

• Optimized fm10k TX.

Optimized fm10k TX by freeing multiple mbufs at a time.

• Handled error flags in fm10k vector RX.

Parse error flags in RX descriptor and set error bits in mbuf with vector instructions.

• Added fm10k FTAG based forwarding support.

• Added mlx5 flow director support.

Added flow director support (RTE_FDIR_MODE_PERFECT and
RTE_FDIR_MODE_PERFECT_MAC_VLAN).

Only available with Mellanox OFED >= 3.2.

• Added mlx5 RX VLAN stripping support.

Added support for RX VLAN stripping.

Only available with Mellanox OFED >= 3.2.

• Added mlx5 link up/down callbacks.

Implemented callbacks to bring link up and down.

• Added mlx5 support for operation in secondary processes.

Implemented TX support in secondary processes (like mlx4).

• Added mlx5 RX CRC stripping configuration.

Until now, CRC was always stripped. It can now be configured.

Only available with Mellanox OFED >= 3.2.

• Added mlx5 optional packet padding by HW.

Added an option to make PCI bus transactions rounded to a multiple of a cache line size
for better alignment.

Only available with Mellanox OFED >= 3.2.

• Added mlx5 TX VLAN insertion support.

Added support for TX VLAN insertion.

Only available with Mellanox OFED >= 3.2.

• Changed szedata2 driver type from vdev to pdev.

Previously szedata2 device had to be added by --vdev option. Now szedata2 PMD
recognizes the device automatically during EAL initialization.

• Added szedata2 functions for setting link up/down.

• Added szedata2 promiscuous and allmulticast modes.

10.2. DPDK Release 16.04 573

DPDK documentation, Release 16.04.0

• Added af_packet dynamic removal function.

An af_packet device can now be detached using the API, like other PMD devices.

• Increased number of next hops for LPM IPv4 to 2^24.

The next_hop field has been extended from 8 bits to 24 bits for IPv4.

• Added support of SNOW 3G (UEA2 and UIA2) for Intel Quick Assist devices.

Enabled support for the SNOW 3G wireless algorithm for Intel Quick Assist devices.
Support for cipher-only and hash-only is also provided along with algorithm-chaining op-
erations.

• Added SNOW3G SW PMD.

A new Crypto PMD has been added, which provides SNOW 3G UEA2 ciphering and
SNOW3G UIA2 hashing.

• Added AES GCM PMD.

Added new Crypto PMD to support AES-GCM authenticated encryption and authenti-
cated decryption in software.

• Added NULL Crypto PMD

Added new Crypto PMD to support null crypto operations in software.

• Improved IP Pipeline Application.

The following features have been added to ip_pipeline application;

– Added CPU utilization measurement and idle cycle rate computation.

– Added link identification support through existing port-mask option or by specifying
PCI device in every LINK section in the configuration file.

– Added load balancing support in passthrough pipeline.

• Added IPsec security gateway example.

Added a new application implementing an IPsec Security Gateway.

10.2.2 Resolved Issues

Drivers

• ethdev: Fixed overflow for 100Gbps.

100Gbps in Mbps (100000) was exceeding the 16-bit max value of link_speed in
rte_eth_link.

• ethdev: Fixed byte order consistency between fdir flow and mask.

Fixed issue in ethdev library where the structure for setting fdir’s mask and flow entry was
not consistent in byte ordering.

• cxgbe: Fixed crash due to incorrect size allocated for RSS table.

Fixed a segfault that occurs when accessing part of port 0’s RSS table that gets overwrit-
ten by subsequent port 1’s part of the RSS table due to incorrect size allocated for each
entry in the table.

10.2. DPDK Release 16.04 574

DPDK documentation, Release 16.04.0

• cxgbe: Fixed setting wrong device MTU.

Fixed an incorrect device MTU being set due to the Ethernet header and CRC lengths
being added twice.

• ixgbe: Fixed zeroed VF mac address.

Resolved an issue where the VF MAC address is zeroed out in cases where the VF driver
is loaded while the PF interface is down. The solution is to only set it when we get an
ACK from the PF.

• ixgbe: Fixed setting flow director flag twice.

Resolved an issue where packets were being dropped when switching to perfect filters
mode.

• ixgbe: Set MDIO speed after MAC reset.

The MDIO clock speed must be reconfigured after the MAC reset. The MDIO clock speed
becomes invalid, therefore the driver reads invalid PHY register values. The driver now
set the MDIO clock speed prior to initializing PHY ops and again after the MAC reset.

• ixgbe: Fixed maximum number of available TX queues.

In IXGBE, the maximum number of TX queues varies depending on the NIC operating
mode. This was not being updated in the device information, providing an incorrect
number in some cases.

• i40e: Generated MAC address for each VFs.

It generates a MAC address for each VFs during PF host initialization, and keeps the VF
MAC address the same among different VF launch.

• i40e: Fixed failure of reading/writing RX control registers.

Fixed i40e issue of failing to read/write rx control registers when under stress with traffic,
which might result in application launch failure.

• i40e: Enabled vector driver by default.

Previously, vector driver was disabled by default as it couldn’t fill packet type info for l3fwd
to work well. Now there is an option for l3fwd to analyze the packet type so the vector
driver is enabled by default.

• i40e: Fixed link info of VF.

Previously, the VF’s link speed stayed at 10GbE and status always was up. It did not
change even when the physical link’s status changed. Now this issue is fixed to make
VF’s link info consistent with physical link.

• mlx5: Fixed possible crash during initialization.

A crash could occur when failing to allocate private device context.

• mlx5: Added port type check.

Added port type check to prevent port initialization on non-Ethernet link layers and to
report an error.

• mlx5: Applied VLAN filtering to broadcast and IPv6 multicast flows.

Prevented reception of multicast frames outside of configured VLANs.

10.2. DPDK Release 16.04 575

DPDK documentation, Release 16.04.0

• mlx5: Fixed RX checksum offload in non L3/L4 packets.

Fixed report of bad checksum for packets of unknown type.

• aesni_mb: Fixed wrong return value when creating a device.

The cryptodev_aesni_mb_init() function was returning the device id of the device
created, instead of 0 (on success) that rte_eal_vdev_init() expects. This made it
impossible to create more than one aesni_mb device from the command line.

• qat: Fixed AES GCM decryption.

Allowed AES GCM on the cryptodev API, but in some cases gave invalid results due to
incorrect IV setting.

Libraries

• hash: Fixed CRC32c hash computation for non multiple of 4 bytes sizes.

Fix crc32c hash functions to return a valid crc32c value for data lengths not a multiple of
4 bytes.

• hash: Fixed hash library to support multi-process mode.

Fix hash library to support multi-process mode, using a jump table, instead of storing a
function pointer to the key compare function. Multi-process mode only works with the
built-in compare functions, however a custom compare function (not in the jump table)
can only be used in single-process mode.

• hash: Fixed return value when allocating an existing hash table.

Changed the rte_hash*_create() functions to return NULL and set rte_errno to
EEXIST when the object name already exists. This is the behavior described in the API
documentation in the header file. The previous behavior was to return a pointer to the
existing object in that case, preventing the caller from knowing if the object had to be
freed or not.

• lpm: Fixed return value when allocating an existing object.

Changed the rte_lpm*_create() functions to return NULL and set rte_errno to
EEXIST when the object name already exists. This is the behavior described in the API
documentation in the header file. The previous behavior was to return a pointer to the
existing object in that case, preventing the caller from knowing if the object had to be
freed or not.

• librte_port: Fixed segmentation fault for ring and ethdev writer nodrop.

Fixed core dump issue on txq and swq when dropless is set to yes.

Examples

• l3fwd-power: Fixed memory leak for non-IP packet.

Fixed issue in l3fwd-power where, on receiving packets of types other than IPv4 or IPv6,
the mbuf was not released, and caused a memory leak.

10.2. DPDK Release 16.04 576

DPDK documentation, Release 16.04.0

• l3fwd: Fixed using packet type blindly.

l3fwd makes use of packet type information without querying if devices or PMDs really
set it. For those devices that don’t set ptypes, add an option to parse it.

• examples/vhost: Fixed frequent mbuf allocation failure.

The vhost-switch often fails to allocate mbuf when dequeue from vring because it wrongly
calculates the number of mbufs needed.

10.2.3 API Changes

• The ethdev statistics counter imissed is considered to be independent of ierrors. All
drivers are now counting the missed packets only once, i.e. drivers will not increment
ierrors anymore for missed packets.

• The ethdev structure rte_eth_dev_info was changed to support device speed capa-
bilities.

• The ethdev structures rte_eth_link and rte_eth_conf were changed to support
the new link API.

• The functions rte_eth_dev_udp_tunnel_add and
rte_eth_dev_udp_tunnel_delete have been re-
named into rte_eth_dev_udp_tunnel_port_add and
rte_eth_dev_udp_tunnel_port_delete.

• The outer_mac and inner_mac fields in structure rte_eth_tunnel_filter_conf
are changed from pointer to struct in order to keep code’s readability.

• The fields in ethdev structure rte_eth_fdir_masks were changed to be in big endian.

• A parameter vlan_type has been added to the function
rte_eth_dev_set_vlan_ether_type.

• The af_packet device init function is no longer public. The device should be attached via
the API.

• The LPM next_hop field is extended from 8 bits to 24 bits for IPv4 while keeping ABI
compatibility.

• A new rte_lpm_config structure is used so the LPM library will allocate exactly the
amount of memory which is necessary to hold application’s rules. The previous ABI is
kept for compatibility.

• The prototype for the pipeline input port, output port and table action handlers are up-
dated: the pipeline parameter is added, the packets mask parameter has been either
removed or made input-only.

10.2.4 ABI Changes

• The RETA entry size in rte_eth_rss_reta_entry64 has been increased from 8-bit
to 16-bit.

• The ethdev flow director structure rte_eth_fdir_flow structure was changed. New
fields were added to extend flow director’s input set.

10.2. DPDK Release 16.04 577

DPDK documentation, Release 16.04.0

• The cmdline buffer size has been increase from 256 to 512.

10.2.5 Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

+ libethdev.so.3
librte_acl.so.2
librte_cfgfile.so.2

+ librte_cmdline.so.2
librte_distributor.so.1
librte_eal.so.2
librte_hash.so.2
librte_ip_frag.so.1
librte_ivshmem.so.1
librte_jobstats.so.1
librte_kni.so.2
librte_kvargs.so.1
librte_lpm.so.2
librte_mbuf.so.2
librte_mempool.so.1
librte_meter.so.1

+ librte_pipeline.so.3
librte_pmd_bond.so.1
librte_pmd_ring.so.2
librte_port.so.2
librte_power.so.1
librte_reorder.so.1
librte_ring.so.1
librte_sched.so.1
librte_table.so.2
librte_timer.so.1
librte_vhost.so.2

10.2.6 Tested Platforms

1. SuperMicro 1U

• BIOS: 1.0c

• Processor: Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

2. SuperMicro 1U

• BIOS: 1.0a

• Processor: Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

• Onboard NIC: Intel(R) X552/X557-AT (2x10G)

– Firmware-version: 0x800001cf

– Device ID (PF/VF): 8086:15ad /8086:15a8

• kernel driver version: 4.2.5 (ixgbe)

3. SuperMicro 1U

• BIOS: 1.0a

• Processor: Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

10.2. DPDK Release 16.04 578

DPDK documentation, Release 16.04.0

4. Intel(R) Server board S2600GZ

• BIOS: SE5C600.86B.02.02.0002.122320131210

• Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

5. Intel(R) Server board W2600CR

• BIOS: SE5C600.86B.02.01.0002.082220131453

• Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

6. Intel(R) Server board S2600CWT

• BIOS: SE5C610.86B.01.01.0009.060120151350

• Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

7. Intel(R) Server board S2600WTT

• BIOS: SE5C610.86B.01.01.0005.101720141054

• Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

8. Intel(R) Server board S2600WTT

• BIOS: SE5C610.86B.11.01.0044.090120151156

• Processor: Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

10.2.7 Tested NICs

1. Intel(R) Ethernet Controller X540-AT2

• Firmware version: 0x80000389

• Device id (pf): 8086:1528

• Driver version: 3.23.2 (ixgbe)

2. Intel(R) 82599ES 10 Gigabit Ethernet Controller

• Firmware version: 0x61bf0001

• Device id (pf/vf): 8086:10fb / 8086:10ed

• Driver version: 4.0.1-k (ixgbe)

3. Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

• Firmware version: 0x800001cf

• Device id (pf/vf): 8086:15ad / 8086:15a8

• Driver version: 4.2.5 (ixgbe)

4. Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

• Firmware version: 5.02 0x80002284

• Device id (pf/vf): 8086:1572 / 8086:154c

• Driver version: 1.4.26 (i40e)

5. Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

10.2. DPDK Release 16.04 579

DPDK documentation, Release 16.04.0

• Firmware version: 5.02 0x80002282

• Device id (pf/vf): 8086:1572 / 8086:154c

• Driver version: 1.4.25 (i40e)

6. Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

• Firmware version: 5.02 0x80002281

• Device id (pf/vf): 8086:1584 / 8086:154c

• Driver version: 1.4.25 (i40e)

7. Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

• Firmware version: 5.02 0x80002285

• Device id (pf/vf): 8086:1583 / 8086:154c

• Driver version: 1.4.25 (i40e)

8. Intel(R) 82576EB Gigabit Ethernet Controller

• Firmware version: 1.2.1

• Device id (pf): 8086:1526

• Driver version: 5.2.13-k (igb)

9. Intel(R) Ethernet Controller I210

• Firmware version: 3.16, 0x80000500, 1.304.0

• Device id (pf): 8086:1533

• Driver version: 5.2.13-k (igb)

10. Intel(R) Corporation I350 Gigabit Network Connection

• Firmware version: 1.48, 0x800006e7

• Device id (pf/vf): 8086:1521 / 8086:1520

• Driver version: 5.2.13-k (igb)

11. Intel(R) Ethernet Multi-host Controller FM10000

• Firmware version: N/A

• Device id (pf/vf): 8086:15d0

• Driver version: 0.17.0.9 (fm10k)

10.3 DPDK Release 2.2

10.3.1 New Features

• Introduce ARMv7 and ARMv8 architectures.

– It is now possible to build DPDK for the ARMv7 and ARMv8 platforms.

– ARMv7 can be tested with virtual PMD drivers.

10.3. DPDK Release 2.2 580

DPDK documentation, Release 16.04.0

– ARMv8 can be tested with virtual and physical PMD drivers.

• Enabled freeing of ring.

A new function rte_ring_free() has been added to allow the user to free a ring if it
was created with rte_ring_create().

• Added keepalive support to EAL and example application.

• Added experimental cryptodev API

The cryptographic processing of packets is provided as a preview with two drivers for:

– Intel QuickAssist devices

– Intel AES-NI multi-buffer library

Due to its experimental state, the API may change without prior notice.

• Added ethdev APIs for additional IEEE1588 support.

Added functions to read, write and adjust system time in the NIC. Added client slave
sample application to demonstrate the IEEE1588 functionality.

• Extended Statistics.

Defined an extended statistics naming scheme to store metadata in the name string of
each statistic. Refer to the Extended Statistics section of the Programmers Guide for
more details.

Implemented the extended statistics API for the following PMDs:

– igb

– igbvf

– i40e

– i40evf

– fm10k

– virtio

• Added API in ethdev to retrieve RX/TX queue information.

– Added the ability for the upper layer to query RX/TX queue information.

– Added new fields in rte_eth_dev_info to represent information about RX/TX
descriptors min/max/align numbers, per queue, for the device.

• Added RSS dynamic configuration to bonding.

• Updated the e1000 base driver.

The e1000 base driver was updated with several features including the following:

– Added new i218 devices

– Allowed both ULP and EEE in Sx state

– Initialized 88E1543 (Marvell 1543) PHY

– Added flags to set EEE advertisement modes

– Supported inverted format ETrackId

10.3. DPDK Release 2.2 581

DPDK documentation, Release 16.04.0

– Added bit to disable packetbuffer read

– Added defaults for i210 RX/TX PBSIZE

– Check more errors for ESB2 init and reset

– Check more NVM read errors

– Return code after setting receive address register

– Removed all NAHUM6LP_HW tags

• Added e1000 RX interrupt support.

• Added igb TSO support for both PF and VF.

• Added RSS enhancements to Intel x550 NIC.

– Added support for 512 entry RSS redirection table.

– Added support for per VF RSS redirection table.

• Added Flow director enhancements on Intel x550 NIC.

– Added 2 new flow director modes on x550. One is MAC VLAN mode, the other is
tunnel mode.

• Updated the i40e base driver.

The i40e base driver was updated with several changes including the following:

– Added promiscuous on VLAN support

– Added a workaround to drop all flow control frames

– Added VF capabilities to virtual channel interface

– Added TX Scheduling related AQ commands

– Added additional PCTYPES supported for FortPark RSS

– Added parsing for CEE DCBX TLVs

– Added FortPark specific registers

– Added AQ functions to handle RSS Key and LUT programming

– Increased PF reset max loop limit

• Added i40e vector RX/TX.

• Added i40e RX interrupt support.

• Added i40e flow control support.

• Added DCB support to i40e PF driver.

• Added RSS/FD input set granularity on Intel X710/XL710.

• Added different GRE key length for input set on Intel X710/XL710.

• Added flow director support in i40e VF.

• Added i40e support of early X722 series.

Added early X722 support, for evaluation only, as the hardware is alpha.

• Added fm10k vector RX/TX.

10.3. DPDK Release 2.2 582

DPDK documentation, Release 16.04.0

• Added fm10k TSO support for both PF and VF.

• Added fm10k VMDQ support.

• New NIC Boulder Rapid support.

Added support for the Boulder Rapid variant of Intel’s fm10k NIC family.

• Enhanced support for the Chelsio CXGBE driver.

– Added support for Jumbo Frames.

– Optimized forwarding performance for Chelsio T5 40GbE cards.

• Improved enic TX packet rate.

Reduced frequency of TX tail pointer updates to the NIC.

• Added support for link status interrupts in mlx4.

• Added partial support (TX only) for secondary processes in mlx4.

• Added support for Mellanox ConnectX-4 adapters (mlx5).

The mlx5 poll-mode driver implements support for Mellanox ConnectX-4 EN and Mel-
lanox ConnectX-4 Lx EN families of 10/25/40/50/100 Gb/s adapters.

Like mlx4, this PMD is only available for Linux and is disabled by default due to external
dependencies (libibverbs and libmlx5).

• Added driver for Netronome nfp-6xxx card.

Support for using Netronome nfp-6xxx with PCI VFs.

• Added virtual szedata2 driver for COMBO cards.

Added virtual PMD for COMBO-100G and COMBO-80G cards. PMD is disabled in de-
fault configuration.

• Enhanced support for virtio driver.

– Virtio ring layout optimization (fixed avail ring)

– Vector RX

– Simple TX

• Added vhost-user multiple queue support.

• Added port hotplug support to vmxnet3.

• Added port hotplug support to xenvirt.

• Added ethtool shim and sample application.

• Added experimental performance thread example application.

The new sample application demonstrates L3 forwarding with different threading models:
pthreads, cgroups, or lightweight threads. The example includes a simple cooperative
scheduler.

Due to its experimental state this application may change without notice. The application
is supported only for Linux x86_64.

10.3. DPDK Release 2.2 583

DPDK documentation, Release 16.04.0

• Enhancements to the IP pipeline application.

The following features have been added to the ip_pipeline application;

– Added Multiple Producers/Multiple Consumers (MPSC) and fragmenta-
tion/reassembly support to software rings.

– Added a dynamic pipeline reconfiguration feature that allows binding a pipeline to
other threads at runtime using CLI commands.

– Added enable/disable of promisc mode from ip_pipeline configuration file.

– Added check on RX queues and TX queues of each link whether they are used
correctly in the ip_pipeline configuration file.

– Added flow id parameters to the flow-classification table entries.

– Added more functions to the routing pipeline: ARP table enable/disable, Q-in-Q and
MPLS encapsulation, add color (traffic-class for QoS) to the MPLS tag.

– Added flow-actions pipeline for traffic metering/marking (for e.g. Two Rate Three
Color Marker (trTCM)), policer etc.

– Modified the pass-through pipeline’s actions-handler to implement a generic ap-
proach to extract fields from the packet’s header and copy them to packet metadata.

10.3.2 Resolved Issues

EAL

• eal/linux: Fixed epoll timeout.

Fixed issue where the rte_epoll_wait() function didn’t return when the underlying
call to epoll_wait() timed out.

Drivers

• e1000/base: Synchronize PHY interface on non-ME systems.

On power up, the MAC - PHY interface needs to be set to PCIe, even if the cable is
disconnected. In ME systems, the ME handles this on exit from the Sx (Sticky mode)
state. In non-ME, the driver handles it. Added a check for non-ME system to the driver
code that handles it.

• e1000/base: Increased timeout of reset check.

Previously, in check_reset_block RSPCIPHY was polled for 100 ms before determin-
ing that the ME veto was set. This was not enough and it was increased to 300 ms.

• e1000/base: Disabled IPv6 extension header parsing on 82575.

Disabled IPv6 options as per hardware limitation.

• e1000/base: Prevent ULP flow if cable connected.

Enabling ULP on link down when the cable is connected caused an infinite loop of link
up/down indications in the NDIS driver. The driver now enables ULP only when the cable
is disconnected.

10.3. DPDK Release 2.2 584

DPDK documentation, Release 16.04.0

• e1000/base: Support different EEARBC for i210.

EEARBC has changed on i210. It means EEARBC has a different address on i210 than
on other NICs. So, add a new entity named EEARBC_I210 to the register list and make
sure the right one is being used on i210.

• e1000/base: Fix K1 configuration.

Added fix for the following updates to the K1 configurations: TX idle period for entering
K1 should be 128 ns. Minimum TX idle period in K1 should be 256 ns.

• e1000/base: Fix link detect flow.

Fix link detect flow in case where auto-negotiate is not enabled, by calling
e1000_setup_copper_link_generic instead of e1000_phy_setup_autoneg.

• e1000/base: Fix link check for i354 M88E1112 PHY.

The e1000_check_for_link_media_swap() function is supposed to check PHY
page 0 for copper and PHY page 1 for “other” (fiber) links. The driver switched back from
page 1 to page 0 too soon, before e1000_check_for_link_82575() is executed and
was never finding the link on the fiber (other).

If the link is copper, as the M88E1112 page address is set to 1, it should be set back to
0 before checking this link.

• e1000/base: Fix beacon duration for i217.

Fix for I217 Packet Loss issue - The Management Engine sets the FEXTNVM4 Beacon
Duration incorrectly. This fix ensures that the correct value will always be set. Correct
value for this field is 8 usec.

• e1000/base: Fix TIPG for non 10 half duplex mode.

TIPG value is increased when setting speed to 10 half duplex to prevent packet loss.
However, it was never decreased again when speed changed. This caused performance
issues in the NDIS driver. Fix this to restore TIPG to default value on non 10 half duplex.

• e1000/base: Fix reset of DH89XXCC SGMII.

For DH89XXCC_SGMII, a write flush leaves registers of this device trashed
(0xFFFFFFFF). Add check for this device.

Also, after both Port SW Reset and Device Reset case, the platform should wait at least
3ms before reading any registers. Remove this condition since waiting is conditionally
executed only for Device Reset.

• e1000/base: Fix redundant PHY power down for i210.

Bit 11 of PHYREG 0 is used to power down PHY. The use of PHYREG 16 is no longer
necessary.

• e1000/base: fix jumbo frame CRC failures.

Change the value of register 776.20[11:2] for jumbo mode from 0x1A to 0x1F. This is to
enlarge the gap between read and write pointers in the TX FIFO.

• e1000/base: Fix link flap on 82579.

Several customers have reported a link flap issue on 82579. The symptoms are random
and intermittent link losses when 82579 is connected to specific switches. the Issue was

10.3. DPDK Release 2.2 585

DPDK documentation, Release 16.04.0

root caused as an inter-operability problem between the NIC and at least some Broadcom
PHYs in the Energy Efficient Ethernet wake mechanism.

To fix the issue, we are disabling the Phase Locked Loop shutdown in 100M Low Power
Idle. This solution will cause an increase of power in 100M EEE link. It may cost an
additional 28mW in this specific mode.

• igb: Fixed IEEE1588 frame identification in I210.

Fixed issue where the flag PKT_RX_IEEE1588_PTP was not being set in the Intel I210
NIC, as the EtherType in RX descriptor is in bits 8:10 of Packet Type and not in the default
bits 0:2.

• igb: Fixed VF start with PF stopped.

VF needs the PF interrupt support initialized even if not started.

• igb: Fixed VF MAC address when using with DPDK PF.

Assign a random MAC address in VF when not assigned by PF.

• igb: Removed CRC bytes from byte counter statistics.

• ixgbe: Fixed issue with X550 DCB.

Fixed a DCB issue with x550 where for 8 TCs (Traffic Classes), if a packet with user
priority 6 or 7 was injected to the NIC, then the NIC would only put 3 packets into the
queue. There was also a similar issue for 4 TCs.

• ixgbe: Removed burst size restriction of vector RX.

Fixed issue where a burst size less than 32 didn’t receive anything.

• ixgbe: Fixed VF start with PF stopped.

VF needs the PF interrupt support initialized even if not started.

• ixgbe: Fixed TX hang when RS distance exceeds HW limit.

Fixed an issue where the TX queue can hang when a lot of highly fragmented packets
have to be sent. As part of that fix, tx_rs_thresh for ixgbe PMD is not allowed to be
greater then to 32 to comply with HW restrictions.

• ixgbe: Fixed rx error statistic counter.

Fixed an issue that the rx error counter of ixgbe was not accurate. The mac short packet
discard count (mspdc) was added to the counter. Mac local faults and mac remote faults
are removed as they do not count packets but errors, and jabber errors were removed as
they are already accounted for by the CRC error counter. Finally the XEC (l3 / l4 check-
sum error) counter was removed due to errata, see commit 256ff05a9cae for details.

• ixgbe: Removed CRC bytes from byte counter statistics.

• i40e: Fixed base driver allocation when not using first numa node.

Fixed i40e issue that occurred when a DPDK application didn’t initialize ports if memory
wasn’t available on socket 0.

• i40e: Fixed maximum of 64 queues per port.

Fixed an issue in i40e where it would not support more than 64 queues per port, even
though the hardware actually supports it. The real number of queues may vary, as long

10.3. DPDK Release 2.2 586

DPDK documentation, Release 16.04.0

as the total number of queues used in PF, VFs, VMDq and FD does not exceeds the
hardware maximum.

• i40e: Fixed statistics of packets.

Added discarding packets on VSI to the stats and rectify the old statistics.

• i40e: Fixed issue of not freeing memzone.

Fixed an issue of not freeing a memzone in the call to free the memory for adminq DMA.

• i40e: Removed CRC bytes from byte counter statistics.

• mlx: Fixed driver loading.

The mlx drivers were unable to load when built as a shared library, due to a missing
symbol in the mempool library.

• mlx4: Performance improvements.

Fixed bugs in TX and RX flows that improves mlx4 performance.

• mlx4: Fixed TX loss after initialization.

• mlx4: Fixed scattered TX with too many segments.

• mlx4: Fixed memory registration for indirect mbuf data.

• vhost: Fixed Qemu shutdown.

Fixed issue with libvirt virsh destroy not killing the VM.

• virtio: Fixed crash after changing link state.

Fixed IO permission in the interrupt handler.

• virtio: Fixed crash when releasing queue.

Fixed issue when releasing null control queue.

Libraries

• hash: Fixed memory allocation of Cuckoo Hash key table.

Fixed issue where an incorrect Cuckoo Hash key table size could be calculated limiting
the size to 4GB.

• hash: Fixed incorrect lookup if key is all zero.

Fixed issue in hash library that occurred if an all zero key was not added to the table and
the key was looked up, resulting in an incorrect hit.

• hash: Fixed thread scaling by reducing contention.

Fixed issue in the hash library where, using multiple cores with hardware transactional
memory support, thread scaling did not work, due to the global ring that is shared by all
cores.

10.3. DPDK Release 2.2 587

DPDK documentation, Release 16.04.0

Examples

• l3fwd: Fixed crash with IPv6.

• vhost_xen: Fixed compile error.

Other

• This release drops compatibility with Linux kernel 2.6.33. The minimum kernel require-
ment is now 2.6.34.

10.3.3 Known Issues

• Some drivers do not fill in the packet type when receiving. As the l3fwd example appli-
cation requires this info, the i40e vector driver must be disabled to benefit of the packet
type with i40e.

• Some (possibly all) VF drivers (e.g. i40evf) do not handle any PF reset events/requests
in the VF driver. This means that the VF driver may not work after a PF reset in the host
side. The workaround is to avoid triggering any PF reset events/requests on the host
side.

• 100G link report support is missing.

• Mellanox PMDs (mlx4 & mlx5):

– PMDs do not support CONFIG_RTE_BUILD_COMBINE_LIBS and CON-
FIG_RTE_BUILD_SHARED_LIB simultaneously.

– There is performance degradation for small packets when the PMD is compiled with
SGE_WR_N = 4 compared to the performance when SGE_WR_N = 1. If scattered
packets are not used it is recommended to compile the PMD with SGE_WR_N = 1.

– When a Multicast or Broadcast packet is sent to the SR-IOV mlx4 VF, it is returned
back to the port.

– PMDs report “bad” L4 checksum when IP packet is received.

– mlx5 PMD reports “bad” checksum although the packet has “good” checksum. Will
be fixed in upcoming MLNX_OFED release.

10.3.4 API Changes

• The deprecated flow director API is removed. It was replaced by
rte_eth_dev_filter_ctrl().

• The dcb_queue is renamed to dcb_tc in following dcb configuration structures:
rte_eth_dcb_rx_conf, rte_eth_dcb_tx_conf, rte_eth_vmdq_dcb_conf,
rte_eth_vmdq_dcb_tx_conf.

• The rte_eth_rx_queue_count() function now returns “int” instead of “uint32_t” to
allow the use of negative values as error codes on return.

• The function rte_eal_pci_close_one() is removed. It was replaced by
rte_eal_pci_detach().

10.3. DPDK Release 2.2 588

DPDK documentation, Release 16.04.0

• The deprecated ACL API ipv4vlan is removed.

• The deprecated hash function rte_jhash2() is removed. It was replaced by
rte_jhash_32b().

• The deprecated KNI functions are removed: rte_kni_create(),
rte_kni_get_port_id() and rte_kni_info_get().

• The deprecated ring PMD functions are removed: rte_eth_ring_pair_create()
and rte_eth_ring_pair_attach().

• The devargs union field virtual is renamed to virt for C++ compatibility.

10.3.5 ABI Changes

• The EAL and ethdev structures rte_intr_handle and rte_eth_conf were
changed to support RX interrupt. This was already included in 2.1 under the
CONFIG_RTE_NEXT_ABI #define.

• The ethdev flow director entries for SCTP were changed. This was already included in
2.1 under the CONFIG_RTE_NEXT_ABI #define.

• The ethdev flow director structure rte_eth_fdir_flow_ext structure was changed.
New fields were added to support flow director filtering in VF.

• The size of the ethdev structure rte_eth_hash_filter_info is changed by adding
a new element rte_eth_input_set_conf in a union.

• New fields rx_desc_lim and tx_desc_lim are added into rte_eth_dev_info
structure.

• For debug builds, the functions rte_eth_rx_burst(), rte_eth_tx_burst()
rte_eth_rx_descriptor_done() and rte_eth_rx_queue_count() will no
longer be separate functions in the DPDK libraries. Instead, they will only be present
in the rte_ethdev.h header file.

• The maximum number of queues per port CONFIG_RTE_MAX_QUEUES_PER_PORT is
increased to 1024.

• The mbuf structure was changed to support the unified packet type. This was already
included in 2.1 under the CONFIG_RTE_NEXT_ABI #define.

• The dummy malloc library is removed. The content was moved into EAL in 2.1.

• The LPM structure is changed. The deprecated field mem_location is removed.

• librte_table LPM: A new parameter to hold the table name will be added to the LPM table
parameter structure.

• librte_table hash: The key mask parameter is added to the hash table parameter struc-
ture for 8-byte key and 16-byte key extendable bucket and LRU tables.

• librte_port: Macros to access the packet meta-data stored within the packet buffer has
been adjusted to cover the packet mbuf structure.

• librte_cfgfile: Allow longer names and values by increasing the constants
CFG_NAME_LEN and CFG_VALUE_LEN to 64 and 256 respectively.

• vhost: a new field enabled is added to the vhost_virtqueue structure.

10.3. DPDK Release 2.2 589

DPDK documentation, Release 16.04.0

• vhost: a new field virt_qp_nb is added to virtio_net structure, and the virtqueue
field is moved to the end of virtio_net structure.

• vhost: a new operation vring_state_changed is added to
virtio_net_device_ops structure.

• vhost: a few spaces are reserved both at vhost_virtqueue and virtio_net struc-
ture for future extension.

10.3.6 Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

+ libethdev.so.2
+ librte_acl.so.2
+ librte_cfgfile.so.2

librte_cmdline.so.1
librte_distributor.so.1

+ librte_eal.so.2
+ librte_hash.so.2

librte_ip_frag.so.1
librte_ivshmem.so.1
librte_jobstats.so.1

+ librte_kni.so.2
librte_kvargs.so.1

+ librte_lpm.so.2
+ librte_mbuf.so.2

librte_mempool.so.1
librte_meter.so.1

+ librte_pipeline.so.2
librte_pmd_bond.so.1

+ librte_pmd_ring.so.2
+ librte_port.so.2

librte_power.so.1
librte_reorder.so.1
librte_ring.so.1
librte_sched.so.1

+ librte_table.so.2
librte_timer.so.1

+ librte_vhost.so.2

10.4 DPDK Release 2.1

10.4.1 New Features

• Enabled cloning of indirect mbufs.

This feature removes a limitation of rte_pktmbuf_attach() which generated the
warning: “mbuf we’re attaching to must be direct”.

Now, when attaching to an indirect mbuf it is possible to:

– Copy all relevant fields (address, length, offload, ...) as before.

– Get the pointer to the mbuf that embeds the data buffer (direct mbuf), and
increase the reference counter.

10.4. DPDK Release 2.1 590

DPDK documentation, Release 16.04.0

When detaching the mbuf, we can now retrieve this direct mbuf as the pointer
is determined from the buffer address.

• Extended packet type support.

In previous releases mbuf packet types were indicated by 6 bits in the ol_flags. This
was not enough for some supported NICs. For example i40e hardware can recognize
more than 150 packet types. Not being able to identify these additional packet types
limits access to hardware offload capabilities

So an extended “unified” packet type was added to support all possible PMDs. The 16
bit packet_type in the mbuf structure was changed to 32 bits and used for this purpose.

To avoid breaking ABI compatibility, the code changes for this feature are enclosed in a
RTE_NEXT_ABI ifdef. This is enabled by default but can be turned off for ABI compatibil-
ity with DPDK R2.0.

• Reworked memzone to be allocated by malloc and also support freeing.

In the memory hierarchy, memsegs are groups of physically contiguous hugepages,
memzones are slices of memsegs, and malloc slices memzones into smaller memory
chunks.

This feature modifies malloc() so it partitions memsegs instead of memzones. Now
memzones allocate their memory from the malloc heap.

Backward compatibility with API and ABI are maintained.

This allow memzones, and any other structure based on memzones, for example mem-
pools, to be freed. Currently only the API from freeing memzones is supported.

• Interrupt mode PMD.

This feature introduces a low-latency one-shot RX interrupt into DPDK. It also adds a
polling and interrupt mode switch control example.

DPDK userspace interrupt notification and handling mechanism is based on UIO/VFIO
with the following limitations:

– Per queue RX interrupt events are only allowed in VFIO which supports multiple
MSI-X vectors.

– In UIO, the RX interrupt shares the same vector with other interrupts. When the RX
interrupt and LSC interrupt are both enabled, only the former is available.

– RX interrupt is only implemented for the linuxapp target.

– The feature is only currently enabled for tow PMDs: ixgbe and igb.

• Packet Framework enhancements.

Several enhancements were made to the Packet Framework:

– A new configuration file syntax has been introduced for IP pipeline applications.
Parsing of the configuration file is changed.

– Implementation of the IP pipeline application is modified to make it more structured
and user friendly.

– Implementation of the command line interface (CLI) for each pipeline type has been
moved to the separate compilation unit. Syntax of pipeline CLI commands has been
changed.

10.4. DPDK Release 2.1 591

DPDK documentation, Release 16.04.0

– Initialization of IP pipeline is modified to match the new parameters structure.

– New implementation of pass-through pipeline, firewall pipeline, routing pipeline, and
flow classification has been added.

– Master pipeline with CLI interface has been added.

– Added extended documentation of the IP Pipeline.

• Added API for IEEE1588 timestamping.

This feature adds an ethdev API to enable, disable and read IEEE1588/802.1AS PTP
timestamps from devices that support it. The following functions were added:

– rte_eth_timesync_enable()

– rte_eth_timesync_disable()

– rte_eth_timesync_read_rx_timestamp()

– rte_eth_timesync_read_tx_timestamp()

The “ieee1588” forwarding mode in testpmd was also refactored to demonstrate the new
API.

• Added multicast address filtering.

Added multicast address filtering via a new ethdev function set_mc_addr_list().

This overcomes a limitation in previous releases where the receipt of mul-
ticast packets on a given port could only be enabled by invoking the
rte_eth_allmulticast_enable() function. This method did not work for VFs
in SR-IOV architectures when the host PF driver does not allow these operation on VFs.
In such cases, joined multicast addresses had to be added individually to the set of
multicast addresses that are filtered by the [VF] port.

• Added Flow Director extensions.

Several Flow Director extensions were added such as:

– Support for RSS and Flow Director hashes in vector RX.

– Added Flow Director for L2 payload.

• Added RSS hash key size query per port.

This feature supports querying the RSS hash key size of each port. A new field
hash_key_size has been added in the rte_eth_dev_info struct for storing hash
key size in bytes.

• Added userspace ethtool support.

Added userspace ethtool support to provide a familiar interface for applications that man-
age devices via kernel-space ethtool_op and net_device_op.

The initial implementation focuses on operations that can be implemented through exist-
ing netdev APIs. More operations will be supported in later releases.

• Updated the ixgbe base driver.

The ixgbe base driver was updated with several changes including the following:

– Added a new 82599 device id.

10.4. DPDK Release 2.1 592

DPDK documentation, Release 16.04.0

– Added new X550 PHY ids.

– Added SFP+ dual-speed support.

– Added wait helper for X550 IOSF accesses.

– Added X550em features.

– Added X557 PHY LEDs support.

– Commands for flow director.

– Issue firmware command when resetting X550em.

See the git log for full details of the ixgbe/base changes.

• Added additional hotplug support.

Port hotplug support was added to the following PMDs:

– e1000/igb.

– ixgbe.

– i40e.

– fm10k.

– ring.

– bonding.

– virtio.

Port hotplug support was added to BSD.

• Added ixgbe LRO support.

Added LRO support for x540 and 82599 devices.

• Added extended statistics for ixgbe.

Implemented xstats_get() and xstats_reset() in dev_ops for ixgbe to expose
detailed error statistics to DPDK applications.

These will be implemented for other PMDs in later releases.

• Added proc_info application.

Created a new proc_info application, by refactoring the existing dump_cfg applica-
tion, to demonstrate the usage of retrieving statistics, and the new extended statistics
(see above), for DPDK interfaces.

• Updated the i40e base driver.

The i40e base driver was updated with several changes including the following:

– Support for building both PF and VF driver together.

– Support for CEE DCBX on recent firmware versions.

– Replacement of i40e_debug_read_register().

– Rework of i40e_hmc_get_object_va.

– Update of shadow RAM read/write functions.

10.4. DPDK Release 2.1 593

DPDK documentation, Release 16.04.0

– Enhancement of polling NVM semaphore.

– Enhancements on adminq init and sending asq command.

– Update of get/set LED functions.

– Addition of AOC phy types to case statement in get_media_type.

– Support for iSCSI capability.

– Setting of FLAG_RD when sending driver version to FW.

See the git log for full details of the i40e/base changes.

• Added support for port mirroring in i40e.

Enabled mirror functionality in the i40e driver.

• Added support for i40e double VLAN, QinQ, stripping and insertion.

Added support to the i40e driver for offloading double VLAN (QinQ) tags to the mbuf
header, and inserting double vlan tags by hardware to the packets to be transmit-
ted. Added a new field vlan_tci_outer in the rte_mbuf struct, and new flags in
ol_flags to support this feature.

• Added fm10k promiscuous mode support.

Added support for promiscuous/allmulticast enable and disable in the fm10k PF function.
VF is not supported yet.

• Added fm10k jumbo frame support.

Added support for jumbo frame less than 15K in both VF and PF functions in the fm10k
pmd.

• Added fm10k mac vlan filtering support.

Added support for the fm10k MAC filter, only available in PF. Updated the VLAN filter to
add/delete one static entry in the MAC table for each combination of VLAN and MAC
address.

• Added support for the Broadcom bnx2x driver.

Added support for the Broadcom NetXtreme II bnx2x driver. It is supported only on Linux
64-bit and disabled by default.

• Added support for the Chelsio CXGBE driver.

Added support for the CXGBE Poll Mode Driver for the Chelsio Terminator 5 series of
10G/40G adapters.

• Enhanced support for Mellanox ConnectX-3 driver (mlx4).

– Support Mellanox OFED 3.0.

– Improved performance for both RX and TX operations.

– Better link status information.

– Outer L3/L4 checksum offload support.

– Inner L3/L4 checksum offload support for VXLAN.

10.4. DPDK Release 2.1 594

DPDK documentation, Release 16.04.0

• Enabled VMXNET3 vlan filtering.

Added support for the VLAN filter functionality of the VMXNET3 interface.

• Added support for vhost live migration.

Added support to allow live migration of vhost. Without this feature, qemu will report the
following error: “migrate: Migration disabled: vhost lacks VHOST_F_LOG_ALL feature”.

• Added support for pcap jumbo frames.

Extended the PCAP PMD to support jumbo frames for RX and TX.

• Added support for the TILE-Gx architecture.

Added support for the EZchip TILE-Gx family of SoCs.

• Added hardware memory transactions/lock elision for x86.

Added the use of hardware memory transactions (HTM) on fast-path for rwlock and spin-
lock (a.k.a. lock elision). The methods are implemented for x86 using Restricted Trans-
actional Memory instructions (Intel(r) Transactional Synchronization Extensions). The
implementation fall-backs to the normal rwlock if HTM is not available or memory transac-
tions fail. This is not a replacement for all rwlock usages since not all critical sections pro-
tected by locks are friendly to HTM. For example, an attempt to perform a HW I/O opera-
tion inside a hardware memory transaction always aborts the transaction since the CPU
is not able to roll-back should the transaction fail. Therefore, hardware transactional locks
are not advised to be used around rte_eth_rx_burst() and rte_eth_tx_burst()
calls.

• Updated Jenkins Hash function

Updated the version of the Jenkins Hash (jhash) function used in DPDK from the 1996
version to the 2006 version. This gives up to 35% better performance, compared to the
original one.

Note, the hashes generated by the updated version differ from the hashes generated by
the previous version.

• Added software implementation of the Toeplitz RSS hash

Added a software implementation of the Toeplitz hash function used by RSS. It can be
used either for packet distribution on a single queue NIC or for simulating RSS computa-
tion on a specific NIC (for example after GRE header de-encapsulation).

• Replaced the existing hash library with a Cuckoo hash implementation.

Replaced the existing hash library with another approach, using the Cuckoo Hash method
to resolve collisions (open addressing). This method pushes items from a full bucket
when a new entry must be added to it, storing the evicted entry in an alternative location,
using a secondary hash function.

This gives the user the ability to store more entries when a bucket is full, in comparison
with the previous implementation.

The API has not been changed, although new fields have been added in the rte_hash
structure, which has been changed to internal use only.

The main change when creating a new table is that the number of entries per bucket is
now fixed, so its parameter is ignored now (it is still there to maintain the same parameters
structure).

10.4. DPDK Release 2.1 595

DPDK documentation, Release 16.04.0

Also, the maximum burst size in lookup_burst function hash been increased to 64, to
improve performance.

• Optimized KNI RX burst size computation.

Optimized KNI RX burst size computation by avoiding checking how many entries are in
kni->rx_q prior to actually pulling them from the fifo.

• Added KNI multicast.

Enabled adding multicast addresses to KNI interfaces by adding an empty callback for
set_rx_mode (typically used for setting up hardware) so that the ioctl succeeds. This is
the same thing as the Linux tap interface does.

• Added cmdline polling mode.

Added the ability to process console input in the same thread as packet processing by
using the poll() function.

• Added VXLAN Tunnel End point sample application.

Added a Tunnel End point (TEP) sample application that simulates a VXLAN Tunnel
Endpoint (VTEP) termination in DPDK. It is used to demonstrate the offload and filtering
capabilities of Intel XL710 10/40 GbE NICsfor VXLAN packets.

• Enabled combining of the ‘‘-m‘‘ and ‘‘–no-huge‘‘ EAL options.

Added option to allow combining of the -m and --no-huge EAL command line options.

This allows user application to run as non-root but with higher memory allocations, and
removes a constraint on --no-huge mode being limited to 64M.

10.4.2 Resolved Issues

• acl: Fix ambiguity between test rules.

Some test rules had equal priority for the same category. That could cause an ambiguity
in building the trie and test results.

• acl: Fix invalid rule wildness calculation for bitmask field type.

• acl: Fix matching rule.

• acl: Fix unneeded trie splitting for subset of rules.

When rebuilding a trie for limited rule-set, don’t try to split the rule-set even further.

• app/testpmd: Fix crash when port id out of bound.

Fixed issues in testpmd where using a port greater than 32 would cause a seg fault.

Fixes: edab33b1c01d (“app/testpmd: support port hotplug”)

• app/testpmd: Fix reply to a multicast ICMP request.

Set the IP source and destination addresses in the IP header of the ICMP reply.

• app/testpmd: fix MAC address in ARP reply.

Fixed issue where in the icmpecho forwarding mode, ARP replies from testpmd contain
invalid zero-filled MAC addresses.

Fixes: 31db4d38de72 (“net: change arp header struct declaration”)

10.4. DPDK Release 2.1 596

DPDK documentation, Release 16.04.0

• app/testpmd: fix default flow control values.

Fixes: 422a20a4e62d (“app/testpmd: fix uninitialized flow control variables”)

• bonding: Fix crash when stopping inactive slave.

• bonding: Fix device initialization error handling.

• bonding: Fix initial link status of slave.

On Fortville NIC, link status change interrupt callback was not executed when slave in
bonding was (re-)started.

• bonding: Fix socket id for LACP slave.

Fixes: 46fb43683679 (“bond: add mode 4”)

• bonding: Fix device initialization error handling.

• cmdline: Fix small memory leak.

A function in cmdline.c had a return that did not free the buf properly.

• config: Enable same drivers options for Linux and BSD.

Enabled vector ixgbe and i40e bulk alloc for BSD as it is already done for Linux.

Fixes: 304caba12643 (“config: fix bsd options”) Fixes: 0ff3324da2eb (“ixgbe: rework
vector pmd following mbuf changes”)

• devargs: Fix crash on failure.

This problem occurred when passing an invalid PCI id to the blacklist API in devargs.

• e1000/i40e: Fix descriptor done flag with odd address.

• e1000/igb: fix ieee1588 timestamping initialization.

Fixed issue with e1000 ieee1588 timestamp initialization. On initialization the IEEE1588
functions read the system time to set their timestamp. However, on some 1G NICs,
for example, i350, system time is disabled by default and the IEEE1588 timestamp was
always 0.

• eal/bsd: Fix inappropriate header guards.

• eal/bsd: Fix virtio on FreeBSD.

Closing the /dev/io fd caused a SIGBUS in inb/outb instructions as the process lost
the IOPL privileges once the fd is closed.

Fixes: 8a312224bcde (“eal/bsd: fix fd leak”)

• eal/linux: Fix comments on vfio MSI.

• eal/linux: Fix irq handling with igb_uio.

Fixed an issue where the the introduction of uio_pci_generic broke interrupt handling
with igb_uio.

Fixes: c112df6875a5 (“eal/linux: toggle interrupt for uio_pci_generic”)

• eal/linux: Fix numa node detection.

10.4. DPDK Release 2.1 597

DPDK documentation, Release 16.04.0

• eal/linux: Fix socket value for undetermined numa node.

Sets zero as the default value of pci device numa_node if the socket could not be deter-
mined. This provides the same default value as FreeBSD which has no NUMA support,
and makes the return value of rte_eth_dev_socket_id() be consistent with the API
description.

• eal/ppc: Fix cpu cycle count for little endian.

On IBM POWER8 PPC64 little endian architecture, the definition of tsc union will be
different. This fix enables the right output from rte_rdtsc().

• ethdev: Fix check of threshold for TX freeing.

Fixed issue where the parameter to tx_free_thresh was not consistent between the
drivers.

• ethdev: Fix crash if malloc of user callback fails.

If rte_zmalloc() failed in rte_eth_dev_callback_register then the NULL
pointer would be dereferenced.

• ethdev: Fix illegal port access.

To obtain a detachable flag, pci_drv is accessed in
rte_eth_dev_is_detachable(). However pci_drv is only valid if port is en-
abled. Fixed by checking rte_eth_dev_is_valid_port() first.

• ethdev: Make tables const.

• ethdev: Rename and extend the mirror type.

• examples/distributor: Fix debug macro.

The macro to turn on additional debug output when the app was compiled with -DDEBUG
was broken.

Fixes: 07db4a975094 (“examples/distributor: new sample app”)

• examples/kni: Fix crash on exit.

• examples/vhost: Fix build with debug enabled.

Fixes: 72ec8d77ac68 (“examples/vhost: rework duplicated code”)

• fm10k: Fix RETA table initialization.

The fm10k driver has 128 RETA entries in 32 registers, but it only initialized the first 32
when doing multiple RX queue configurations. This fix initializes all 128 entries.

• fm10k: Fix RX buffer size.

• fm10k: Fix TX multi-segment frame.

• fm10k: Fix TX queue cleaning after start error.

• fm10k: Fix Tx queue cleaning after start error.

• fm10k: Fix default mac/vlan in switch.

• fm10k: Fix interrupt fault handling.

• fm10k: Fix jumbo frame issue.

• fm10k: Fix mac/vlan filtering.

10.4. DPDK Release 2.1 598

DPDK documentation, Release 16.04.0

• fm10k: Fix maximum VF number.

• fm10k: Fix maximum queue number for VF.

Both PF and VF shared code in function fm10k_stats_get(). The function worked
with PF, but had problems with VF since it has less queues than PF.

Fixes: a6061d9e7075 (“fm10k: register PF driver”)

• fm10k: Fix queue disabling.

• fm10k: Fix switch synchronization.

• i40e/base: Fix error handling of NVM state update.

• i40e/base: Fix hardware port number for pass-through.

• i40e/base: Rework virtual address retrieval for lan queue.

• i40e/base: Update LED blinking.

• i40e/base: Workaround for PHY type with firmware < 4.4.

• i40e: Disable setting of PHY configuration.

• i40e: Fix SCTP flow director.

• i40e: Fix check of descriptor done flag.

Fixes: 4861cde46116 (“i40e: new poll mode driver”) Fixes: 05999aab4ca6 (“i40e: add or
delete flow director”)

• i40e: Fix condition to get VMDQ info.

• i40e: Fix registers access from big endian CPU.

• i40evf: Clear command when error occurs.

• i40evf: Fix RSS with less RX queues than TX queues.

• i40evf: Fix crash when setup TX queues.

• i40evf: Fix jumbo frame support.

• i40evf: Fix offload capability flags.

Added checksum offload capability flags which have already been supported for a long
time.

• ivshmem: Fix crash in corner case.

Fixed issues where depending on the configured segments it was possible to hit a seg-
mentation fault as a result of decrementing an unsigned index with value 0.

Fixes: 40b966a211ab (“ivshmem: library changes for mmaping using ivshmem”)

• ixgbe/base: Fix SFP probing.

• ixgbe/base: Fix TX pending clearing.

• ixgbe/base: Fix X550 CS4227 address.

• ixgbe/base: Fix X550 PCIe master disabling.

• ixgbe/base: Fix X550 check.

• ixgbe/base: Fix X550 init early return.

10.4. DPDK Release 2.1 599

DPDK documentation, Release 16.04.0

• ixgbe/base: Fix X550 link speed.

• ixgbe/base: Fix X550em CS4227 speed mode.

• ixgbe/base: Fix X550em SFP+ link stability.

• ixgbe/base: Fix X550em UniPHY link configuration.

• ixgbe/base: Fix X550em flow control for KR backplane.

• ixgbe/base: Fix X550em flow control to be KR only.

• ixgbe/base: Fix X550em link setup without SFP.

• ixgbe/base: Fix X550em mux after MAC reset.

Fixes: d2e72774e58c (“ixgbe/base: support X550”)

• ixgbe/base: Fix bus type overwrite.

• ixgbe/base: Fix init handling of X550em link down.

• ixgbe/base: Fix lan id before first i2c access.

• ixgbe/base: Fix mac type checks.

• ixgbe/base: Fix tunneled UDP and TCP frames in flow director.

• ixgbe: Check mbuf refcnt when clearing a ring.

The function to clear the TX ring when a port was being closed, e.g. on exit in testpmd,
was not checking the mbuf refcnt before freeing it. Since the function in the vector driver
to clear the ring after TX does not setting the pointer to NULL post-free, this caused
crashes if mbuf debugging was turned on.

• ixgbe: Fix RX with buffer address not word aligned.

Niantic HW expects the Header Buffer Address in the RXD must be word aligned.

• ixgbe: Fix RX with buffer address not word aligned.

• ixgbe: Fix Rx queue reset.

Fix to reset vector related RX queue fields to their initial values.

Fixes: c95584dc2b18 (“ixgbe: new vectorized functions for Rx/Tx”)

• ixgbe: Fix TSO in IPv6.

When TSO was used with IPv6, the generated frames were incorrect. The L4 frame was
OK, but the length field of IPv6 header was not populated correctly.

• ixgbe: Fix X550 flow director check.

• ixgbe: Fix check for split packets.

The check for split packets to be reassembled in the vector ixgbe PMD was incorrectly
only checking the first 16 elements of the array instead of all 32.

Fixes: cf4b4708a88a (“ixgbe: improve slow-path perf with vector scattered Rx”)

• ixgbe: Fix data access on big endian cpu.

• ixgbe: Fix flow director flexbytes offset.

Fixes: d54a9888267c (“ixgbe: support flexpayload configuration of flow director”)

10.4. DPDK Release 2.1 600

DPDK documentation, Release 16.04.0

• ixgbe: Fix number of segments with vector scattered Rx.

Fixes: cf4b4708a88a (ixgbe: improve slow-path perf with vector scattered Rx)

• ixgbe: Fix offload config option name.

The RX_OLFLAGS option was renamed from DISABLE to ENABLE in the driver code
and Linux config. It is now renamed also in the BSD config and documentation.

Fixes: 359f106a69a9 (“ixgbe: prefer enabling olflags rather than not disabling”)

• ixgbe: Fix release queue mbufs.

The calculations of what mbufs were valid in the RX and TX queues were incorrect when
freeing the mbufs for the vector PMD. This led to crashes due to invalid reference counts
when mbuf debugging was turned on, and possibly other more subtle problems (such as
mbufs being freed when in use) in other cases.

Fixes: c95584dc2b18 (“ixgbe: new vectorized functions for Rx/Tx”)

• ixgbe: Move PMD specific fields out of base driver.

Move rx_bulk_alloc_allowed and rx_vec_allowed from ixgbe_hw to
ixgbe_adapter.

Fixes: 01fa1d6215fa (“ixgbe: unify Rx setup”)

• ixgbe: Rename TX queue release function.

• ixgbevf: Fix RX function selection.

The logic to select ixgbe the VF RX function is different than the PF.

• ixgbevf: Fix link status for PF up/down events.

• kni: Fix RX loop limit.

Loop processing packets dequeued from rx_q was using the number of packets re-
quested, not how many it actually received.

• kni: Fix ioctl in containers, like Docker.

• kni: Fix multicast ioctl handling.

• log: Fix crash after log_history dump.

• lpm: Fix big endian support.

• lpm: Fix depth small entry add.

• mbuf: Fix cloning with private mbuf data.

Added a new priv_size field in mbuf structure that should be initialized at mbuf pool
creation. This field contains the size of the application private data in mbufs.

Introduced new static inline functions rte_mbuf_from_indirect() and
rte_mbuf_to_baddr() to replace the existing macros, which take the private
size into account when attaching and detaching mbufs.

• mbuf: Fix data room size calculation in pool init.

Deduct the mbuf data room size from mempool->elt_size and priv_size, instead
of using an hardcoded value that is not related to the real buffer size.

To use rte_pktmbuf_pool_init(), the user can either:

10.4. DPDK Release 2.1 601

DPDK documentation, Release 16.04.0

– Give a NULL parameter to rte_pktmbuf_pool_init(): in this case, the private size
is assumed to be 0, and the room size is mp->elt_size - sizeof(struct
rte_mbuf).

– Give the rte_pktmbuf_pool_private filled with appropriate data_room_size
and priv_size values.

• mbuf: Fix init when private size is not zero.

Allow the user to use the default rte_pktmbuf_init() function even if the mbuf private
size is not 0.

• mempool: Add structure for object headers.

Each object stored in mempools are prefixed by a header, allowing for instance to retrieve
the mempool pointer from the object. When debug is enabled, a cookie is also added in
this header that helps to detect corruptions and double-frees.

Introduced a structure that materializes the content of this header, and will simplify future
patches adding things in this header.

• mempool: Fix pages computation to determine number of objects.

• mempool: Fix returned value after counting objects.

Fixes: 148f963fb532 (“xen: core library changes”)

• mlx4: Avoid requesting TX completion events to improve performance.

Instead of requesting a completion event for each TX burst, request it on a fixed schedule
once every MLX4_PMD_TX_PER_COMP_REQ (currently 64) packets to improve perfor-
mance.

• mlx4: Fix compilation as a shared library and on 32 bit platforms.

• mlx4: Fix possible crash on scattered mbuf allocation failure.

Fixes issue where failing to allocate a segment, mlx4_rx_burst_sp() could call
rte_pktmbuf_free() on an incomplete scattered mbuf whose next pointer in the last
segment is not set.

• mlx4: Fix support for multiple vlan filters.

This fixes the “Multiple RX VLAN filters can be configured, but only the first one works”
bug.

• pcap: Fix storage of name and type in queues.

pcap_rx_queue/pcap_tx_queue should store it’s own copy of name/type values, not the
pointer to temporary allocated space.

• pci: Fix memory leaks and needless increment of map address.

• pci: Fix uio mapping differences between linux and bsd.

• port: Fix unaligned access to metadata.

Fix RTE_MBUF_METADATA macros to allow for unaligned accesses to meta-data fields.

• ring: Fix return of new port id on creation.

• timer: Fix race condition.

10.4. DPDK Release 2.1 602

DPDK documentation, Release 16.04.0

Eliminate problematic race condition in rte_timer_manage() that can lead to corrup-
tion of per-lcore pending-lists (implemented as skip-lists).

• vfio: Fix overflow of BAR region offset and size.

Fixes: 90a1633b2347 (“eal/Linux: allow to map BARs with MSI-X tables”)

• vhost: Fix enqueue/dequeue to handle chained vring descriptors.

• vhost: Fix race for connection fd.

• vhost: Fix virtio freeze due to missed interrupt.

• virtio: Fix crash if CQ is not negotiated.

Fix NULL dereference if virtio control queue is not negotiated.

• virtio: Fix ring size negotiation.

Negotiate the virtio ring size. The host may allow for very large rings but application may
only want a smaller ring. Conversely, if the number of descriptors requested exceeds the
virtio host queue size, then just silently use the smaller host size.

This fixes issues with virtio in non-QEMU environments. For example Google Compute
Engine allows up to 16K elements in ring.

• vmxnet3: Fix link state handling.

10.4.3 Known Issues

• When running the vmdq sample or vhost sample applications with the Intel(R) XL710
(i40e) NIC, the configuration option CONFIG_RTE_MAX_QUEUES_PER_PORT should be
increased from 256 to 1024.

• VM power manager may not work on systems with more than 64 cores.

10.4.4 API Changes

• The order that user supplied RX and TX callbacks are called in has been changed to the
order that they were added (fifo) in line with end-user expectations. The previous calling
order was the reverse of this (lifo) and was counter intuitive for users. The actual API is
unchanged.

10.4.5 ABI Changes

• The rte_hash structure has been changed to internal use only.

10.5 DPDK Release 2.0

10.5.1 New Features

• Poll-mode driver support for an early release of the PCIE host interface of the Intel(R)
Ethernet Switch FM10000.

10.5. DPDK Release 2.0 603

DPDK documentation, Release 16.04.0

– Basic Rx/Tx functions for PF/VF

– Interrupt handling support for PF/VF

– Per queue start/stop functions for PF/VF

– Support Mailbox handling between PF/VF and PF/Switch Manager

– Receive Side Scaling (RSS) for PF/VF

– Scatter receive function for PF/VF

– Reta update/query for PF/VF

– VLAN filter set for PF

– Link status query for PF/VF

Note: The software is intended to run on pre-release hardware and may contain unknown
or unresolved defects or issues related to functionality and performance. The poll mode driver
is also pre-release and will be updated to a released version post hardware and base driver
release. Should the official hardware release be made between DPDK releases an updated
poll-mode driver will be made available.

• Link Bonding

– Support for adaptive load balancing (mode 6) to the link bonding library.

– Support for registration of link status change callbacks with link bonding devices.

– Support for slaves devices which do not support link status change interrupts in the
link bonding library via a link status polling mechanism.

• PCI Hotplug with NULL PMD sample application

• ABI versioning

• x32 ABI

• Non-EAL Thread Support

• Multi-pthread Support

• Re-order Library

• ACL for AVX2

• Architecture Independent CRC Hash

• uio_pci_generic Support

• KNI Optimizations

• Vhost-user support

• Virtio (link, vlan, mac, port IO, perf)

• IXGBE-VF RSS

• RX/TX Callbacks

• Unified Flow Types

• Indirect Attached MBUF Flag

10.5. DPDK Release 2.0 604

DPDK documentation, Release 16.04.0

• Use default port configuration in TestPMD

• Tunnel offloading in TestPMD

• Poll Mode Driver - 40 GbE Controllers (librte_pmd_i40e)

– Support for Flow Director

– Support for ethertype filter

– Support RSS in VF

– Support configuring redirection table with different size from 1GbE and 10 GbE

– 128/512 entries of 40GbE PF

– 64 entries of 40GbE VF

– Support configuring hash functions

– Support for VXLAN packet on Intel® 40GbE Controllers

• Poll Mode Driver for Mellanox ConnectX-3 EN adapters (mlx4)

Note: This PMD is only available for Linux and is disabled by default due to external depen-
dencies (libibverbs and libmlx4). Please refer to the NIC drivers guide for more information.

• Packet Distributor Sample Application

• Job Stats library and Sample Application.

• Enhanced Jenkins hash (jhash) library

Note: The hash values returned by the new jhash library are different from the ones returned
by the previous library.

10.6 DPDK Release 1.8

10.6.1 New Features

• Link Bonding

– Support for 802.3ad link aggregation (mode 4) and transmit load balancing (mode
5) to the link bonding library.

– Support for registration of link status change callbacks with link bonding devices.

– Support for slaves devices which do not support link status change interrupts in the
link bonding library via a link status polling mechanism.

• Poll Mode Driver - 40 GbE Controllers (librte_pmd_i40e)

– Support for Flow Director

– Support for ethertype filter

– Support RSS in VF

10.6. DPDK Release 1.8 605

DPDK documentation, Release 16.04.0

– Support configuring redirection table with different size from 1GbE and 10 GbE

– 128/512 entries of 40GbE PF

– 64 entries of 40GbE VF

– Support configuring hash functions

– Support for VXLAN packet on Intel 40GbE Controllers

• Packet Distributor Sample Application

10.7 Supported Operating Systems

The following Linux distributions were successfully used to compiler or run DPDK.

• FreeBSD 10

• Fedora release 20

• Ubuntu 14.04 LTS

• Wind River Linux 6

• Red Hat Enterprise Linux 6.5

• SUSE Enterprise Linux 11 SP3

These distributions may need additional packages that are not installed by default, or a specific
kernel. Refer to the Linux guide and FreeBSD guide for details.

10.8 Known Issues and Limitations in Legacy Releases

This section describes known issues with the DPDK software that aren’t covered in the version
specific release notes sections.

10.8.1 Unit Test for Link Bonding may fail at test_tlb_tx_burst()

Description: Unit tests will fail in test_tlb_tx_burst() function with error for uneven dis-
tribution of packets.

Implication: Unit test link_bonding_autotest will fail.

Resolution/Workaround: There is no workaround available.

Affected Environment/Platform: Fedora 20.

Driver/Module: Link Bonding.

10.8.2 Pause Frame Forwarding does not work properly on igb

Description: For igb devices rte_eth_flow_ctrl_set does not work as expected. Pause frames
are always forwarded on igb, regardless of the RFCE, MPMCF and DPF registers.

Implication: Pause frames will never be rejected by the host on 1G NICs and they will always
be forwarded.

10.7. Supported Operating Systems 606

DPDK documentation, Release 16.04.0

Resolution/Workaround: There is no workaround available.

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.3 In packets provided by the PMD, some flags are missing

Description: In packets provided by the PMD, some flags are missing. The application does
not have access to information provided by the hardware (packet is broadcast, packet is
multicast, packet is IPv4 and so on).

Implication: The ol_flags field in the rte_mbuf structure is not correct and should not be
used.

Resolution/Workaround: The application has to parse the Ethernet header itself to get the
information, which is slower.

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.4 The rte_malloc library is not fully implemented

Description: The rte_malloc library is not fully implemented.

Implication: All debugging features of rte_malloc library described in architecture documen-
tation are not yet implemented.

Resolution/Workaround: No workaround available.

Affected Environment/Platform: All.

Driver/Module: rte_malloc.

10.8.5 HPET reading is slow

Description: Reading the HPET chip is slow.

Implication: An application that calls rte_get_hpet_cycles() or rte_timer_manage()
runs slower.

Resolution/Workaround: The application should not call these functions too often in the main
loop. An alternative is to use the TSC register through rte_rdtsc() which is faster, but
specific to an lcore and is a cycle reference, not a time reference.

Affected Environment/Platform: All.

Driver/Module: Environment Abstraction Layer (EAL).

10.8.6 HPET timers do not work on the Osage customer reference platform

Description: HPET timers do not work on the Osage customer reference platform which in-
cludes an Intel® Xeon® processor 5500 series processor) using the released BIOS from
Intel.

10.8. Known Issues and Limitations in Legacy Releases 607

DPDK documentation, Release 16.04.0

Implication: On Osage boards, the implementation of the rte_delay_us() function must
be changed to not use the HPET timer.

Resolution/Workaround: This can be addressed by building the system with the
CONFIG_RTE_LIBEAL_USE_HPET=n configuration option or by using the --no-hpet
EAL option.

Affected Environment/Platform: The Osage customer reference platform. Other vendor plat-
forms with Intel® Xeon® processor 5500 series processors should work correctly, pro-
vided the BIOS supports HPET.

Driver/Module: lib/librte_eal/common/include/rte_cycles.h

10.8.7 Not all variants of supported NIC types have been used in testing

Description: The supported network interface cards can come in a number of variants with
different device ID’s. Not all of these variants have been tested with the DPDK.

The NIC device identifiers used during testing:

• Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1584]

• Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1583]

• Intel® Ethernet Controller X710 for 10GbE SFP+ [8086:1572]

• Intel® 82576 Gigabit Ethernet Controller [8086:10c9]

• Intel® 82576 Quad Copper Gigabit Ethernet Controller [8086:10e8]

• Intel® 82580 Dual Copper Gigabit Ethernet Controller [8086:150e]

• Intel® I350 Quad Copper Gigabit Ethernet Controller [8086:1521]

• Intel® 82599 Dual Fibre 10 Gigabit Ethernet Controller [8086:10fb]

• Intel® Ethernet Server Adapter X520-T2 [8086: 151c]

• Intel® Ethernet Controller X540-T2 [8086:1528]

• Intel® 82574L Gigabit Network Connection [8086:10d3]

• Emulated Intel® 82540EM Gigabit Ethernet Controller [8086:100e]

• Emulated Intel® 82545EM Gigabit Ethernet Controller [8086:100f]

• Intel® Ethernet Server Adapter X520-4 [8086:154a]

• Intel® Ethernet Controller I210 [8086:1533]

Implication: Risk of issues with untested variants.

Resolution/Workaround: Use tested NIC variants. For those supported Ethernet controllers,
additional device IDs may be added to the software if required.

Affected Environment/Platform: All.

Driver/Module: Poll-mode drivers

10.8. Known Issues and Limitations in Legacy Releases 608

DPDK documentation, Release 16.04.0

10.8.8 Multi-process sample app requires exact memory mapping

Description: The multi-process example application assumes that it is possible to map the
hugepage memory to the same virtual addresses in client and server applications. Oc-
casionally, very rarely with 64-bit, this does not occur and a client application will fail on
startup. The Linux “address-space layout randomization” security feature can sometimes
cause this to occur.

Implication: A multi-process client application fails to initialize.

Resolution/Workaround: See the “Multi-process Limitations” section in the DPDK Program-
mer’s Guide for more information.

Affected Environment/Platform: All.

Driver/Module: Multi-process example application

10.8.9 Packets are not sent by the 1 GbE/10 GbE SR-IOV driver when the source
MAC is not the MAC assigned to the VF NIC

Description: The 1 GbE/10 GbE SR-IOV driver can only send packets when the Ethernet
header’s source MAC address is the same as that of the VF NIC. The reason for this is
that the Linux ixgbe driver module in the host OS has its anti-spoofing feature enabled.

Implication: Packets sent using the 1 GbE/10 GbE SR-IOV driver must have the source MAC
address correctly set to that of the VF NIC. Packets with other source address values are
dropped by the NIC if the application attempts to transmit them.

Resolution/Workaround: Configure the Ethernet source address in each packet to match
that of the VF NIC.

Affected Environment/Platform: All.

Driver/Module: 1 GbE/10 GbE VF Poll Mode Driver (PMD).

10.8.10 SR-IOV drivers do not fully implement the rte_ethdev API

Description: The SR-IOV drivers only supports the following rte_ethdev API functions:

• rte_eth_dev_configure()

• rte_eth_tx_queue_setup()

• rte_eth_rx_queue_setup()

• rte_eth_dev_info_get()

• rte_eth_dev_start()

• rte_eth_tx_burst()

• rte_eth_rx_burst()

• rte_eth_dev_stop()

• rte_eth_stats_get()

• rte_eth_stats_reset()

10.8. Known Issues and Limitations in Legacy Releases 609

DPDK documentation, Release 16.04.0

• rte_eth_link_get()

• rte_eth_link_get_no_wait()

Implication: Calling an unsupported function will result in an application error.

Resolution/Workaround: Do not use other rte_ethdev API functions in applications that use
the SR-IOV drivers.

Affected Environment/Platform: All.

Driver/Module: VF Poll Mode Driver (PMD).

10.8.11 PMD does not work with –no-huge EAL command line parameter

Description: Currently, the DPDK does not store any information about memory allocated
by malloc()‘ (for example, NUMA node, physical address), hence
PMD drivers do not work when the ‘‘--no-huge command line parameter is
supplied to EAL.

Implication: Sending and receiving data with PMD will not work.

Resolution/Workaround: Use huge page memory or use VFIO to map devices.

Affected Environment/Platform: Systems running the DPDK on Linux

Driver/Module: Poll Mode Driver (PMD).

10.8.12 Some hardware off-load functions are not supported by the VF Driver

Description: Currently, configuration of the following items is not supported by the VF driver:

• IP/UDP/TCP checksum offload

• Jumbo Frame Receipt

• HW Strip CRC

Implication: Any configuration for these items in the VF register will be ignored. The behavior
is dependent on the current PF setting.

Resolution/Workaround: For the PF (Physical Function) status on which the VF driver de-
pends, there is an option item under PMD in the config file. For others, the VF will keep
the same behavior as PF setting.

Affected Environment/Platform: All.

Driver/Module: VF (SR-IOV) Poll Mode Driver (PMD).

10.8.13 Kernel crash on IGB port unbinding

Description: Kernel crash may occur when unbinding 1G ports from the igb_uio driver, on
2.6.3x kernels such as shipped with Fedora 14.

Implication: Kernel crash occurs.

Resolution/Workaround: Use newer kernels or do not unbind ports.

Affected Environment/Platform: 2.6.3x kernels such as shipped with Fedora 14

10.8. Known Issues and Limitations in Legacy Releases 610

DPDK documentation, Release 16.04.0

Driver/Module: IGB Poll Mode Driver (PMD).

10.8.14 Twinpond and Ironpond NICs do not report link status correctly

Description: Twin Pond/Iron Pond NICs do not bring the physical link down when shutting
down the port.

Implication: The link is reported as up even after issuing shutdown command unless the
cable is physically disconnected.

Resolution/Workaround: None.

Affected Environment/Platform: Twin Pond and Iron Pond NICs

Driver/Module: Poll Mode Driver (PMD).

10.8.15 Discrepancies between statistics reported by different NICs

Description: Gigabit Ethernet devices from Intel include CRC bytes when calculating packet
reception statistics regardless of hardware CRC stripping state, while 10-Gigabit Ethernet
devices from Intel do so only when hardware CRC stripping is disabled.

Implication: There may be a discrepancy in how different NICs display packet reception statis-
tics.

Resolution/Workaround: None

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.16 Error reported opening files on DPDK initialization

Description: On DPDK application startup, errors may be reported when opening files as part
of the initialization process. This occurs if a large number, for example, 500 or more, or if
hugepages are used, due to the per-process limit on the number of open files.

Implication: The DPDK application may fail to run.

Resolution/Workaround: If using 2 MB hugepages, consider switching to a fewer number of
1 GB pages. Alternatively, use the ulimit command to increase the number of files
which can be opened by a process.

Affected Environment/Platform: All.

Driver/Module: Environment Abstraction Layer (EAL).

10.8.17 Intel® QuickAssist Technology sample application does not work on a
32-bit OS on Shumway

Description: The Intel® Communications Chipset 89xx Series device does not fully support
NUMA on a 32-bit OS. Consequently, the sample application cannot work properly on
Shumway, since it requires NUMA on both nodes.

10.8. Known Issues and Limitations in Legacy Releases 611

DPDK documentation, Release 16.04.0

Implication: The sample application cannot work in 32-bit mode with emulated NUMA, on
multi-socket boards.

Resolution/Workaround: There is no workaround available.

Affected Environment/Platform: Shumway

Driver/Module: All.

10.8.18 Differences in how different Intel NICs handle maximum packet length
for jumbo frame

Description: 10 Gigabit Ethernet devices from Intel do not take VLAN tags into account when
calculating packet size while Gigabit Ethernet devices do so for jumbo frames.

Implication: When receiving packets with VLAN tags, the actual maximum size of useful pay-
load that Intel Gigabit Ethernet devices are able to receive is 4 bytes (or 8 bytes in the
case of packets with extended VLAN tags) less than that of Intel 10 Gigabit Ethernet
devices.

Resolution/Workaround: Increase the configured maximum packet size when using Intel Gi-
gabit Ethernet devices.

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.19 Binding PCI devices to igb_uio fails on Linux kernel 3.9 when more than
one device is used

Description: A known bug in the uio driver included in Linux kernel version 3.9 prevents more
than one PCI device to be bound to the igb_uio driver.

Implication: The Poll Mode Driver (PMD) will crash on initialization.

Resolution/Workaround: Use earlier or later kernel versions, or apply the following patch.

Affected Environment/Platform: Linux systems with kernel version 3.9

Driver/Module: igb_uio module

10.8.20 GCC might generate Intel® AVX instructions for processors without In-
tel® AVX support

Description: When compiling DPDK (and any DPDK app), gcc may generate Intel® AVX
instructions, even when the processor does not support Intel® AVX.

Implication: Any DPDK app might crash while starting up.

Resolution/Workaround: Either compile using icc or set EXTRA_CFLAGS=’-O3’ prior to
compilation.

Affected Environment/Platform: Platforms which processor does not support Intel® AVX.

Driver/Module: Environment Abstraction Layer (EAL).

10.8. Known Issues and Limitations in Legacy Releases 612

https://github.com/torvalds/linux/commit/5ed0505c713805f89473cdc0bbfb5110dfd840cb

DPDK documentation, Release 16.04.0

10.8.21 Ethertype filter could receive other packets (non-assigned) in Niantic

Description: On Intel® Ethernet Controller 82599EB When Ethertype filter (priority enable)
was set, unmatched packets also could be received on the assigned queue, such as
ARP packets without 802.1q tags or with the user priority not equal to set value. Launch
the testpmd by disabling RSS and with multiply queues, then add the ethertype filter like
the following and then start forwarding:

add_ethertype_filter 0 ethertype 0x0806 priority enable 3 queue 2 index 1

When sending ARP packets without 802.1q tag and with user priority as non-3 by tester,
all the ARP packets can be received on the assigned queue.

Implication: The user priority comparing in Ethertype filter cannot work probably. It is a NIC’s
issue due to the following: “In fact, ETQF.UP is not functional, and the information will be
added in errata of 82599 and X540.”

Resolution/Workaround: None

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.22 Cannot set link speed on Intel® 40G Ethernet controller

Description: On Intel® 40G Ethernet Controller you cannot set the link to specific speed.

Implication: The link speed cannot be changed forcibly, though it can be configured by appli-
cation.

Resolution/Workaround: None

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.23 Stopping the port does not down the link on Intel® 40G Ethernet con-
troller

Description: On Intel® 40G Ethernet Controller stopping the port does not really down the
port link.

Implication: The port link will be still up after stopping the port.

Resolution/Workaround: None

Affected Environment/Platform: All.

Driver/Module: Poll Mode Driver (PMD).

10.8.24 Devices bound to igb_uio with VT-d enabled do not work on Linux kernel
3.15-3.17

Description: When VT-d is enabled (iommu=pt intel_iommu=on), devices are 1:1
mapped. In the Linux kernel unbinding devices from drivers removes that mapping which

10.8. Known Issues and Limitations in Legacy Releases 613

DPDK documentation, Release 16.04.0

result in IOMMU errors. Introduced in Linux kernel 3.15 commit, solved in Linux kernel
3.18 commit.

Implication: Devices will not be allowed to access memory, resulting in following kernel errors:

dmar: DRHD: handling fault status reg 2
dmar: DMAR:[DMA Read] Request device [02:00.0] fault addr a0c58000
DMAR:[fault reason 02] Present bit in context entry is clear

Resolution/Workaround: Use earlier or later kernel versions, or avoid driver binding on boot
by blacklisting the driver modules. I.e., in the case of ixgbe, we can pass the kernel
command line option: modprobe.blacklist=ixgbe. This way we do not need to
unbind the device to bind it to igb_uio.

Affected Environment/Platform: Linux systems with kernel versions 3.15 to 3.17.

Driver/Module: igb_uio module.

10.8.25 VM power manager may not work on systems with more than 64 cores

Description: When using VM power manager on a system with more than 64 cores, VM(s)
should not use cores 64 or higher.

Implication: VM power manager should not be used with VM(s) that are using cores 64 or
above.

Resolution/Workaround: Do not use cores 64 or above.

Affected Environment/Platform: Platforms with more than 64 cores.

Driver/Module: VM power manager application.

10.8.26 DPDK may not build on some Intel CPUs using clang < 3.7.0

Description: When compiling DPDK with an earlier version than 3.7.0 of clang, CPU flags
are not detected on some Intel platforms such as Intel Broadwell/Skylake (and possibly
future CPUs), and therefore compilation fails due to missing intrinsics.

Implication: DPDK will not build when using a clang version < 3.7.0.

Resolution/Workaround: Use clang 3.7.0 or higher, or gcc.

Affected Environment/Platform: Platforms with Intel Broadwell/Skylake using an old clang
version.

Driver/Module: Environment Abstraction Layer (EAL).

10.9 ABI and API Deprecation

See the guidelines document for details of the ABI policy. API and ABI deprecation notices are
to be posted here.

10.9. ABI and API Deprecation 614

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/iommu/intel-iommu.c?id=816997d03bca9fabcee65f3481eb0297103eceb7
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/iommu/intel-iommu.c?id=1196c2fb0407683c2df92d3d09f9144d42830894
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/iommu/intel-iommu.c?id=1196c2fb0407683c2df92d3d09f9144d42830894

DPDK documentation, Release 16.04.0

10.9.1 Deprecation Notices

• The ethdev hotplug API is going to be moved to EAL with a notification mechanism added
to crypto and ethdev libraries so that hotplug is now available to both of them. This API
will be stripped of the device arguments so that it only cares about hotplugging.

• Structures embodying pci and vdev devices are going to be reworked to integrate
new common rte_device / rte_driver objects (see http://dpdk.org/ml/archives/dev/2016-
January/031390.html). ethdev and crypto libraries will then only handle those objects so
that they do not need to care about the kind of devices that are being used, making it
easier to add new buses later.

• The EAL function pci_config_space_set is deprecated in re-
lease 16.04 and will be removed from 16.07. Macros CON-
FIG_RTE_PCI_CONFIG, CONFIG_RTE_PCI_EXTENDED_TAG and CON-
FIG_RTE_PCI_MAX_READ_REQUEST_SIZE will be removed. The /sys entries
extended_tag and max_read_request_size created by igb_uio will be removed.

• ABI changes are planned for struct rte_pci_id, i.e., add new field class. This new added
class field can be used to probe pci device by class related info. This change should
impact size of struct rte_pci_id and struct rte_pci_device. The release 16.04 does not
contain these ABI changes, but release 16.07 will.

• The following fields have been deprecated in rte_eth_stats: ibadcrc, ibadlen, imcasts,
fdirmatch, fdirmiss, tx_pause_xon, rx_pause_xon, tx_pause_xoff, rx_pause_xoff

• The xstats API and rte_eth_xstats struct will be changed to allow retrieval of values with-
out any string copies or parsing. No backwards compatibility is planned, as it would
require code duplication in every PMD that supports xstats.

• ABI changes are planned for adding four new flow types. This impacts
RTE_ETH_FLOW_MAX. The release 2.2 does not contain these ABI changes, but re-
lease 2.3 will. [postponed]

• ABI change is planned for the rte_mempool structure to allow mempool cache sup-
port to be dynamic depending on the mempool being created needing cache support.
Saves about 1.5M of memory per rte_mempool structure by removing the per lcore
cache memory. Change will occur in DPDK 16.07 release and will skip the define
RTE_NEXT_ABI in DPDK 16.04 release. The code affected is app/test/test_mempool.c
and librte_mempool/rte_mempool.[ch]. The rte_mempool.local_cache will be converted
from an array to a pointer to allow for dynamic allocation of the per lcore cache memory.

• ABI will change for rte_mempool struct to move the cache-related fields to the more
appropriate rte_mempool_cache struct. The mempool API is also changed to enable
external cache management that is not tied to EAL threads. Some mempool get and put
calls are removed in favor of a more compact API. The ones that remain are backwards
compatible and use the per-lcore default cache if available. This change targets release
16.07.

• The rte_mempool struct will be changed in 16.07 to facilitate the new external mem-
pool manager functionality. The ring element will be replaced with a more generic ‘pool’
opaque pointer to allow new mempool handlers to use their own user-defined mempool
layout. Also newly added to rte_mempool is a handler index. The existing API will be
backward compatible, but there will be new API functions added to facilitate the creation
of mempools using an external handler. The 16.07 release will contain these changes.

10.9. ABI and API Deprecation 615

http://dpdk.org/ml/archives/dev/2016-January/031390.html
http://dpdk.org/ml/archives/dev/2016-January/031390.html

DPDK documentation, Release 16.04.0

• The rte_mempool allocation will be changed in 16.07: allocation of large mempool in
several virtual memory chunks, new API to populate a mempool, new API to free a mem-
pool, allocation in anonymous mapping, drop of specific dom0 code. These changes
will induce a modification of the rte_mempool structure, plus a modification of the API of
rte_mempool_obj_iter(), implying a breakage of the ABI.

• ABI changes are planned for struct rte_port_source_params in order to support
PCAP file reading feature. The release 16.04 contains this ABI change wrapped by
RTE_NEXT_ABI macro. Release 16.07 will contain this change, and no backwards com-
patibility is planned.

• A librte_vhost public structures refactor is planned for DPDK 16.07 that requires both ABI
and API change. The proposed refactor would expose DPDK vhost dev to applications
as a handle, like the way kernel exposes an fd to user for locating a specific file, and to
keep all major structures internally, so that we are likely to be free from ABI violations in
future.

10.9. ABI and API Deprecation 616

CHAPTER 11

Contributor’s Guidelines

11.1 DPDK Coding Style

11.1.1 Description

This document specifies the preferred style for source files in the DPDK source tree. It is based
on the Linux Kernel coding guidelines and the FreeBSD 7.2 Kernel Developer’s Manual (see
man style(9)), but was heavily modified for the needs of the DPDK.

11.1.2 General Guidelines

The rules and guidelines given in this document cannot cover every situation, so the following
general guidelines should be used as a fallback:

• The code style should be consistent within each individual file.

• In the case of creating new files, the style should be consistent within each file in a given
directory or module.

• The primary reason for coding standards is to increase code readability and comprehen-
sibility, therefore always use whatever option will make the code easiest to read.

Line length is recommended to be not more than 80 characters, including comments. [Tab stop
size should be assumed to be 8-characters wide].

Note: The above is recommendation, and not a hard limit. However, it is expected that the
recommendations should be followed in all but the rarest situations.

11.1.3 C Comment Style

Usual Comments

These comments should be used in normal cases. To document a public API, a doxygen-like
format must be used: refer to Doxygen Guidelines.

/*
* VERY important single-line comments look like this.

*/

617

DPDK documentation, Release 16.04.0

/* Most single-line comments look like this. */

/*
* Multi-line comments look like this. Make them real sentences. Fill

* them so they look like real paragraphs.

*/

License Header

Each file should begin with a special comment containing the appropriate copyright and license
for the file. Generally this is the BSD License, except for code for Linux Kernel modules.
After any copyright header, a blank line should be left before any other contents, e.g. include
statements in a C file.

11.1.4 C Preprocessor Directives

Header Includes

In DPDK sources, the include files should be ordered as following:

1. libc includes (system includes first)

2. DPDK EAL includes

3. DPDK misc libraries includes

4. application-specific includes

Include files from the local application directory are included using quotes, while includes from
other paths are included using angle brackets: “<>”.

Example:

#include <stdio.h>
#include <stdlib.h>

#include <rte_eal.h>

#include <rte_ring.h>
#include <rte_mempool.h>

#include "application.h"

Header File Guards

Headers should be protected against multiple inclusion with the usual:

#ifndef _FILE_H_
#define _FILE_H_

/* Code */

#endif /* _FILE_H_ */

11.1. DPDK Coding Style 618

DPDK documentation, Release 16.04.0

Macros

Do not #define or declare names except with the standard DPDK prefix: RTE_. This is to
ensure there are no collisions with definitions in the application itself.

The names of “unsafe” macros (ones that have side effects), and the names of macros for
manifest constants, are all in uppercase.

The expansions of expression-like macros are either a single token or have outer parentheses.
If a macro is an inline expansion of a function, the function name is all in lowercase and the
macro has the same name all in uppercase. If the macro encapsulates a compound statement,
enclose it in a do-while loop, so that it can be used safely in if statements. Any final statement-
terminating semicolon should be supplied by the macro invocation rather than the macro, to
make parsing easier for pretty-printers and editors.

For example:

#define MACRO(x, y) do { \
variable = (x) + (y); \
(y) += 2; \

} while(0)

Note: Wherever possible, enums and inline functions should be preferred to macros, since
they provide additional degrees of type-safety and can allow compilers to emit extra warnings
about unsafe code.

Conditional Compilation

• When code is conditionally compiled using #ifdef or #if, a comment may be added
following the matching #endif or #else to permit the reader to easily discern where
conditionally compiled code regions end.

• This comment should be used only for (subjectively) long regions, regions greater than 20
lines, or where a series of nested #ifdef‘s may be confusing to the reader. Exceptions
may be made for cases where code is conditionally not compiled for the purposes of
lint(1), or other tools, even though the uncompiled region may be small.

• The comment should be separated from the #endif or #else by a single space.

• For short conditionally compiled regions, a closing comment should not be used.

• The comment for #endif should match the expression used in the corresponding #if
or #ifdef.

• The comment for #else and #elif should match the inverse of the expression(s) used
in the preceding #if and/or #elif statements.

• In the comments, the subexpression defined(FOO) is abbreviated as “FOO”. For the
purposes of comments, #ifndef FOO is treated as #if !defined(FOO).

#ifdef KTRACE
#include <sys/ktrace.h>
#endif

#ifdef COMPAT_43
/* A large region here, or other conditional code. */
#else /* !COMPAT_43 */

11.1. DPDK Coding Style 619

DPDK documentation, Release 16.04.0

/* Or here. */
#endif /* COMPAT_43 */

#ifndef COMPAT_43
/* Yet another large region here, or other conditional code. */
#else /* COMPAT_43 */
/* Or here. */
#endif /* !COMPAT_43 */

Note: Conditional compilation should be used only when absolutely necessary, as it increases
the number of target binaries that need to be built and tested.

11.1.5 C Types

Integers

For fixed/minimum-size integer values, the project uses the form uintXX_t (from stdint.h) in-
stead of older BSD-style integer identifiers of the form u_intXX_t.

Enumerations

• Enumeration values are all uppercase.

enum enumtype { ONE, TWO } et;

• Enum types should be used in preference to macros #defining a set of (sequential) val-
ues.

• Enum types should be prefixed with rte_ and the elements by a suitable prefix [gener-
ally starting RTE_<enum>_ - where <enum> is a shortname for the enum type] to avoid
namespace collisions.

Bitfields

The developer should group bitfields that are included in the same integer, as follows:

struct grehdr {
uint16_t rec:3,

srr:1,
seq:1,
key:1,
routing:1,
csum:1,
version:3,
reserved:4,
ack:1;

/* ... */
}

Variable Declarations

In declarations, do not put any whitespace between asterisks and adjacent tokens, except for
tokens that are identifiers related to types. (These identifiers are the names of basic types, type

11.1. DPDK Coding Style 620

DPDK documentation, Release 16.04.0

qualifiers, and typedef-names other than the one being declared.) Separate these identifiers
from asterisks using a single space.

For example:

int *x; /* no space after asterisk */
int * const x; /* space after asterisk when using a type qualifier */

• All externally-visible variables should have an rte_ prefix in the name to avoid names-
pace collisions.

• Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase -
in variable names. Lower-case letters and underscores only.

Structure Declarations

• In general, when declaring variables in new structures, declare them sorted by use, then
by size (largest to smallest), and then in alphabetical order. Sorting by use means that
commonly used variables are used together and that the structure layout makes logical
sense. Ordering by size then ensures that as little padding is added to the structure as
possible.

• For existing structures, additions to structures should be added to the end so for back-
ward compatibility reasons.

• Each structure element gets its own line.

• Try to make the structure readable by aligning the member names using spaces as shown
below.

• Names following extremely long types, which therefore cannot be easily aligned with the
rest, should be separated by a single space.

struct foo {
struct foo *next; /* List of active foo. */
struct mumble amumble; /* Comment for mumble. */
int bar; /* Try to align the comments. */
struct verylongtypename *baz; /* Won't fit with other members */

};

• Major structures should be declared at the top of the file in which they are used, or in
separate header files if they are used in multiple source files.

• Use of the structures should be by separate variable declarations and those declarations
must be extern if they are declared in a header file.

• Externally visible structure definitions should have the structure name prefixed by rte_
to avoid namespace collisions.

Queues

Use queue(3) macros rather than rolling your own lists, whenever possible. Thus, the previous
example would be better written:

#include <sys/queue.h>

struct foo {
LIST_ENTRY(foo) link; /* Use queue macros for foo lists. */
struct mumble amumble; /* Comment for mumble. */

11.1. DPDK Coding Style 621

DPDK documentation, Release 16.04.0

int bar; /* Try to align the comments. */
struct verylongtypename *baz; /* Won't fit with other members */

};
LIST_HEAD(, foo) foohead; /* Head of global foo list. */

DPDK also provides an optimized way to store elements in lockless rings. This should be used
in all data-path code, when there are several consumer and/or producers to avoid locking for
concurrent access.

Typedefs

Avoid using typedefs for structure types.

For example, use:

struct my_struct_type {
/* ... */
};

struct my_struct_type my_var;

rather than:

typedef struct my_struct_type {
/* ... */
} my_struct_type;

my_struct_type my_var

Typedefs are problematic because they do not properly hide their underlying type; for example,
you need to know if the typedef is the structure itself, as shown above, or a pointer to the
structure. In addition, they must be declared exactly once, whereas an incomplete structure
type can be mentioned as many times as necessary. Typedefs are difficult to use in stand-
alone header files. The header that defines the typedef must be included before the header
that uses it, or by the header that uses it (which causes namespace pollution), or there must
be a back-door mechanism for obtaining the typedef.

Note that #defines used instead of typedefs also are problematic (since they do not propa-
gate the pointer type correctly due to direct text replacement). For example, #define pint
int * does not work as expected, while typedef int *pint does work. As stated when
discussing macros, typedefs should be preferred to macros in cases like this.

When convention requires a typedef; make its name match the struct tag. Avoid typedefs
ending in _t, except as specified in Standard C or by POSIX.

Note: It is recommended to use typedefs to define function pointer types, for reasons of code
readability. This is especially true when the function type is used as a parameter to another
function.

For example:

/**
* Definition of a remote launch function.

*/
typedef int (lcore_function_t)(void *);

/* launch a function of lcore_function_t type */
int rte_eal_remote_launch(lcore_function_t *f, void *arg, unsigned slave_id);

11.1. DPDK Coding Style 622

DPDK documentation, Release 16.04.0

11.1.6 C Indentation

General

• Indentation is a hard tab, that is, a tab character, not a sequence of spaces,

Note: Global whitespace rule in DPDK, use tabs for indentation, spaces for alignment.

• Do not put any spaces before a tab for indentation.

• If you have to wrap a long statement, put the operator at the end of the line, and indent
again.

• For control statements (if, while, etc.), continuation it is recommended that the next line
be indented by two tabs, rather than one, to prevent confusion as to whether the second
line of the control statement forms part of the statement body or not. Alternatively, the
line continuation may use additional spaces to line up to an appropriately point on the
preceding line, for example, to align to an opening brace.

Note: As with all style guidelines, code should match style already in use in an existing file.

while (really_long_variable_name_1 == really_long_variable_name_2 &&
var3 == var4){ /* confusing to read as */
x = y + z; /* control stmt body lines up with second line of */
a = b + c; /* control statement itself if single indent used */

}

if (really_long_variable_name_1 == really_long_variable_name_2 &&
var3 == var4){ /* two tabs used */

x = y + z; /* statement body no longer lines up */
a = b + c;

}

z = a + really + long + statement + that + needs +
two + lines + gets + indented + on + the +
second + and + subsequent + lines;

• Do not add whitespace at the end of a line.

• Do not add whitespace or a blank line at the end of a file.

Control Statements and Loops

• Include a space after keywords (if, while, for, return, switch).

• Do not use braces ({ and }) for control statements with zero or just a single statement,
unless that statement is more than a single line in which case the braces are permitted.

for (p = buf; *p != '\0'; ++p)
; /* nothing */

for (;;)
stmt;

for (;;) {
z = a + really + long + statement + that + needs +

two + lines + gets + indented + on + the +
second + and + subsequent + lines;

11.1. DPDK Coding Style 623

DPDK documentation, Release 16.04.0

}
for (;;) {

if (cond)
stmt;

}
if (val != NULL)

val = realloc(val, newsize);

• Parts of a for loop may be left empty.

for (; cnt < 15; cnt++) {
stmt1;
stmt2;

}

• Closing and opening braces go on the same line as the else keyword.

• Braces that are not necessary should be left out.

if (test)
stmt;

else if (bar) {
stmt;
stmt;

} else
stmt;

Function Calls

• Do not use spaces after function names.

• Commas should have a space after them.

• No spaces after (or [or preceding the] or) characters.

error = function(a1, a2);
if (error != 0)

exit(error);

Operators

• Unary operators do not require spaces, binary operators do.

• Do not use parentheses unless they are required for precedence or unless the statement
is confusing without them. However, remember that other people may be more easily
confused than you.

Exit

Exits should be 0 on success, or 1 on failure.

exit(0); /*
* Avoid obvious comments such as

* "Exit 0 on success."

*/
}

11.1. DPDK Coding Style 624

DPDK documentation, Release 16.04.0

Local Variables

• Variables should be declared at the start of a block of code rather than in the middle. The
exception to this is when the variable is const in which case the declaration must be at
the point of first use/assignment.

• When declaring variables in functions, multiple variables per line are OK. However, if
multiple declarations would cause the line to exceed a reasonable line length, begin a
new set of declarations on the next line rather than using a line continuation.

• Be careful to not obfuscate the code by initializing variables in the declarations, only the
last variable on a line should be initialized. If multiple variables are to be initialized when
defined, put one per line.

• Do not use function calls in initializers, except for const variables.

int i = 0, j = 0, k = 0; /* bad, too many initializer */

char a = 0; /* OK, one variable per line with initializer */
char b = 0;

float x, y = 0.0; /* OK, only last variable has initializer */

Casts and sizeof

• Casts and sizeof statements are not followed by a space.

• Always write sizeof statements with parenthesis. The redundant parenthesis rules do not
apply to sizeof(var) instances.

11.1.7 C Function Definition, Declaration and Use

Prototypes

• It is recommended (and generally required by the compiler) that all non-static functions
are prototyped somewhere.

• Functions local to one source module should be declared static, and should not be pro-
totyped unless absolutely necessary.

• Functions used from other parts of code (external API) must be prototyped in the relevant
include file.

• Function prototypes should be listed in a logical order, preferably alphabetical unless
there is a compelling reason to use a different ordering.

• Functions that are used locally in more than one module go into a separate header file,
for example, “extern.h”.

• Do not use the __P macro.

• Functions that are part of an external API should be documented using Doxygen-like
comments above declarations. See Doxygen Guidelines for details.

• Functions that are part of the external API must have an rte_ prefix on the function
name.

11.1. DPDK Coding Style 625

DPDK documentation, Release 16.04.0

• Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase -
in function names. Lower-case letters and underscores only.

• When prototyping functions, associate names with parameter types, for example:

void function1(int fd); /* good */
void function2(int); /* bad */

• Short function prototypes should be contained on a single line. Longer prototypes, e.g.
those with many parameters, can be split across multiple lines. The second and subse-
quent lines should be further indented as for line statement continuations as described
in the previous section.

static char *function1(int _arg, const char *_arg2,
struct foo *_arg3,
struct bar *_arg4,
struct baz *_arg5);

static void usage(void);

Note: Unlike function definitions, the function prototypes do not need to place the function
return type on a separate line.

Definitions

• The function type should be on a line by itself preceding the function.

• The opening brace of the function body should be on a line by itself.

static char *
function(int a1, int a2, float fl, int a4)
{

• Do not declare functions inside other functions. ANSI C states that such declarations
have file scope regardless of the nesting of the declaration. Hiding file declarations in
what appears to be a local scope is undesirable and will elicit complaints from a good
compiler.

• Old-style (K&R) function declaration should not be used, use ANSI function declarations
instead as shown below.

• Long argument lists should be wrapped as described above in the function prototypes
section.

/*
* All major routines should have a comment briefly describing what

* they do. The comment before the "main" routine should describe

* what the program does.

*/
int
main(int argc, char *argv[])
{

char *ep;
long num;
int ch;

11.1. DPDK Coding Style 626

DPDK documentation, Release 16.04.0

11.1.8 C Statement Style and Conventions

NULL Pointers

• NULL is the preferred null pointer constant. Use NULL instead of (type *)0 or (type
*)NULL, except where the compiler does not know the destination type e.g. for variadic
args to a function.

• Test pointers against NULL, for example, use:

if (p == NULL) /* Good, compare pointer to NULL */

if (!p) /* Bad, using ! on pointer */

• Do not use ! for tests unless it is a boolean, for example, use:

if (*p == '\0') /* check character against (char)0 */

Return Value

• Functions which create objects, or allocate memory, should return pointer types, and
NULL on error. The error type should be indicated may setting the variable rte_errno
appropriately.

• Functions which work on bursts of packets, such as RX-like or TX-like functions, should
return the number of packets handled.

• Other functions returning int should generally behave like system calls: returning 0 on
success and -1 on error, setting rte_errno to indicate the specific type of error.

• Where already standard in a given library, the alternative error approach may be used
where the negative value is not -1 but is instead -errno if relevant, for example,
-EINVAL. Note, however, to allow consistency across functions returning integer or
pointer types, the previous approach is preferred for any new libraries.

• For functions where no error is possible, the function type should be void not int.

• Routines returning void * should not have their return values cast to any pointer type.
(Typecasting can prevent the compiler from warning about missing prototypes as any
implicit definition of a function returns int, which, unlike void *, needs a typecast to
assign to a pointer variable.)

Note: The above rule about not typecasting void * applies to malloc, as well as to DPDK
functions.

• Values in return statements should not be enclosed in parentheses.

Logging and Errors

In the DPDK environment, use the logging interface provided:

#define RTE_LOGTYPE_TESTAPP1 RTE_LOGTYPE_USER1
#define RTE_LOGTYPE_TESTAPP2 RTE_LOGTYPE_USER2

/* enable these logs type */
rte_set_log_type(RTE_LOGTYPE_TESTAPP1, 1);

11.1. DPDK Coding Style 627

DPDK documentation, Release 16.04.0

rte_set_log_type(RTE_LOGTYPE_TESTAPP2, 1);

/* log in debug level */
rte_set_log_level(RTE_LOG_DEBUG);
RTE_LOG(DEBUG, TESTAPP1, "this is is a debug level message\n");
RTE_LOG(INFO, TESTAPP1, "this is is a info level message\n");
RTE_LOG(WARNING, TESTAPP1, "this is is a warning level message\n");

/* log in info level */
rte_set_log_level(RTE_LOG_INFO);
RTE_LOG(DEBUG, TESTAPP2, "debug level message (not displayed)\n");

Branch Prediction

• When a test is done in a critical zone (called often or in a data path) the code can use
the likely() and unlikely() macros to indicate the expected, or preferred fast path.
They are expanded as a compiler builtin and allow the developer to indicate if the branch
is likely to be taken or not. Example:

#include <rte_branch_prediction.h>
if (likely(x > 1))

do_stuff();

Note: The use of likely() and unlikely() should only be done in performance critical
paths, and only when there is a clearly preferred path, or a measured performance increase
gained from doing so. These macros should be avoided in non-performance-critical code.

Static Variables and Functions

• All functions and variables that are local to a file must be declared as static because it
can often help the compiler to do some optimizations (such as, inlining the code).

• Functions that should be inlined should to be declared as static inline and can be
defined in a .c or a .h file.

Note: Static functions defined in a header file must be declared as static inline in order
to prevent compiler warnings about the function being unused.

Const Attribute

The const attribute should be used as often as possible when a variable is read-only.

Inline ASM in C code

The asm and volatile keywords do not have underscores. The AT&T syntax should be used.
Input and output operands should be named to avoid confusion, as shown in the following
example:

11.1. DPDK Coding Style 628

DPDK documentation, Release 16.04.0

asm volatile("outb %[val], %[port]"
: :
[port] "dN" (port),
[val] "a" (val));

Control Statements

• Forever loops are done with for statements, not while statements.

• Elements in a switch statement that cascade should have a FALLTHROUGH comment.
For example:

switch (ch) { /* Indent the switch. */
case 'a': /* Don't indent the case. */

aflag = 1; /* Indent case body one tab. */
/* FALLTHROUGH */

case 'b':
bflag = 1;
break;

case '?':
default:

usage();
/* NOTREACHED */

}

11.2 Design

11.2.1 Environment or Architecture-specific Sources

In DPDK and DPDK applications, some code is specific to an architecture (i686, x86_64) or
to an executive environment (bsdapp or linuxapp) and so on. As far as is possible, all such
instances of architecture or env-specific code should be provided via standard APIs in the EAL.

By convention, a file is common if it is not located in a directory indicating that it is specific. For
instance, a file located in a subdir of “x86_64” directory is specific to this architecture. A file
located in a subdir of “linuxapp” is specific to this execution environment.

Note: Code in DPDK libraries and applications should be generic. The correct location for
architecture or executive environment specific code is in the EAL.

When absolutely necessary, there are several ways to handle specific code:

• Use a #ifdef with the CONFIG option in the C code. This can be done when the
differences are small and they can be embedded in the same C file:

#ifdef RTE_ARCH_I686
toto();
#else
titi();
#endif

• Use the CONFIG option in the Makefile. This is done when the differences are more
significant. In this case, the code is split into two separate files that are architecture or
environment specific. This should only apply inside the EAL library.

11.2. Design 629

DPDK documentation, Release 16.04.0

Note: As in the linux kernel, the CONFIG_ prefix is not used in C code. This is only needed in
Makefiles or shell scripts.

Per Architecture Sources

The following config options can be used:

• CONFIG_RTE_ARCH is a string that contains the name of the architecture.

• CONFIG_RTE_ARCH_I686, CONFIG_RTE_ARCH_X86_64,
CONFIG_RTE_ARCH_X86_64_32 or CONFIG_RTE_ARCH_PPC_64 are defined only if
we are building for those architectures.

Per Execution Environment Sources

The following config options can be used:

• CONFIG_RTE_EXEC_ENV is a string that contains the name of the executive environ-
ment.

• CONFIG_RTE_EXEC_ENV_BSDAPP or CONFIG_RTE_EXEC_ENV_LINUXAPP are defined
only if we are building for this execution environment.

11.2.2 Library Statistics

Description

This document describes the guidelines for DPDK library-level statistics counter support. This
includes guidelines for turning library statistics on and off and requirements for preventing ABI
changes when implementing statistics.

Mechanism to allow the application to turn library statistics on and off

Each library that maintains statistics counters should provide a single build time flag that de-
cides whether the statistics counter collection is enabled or not. This flag should be exposed as
a variable within the DPDK configuration file. When this flag is set, all the counters supported
by current library are collected for all the instances of every object type provided by the library.
When this flag is cleared, none of the counters supported by the current library are collected
for any instance of any object type provided by the library:

DPDK file config/common_linuxapp, config/common_bsdapp, etc.
CONFIG_RTE_<LIBRARY_NAME>_STATS_COLLECT=y/n

The default value for this DPDK configuration file variable (either “yes” or “no”) is decided by
each library.

11.2. Design 630

DPDK documentation, Release 16.04.0

Prevention of ABI changes due to library statistics support

The layout of data structures and prototype of functions that are part of the library API should
not be affected by whether the collection of statistics counters is turned on or off for the current
library. In practical terms, this means that space should always be allocated in the API data
structures for statistics counters and the statistics related API functions are always built into the
code, regardless of whether the statistics counter collection is turned on or off for the current
library.

When the collection of statistics counters for the current library is turned off, the counters
retrieved through the statistics related API functions should have a default value of zero.

Motivation to allow the application to turn library statistics on and off

It is highly recommended that each library provides statistics counters to allow an applica-
tion to monitor the library-level run-time events. Typical counters are: number of packets
received/dropped/transmitted, number of buffers allocated/freed, number of occurrences for
specific events, etc.

However, the resources consumed for library-level statistics counter collection have to be spent
out of the application budget and the counters collected by some libraries might not be rele-
vant to the current application. In order to avoid any unwanted waste of resources and/or
performance impacts, the application should decide at build time whether the collection of
library-level statistics counters should be turned on or off for each library individually.

Library-level statistics counters can be relevant or not for specific applications:

• For Application A, counters maintained by Library X are always relevant and the applica-
tion needs to use them to implement certain features, such as traffic accounting, logging,
application-level statistics, etc. In this case, the application requires that collection of
statistics counters for Library X is always turned on.

• For Application B, counters maintained by Library X are only useful during the application
debug stage and are not relevant once debug phase is over. In this case, the application
may decide to turn on the collection of Library X statistics counters during the debug
phase and at a later stage turn them off.

• For Application C, counters maintained by Library X are not relevant at all. It might be
that the application maintains its own set of statistics counters that monitor a different set
of run-time events (e.g. number of connection requests, number of active users, etc). It
might also be that the application uses multiple libraries (Library X, Library Y, etc) and it
is interested in the statistics counters of Library Y, but not in those of Library X. In this
case, the application may decide to turn the collection of statistics counters off for Library
X and on for Library Y.

The statistics collection consumes a certain amount of CPU resources (cycles, cache band-
width, memory bandwidth, etc) that depends on:

• Number of libraries used by the current application that have statistics counters collection
turned on.

• Number of statistics counters maintained by each library per object type instance (e.g.
per port, table, pipeline, thread, etc).

• Number of instances created for each object type supported by each library.

11.2. Design 631

DPDK documentation, Release 16.04.0

• Complexity of the statistics logic collection for each counter: when only some occur-
rences of a specific event are valid, additional logic is typically needed to decide whether
the current occurrence of the event should be counted or not. For example, in the event
of packet reception, when only TCP packets with destination port within a certain range
should be recorded, conditional branches are usually required. When processing a burst
of packets that have been validated for header integrity, counting the number of bits set
in a bitmask might be needed.

11.3 Managing ABI updates

11.3.1 Description

This document details some methods for handling ABI management in the DPDK. Note this
document is not exhaustive, in that C library versioning is flexible allowing multiple methods to
achieve various goals, but it will provide the user with some introductory methods

11.3.2 General Guidelines

1. Whenever possible, ABI should be preserved

2. The libraries marked in experimental state may change without constraint.

3. The addition of symbols is generally not problematic

4. The modification of symbols can generally be managed with versioning

5. The removal of symbols generally is an ABI break and requires bumping of the
LIBABIVER macro

11.3.3 What is an ABI

An ABI (Application Binary Interface) is the set of runtime interfaces exposed by a library. It is
similar to an API (Application Programming Interface) but is the result of compilation. It is also
effectively cloned when applications link to dynamic libraries. That is to say when an applica-
tion is compiled to link against dynamic libraries, it is assumed that the ABI remains constant
between the time the application is compiled/linked, and the time that it runs. Therefore, in the
case of dynamic linking, it is critical that an ABI is preserved, or (when modified), done in such
a way that the application is unable to behave improperly or in an unexpected fashion.

11.3.4 The DPDK ABI policy

ABI versions are set at the time of major release labeling, and the ABI may change multiple
times, without warning, between the last release label and the HEAD label of the git tree.

ABI versions, once released, are available until such time as their deprecation has been noted
in the Release Notes for at least one major release cycle. For example consider the case
where the ABI for DPDK 2.0 has been shipped and then a decision is made to modify it during
the development of DPDK 2.1. The decision will be recorded in the Release Notes for the
DPDK 2.1 release and the modification will be made available in the DPDK 2.2 release.

ABI versions may be deprecated in whole or in part as needed by a given update.

11.3. Managing ABI updates 632

DPDK documentation, Release 16.04.0

Some ABI changes may be too significant to reasonably maintain multiple versions. In those
cases ABI’s may be updated without backward compatibility being provided. The requirements
for doing so are:

1. At least 3 acknowledgments of the need to do so must be made on the dpdk.org mailing
list.

2. The changes (including an alternative map file) must be gated with the RTE_NEXT_ABI
option, and provided with a deprecation notice at the same time. It will become the default
ABI in the next release.

3. A full deprecation cycle, as explained above, must be made to offer downstream con-
sumers sufficient warning of the change.

4. At the beginning of the next release cycle, every RTE_NEXT_ABI conditions will be re-
moved, the LIBABIVER variable in the makefile(s) where the ABI is changed will be
incremented, and the map files will be updated.

Note that the above process for ABI deprecation should not be undertaken lightly. ABI stability
is extremely important for downstream consumers of the DPDK, especially when distributed in
shared object form. Every effort should be made to preserve the ABI whenever possible. The
ABI should only be changed for significant reasons, such as performance enhancements. ABI
breakage due to changes such as reorganizing public structure fields for aesthetic or readability
purposes should be avoided.

11.3.5 Examples of Deprecation Notices

The following are some examples of ABI deprecation notices which would be added to the
Release Notes:

• The Macro #RTE_FOO is deprecated and will be removed with version 2.0, to be replaced
with the inline function rte_foo().

• The function rte_mbuf_grok() has been updated to include a new parameter in ver-
sion 2.0. Backwards compatibility will be maintained for this function until the release of
version 2.1

• The members of struct rte_foo have been reorganized in release 2.0 for perfor-
mance reasons. Existing binary applications will have backwards compatibility in release
2.0, while newly built binaries will need to reference the new structure variant struct
rte_foo2. Compatibility will be removed in release 2.2, and all applications will require
updating and rebuilding to the new structure at that time, which will be renamed to the
original struct rte_foo.

• Significant ABI changes are planned for the librte_dostuff library. The upcoming
release 2.0 will not contain these changes, but release 2.1 will, and no backwards com-
patibility is planned due to the extensive nature of these changes. Binaries using this
library built prior to version 2.1 will require updating and recompilation.

11.3.6 Versioning Macros

When a symbol is exported from a library to provide an API, it also provides a calling convention
(ABI) that is embodied in its name, return type and arguments. Occasionally that function may
need to change to accommodate new functionality or behavior. When that occurs, it is desirable

11.3. Managing ABI updates 633

DPDK documentation, Release 16.04.0

to allow for backward compatibility for a time with older binaries that are dynamically linked to
the DPDK.

To support backward compatibility the lib/librte_compat/rte_compat.h header file
provides macros to use when updating exported functions. These macros are used in con-
junction with the rte_<library>_version.map file for a given library to allow multiple ver-
sions of a symbol to exist in a shared library so that older binaries need not be immediately
recompiled.

The macros exported are:

• VERSION_SYMBOL(b, e, n): Creates a symbol version table entry binding versioned
symbol b@DPDK_n to the internal function b_e.

• BIND_DEFAULT_SYMBOL(b, e, n): Creates a symbol version entry instructing the
linker to bind references to symbol b to the internal symbol b_e.

• MAP_STATIC_SYMBOL(f, p): Declare the prototype f, and map it to the fully qualified
function p, so that if a symbol becomes versioned, it can still be mapped back to the
public symbol name.

11.3.7 Examples of ABI Macro use

Updating a public API

Assume we have a function as follows

/*
* Create an acl context object for apps to

* manipulate

*/
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{

...
}

Assume that struct rte_acl_ctx is a private structure, and that a developer wishes to enhance
the acl api so that a debugging flag can be enabled on a per-context basis. This requires an
addition to the structure (which, being private, is safe), but it also requires modifying the code
as follows

/*
* Create an acl context object for apps to

* manipulate

*/
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param, int debug)
{

...
}

Note also that, being a public function, the header file prototype must also be changed, as
must all the call sites, to reflect the new ABI footprint. We will maintain previous ABI versions
that are accessible only to previously compiled binaries

The addition of a parameter to the function is ABI breaking as the function is public, and existing
application may use it in its current form. However, the compatibility macros in DPDK allow a
developer to use symbol versioning so that multiple functions can be mapped to the same

11.3. Managing ABI updates 634

DPDK documentation, Release 16.04.0

public symbol based on when an application was linked to it. To see how this is done, we start
with the requisite libraries version map file. Initially the version map file for the acl library looks
like this

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_create;
rte_acl_dump;
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipv4vlan_add_rules;
rte_acl_ipv4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: *;
};

This file needs to be modified as follows

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_create;
rte_acl_dump;
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipv4vlan_add_rules;
rte_acl_ipv4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: *;
};

DPDK_2.1 {
global:
rte_acl_create;

} DPDK_2.0;

The addition of the new block tells the linker that a new version node is available (DPDK_2.1),
which contains the symbol rte_acl_create, and inherits the symbols from the DPDK_2.0 node.
This list is directly translated into a list of exported symbols when DPDK is compiled as a
shared library

Next, we need to specify in the code which function map to the rte_acl_create symbol at which
versions. First, at the site of the initial symbol definition, we need to update the function so that

11.3. Managing ABI updates 635

DPDK documentation, Release 16.04.0

it is uniquely named, and not in conflict with the public symbol name

struct rte_acl_ctx *
-rte_acl_create(const struct rte_acl_param *param)
+rte_acl_create_v20(const struct rte_acl_param *param)
{

size_t sz;
struct rte_acl_ctx *ctx;
...

Note that the base name of the symbol was kept intact, as this is conducive to the macros
used for versioning symbols. That is our next step, mapping this new symbol name to the initial
symbol name at version node 2.0. Immediately after the function, we add this line of code

VERSION_SYMBOL(rte_acl_create, _v20, 2.0);

Remembering to also add the rte_compat.h header to the requisite c file where these
changes are being made. The above macro instructs the linker to create a new symbol
rte_acl_create@DPDK_2.0, which matches the symbol created in older builds, but now
points to the above newly named function. We have now mapped the original rte_acl_create
symbol to the original function (but with a new name)

Next, we need to create the 2.1 version of the symbol. We create a new function name, with a
different suffix, and implement it appropriately

struct rte_acl_ctx *
rte_acl_create_v21(const struct rte_acl_param *param, int debug);
{

struct rte_acl_ctx *ctx = rte_acl_create_v20(param);

ctx->debug = debug;

return ctx;
}

This code serves as our new API call. Its the same as our old call, but adds the new parameter
in place. Next we need to map this function to the symbol rte_acl_create@DPDK_2.1. To
do this, we modify the public prototype of the call in the header file, adding the macro there to
inform all including applications, that on re-link, the default rte_acl_create symbol should point
to this function. Note that we could do this by simply naming the function above rte_acl_create,
and the linker would chose the most recent version tag to apply in the version script, but we
can also do this in the header file

struct rte_acl_ctx *
-rte_acl_create(const struct rte_acl_param *param);
+rte_acl_create(const struct rte_acl_param *param, int debug);
+BIND_DEFAULT_SYMBOL(rte_acl_create, _v21, 2.1);

The BIND_DEFAULT_SYMBOL macro explicitly tells applications that include this header, to
link to the rte_acl_create_v21 function and apply the DPDK_2.1 version node to it. This method
is more explicit and flexible than just re-implementing the exact symbol name, and allows for
other features (such as linking to the old symbol version by default, when the new ABI is to be
opt-in for a period.

One last thing we need to do. Note that we’ve taken what was a public symbol, and duplicated
it into two uniquely and differently named symbols. We’ve then mapped each of those back to
the public symbol rte_acl_create with different version tags. This only applies to dynamic
linking, as static linking has no notion of versioning. That leaves this code in a position of no
longer having a symbol simply named rte_acl_create and a static build will fail on that
missing symbol.

11.3. Managing ABI updates 636

DPDK documentation, Release 16.04.0

To correct this, we can simply map a function of our choosing back to the public symbol in
the static build with the MAP_STATIC_SYMBOL macro. Generally the assumption is that the
most recent version of the symbol is the one you want to map. So, back in the C file where,
immediately after rte_acl_create_v21 is defined, we add this

struct rte_acl_create_v21(const struct rte_acl_param *param, int debug)
{

...
}
MAP_STATIC_SYMBOL(struct rte_acl_create(const struct rte_acl_param *param, int debug), rte_acl_create_v21);

That tells the compiler that, when building a static library, any calls to the symbol
rte_acl_create should be linked to rte_acl_create_v21

That’s it, on the next shared library rebuild, there will be two versions of rte_acl_create, an old
DPDK_2.0 version, used by previously built applications, and a new DPDK_2.1 version, used
by future built applications.

Deprecating part of a public API

Lets assume that you’ve done the above update, and after a few releases have passed you
decide you would like to retire the old version of the function. After having gone through the
ABI deprecation announcement process, removal is easy. Start by removing the symbol from
the requisite version map file:

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_dump;

- rte_acl_create
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipv4vlan_add_rules;
rte_acl_ipv4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: *;
};

DPDK_2.1 {
global:
rte_acl_create;

} DPDK_2.0;

Next remove the corresponding versioned export.

-VERSION_SYMBOL(rte_acl_create, _v20, 2.0);

Note that the internal function definition could also be removed, but its used in our example by
the newer version _v21, so we leave it in place. This is a coding style choice.

Lastly, we need to bump the LIBABIVER number for this library in the Makefile to indicate to
applications doing dynamic linking that this is a later, and possibly incompatible library version:

11.3. Managing ABI updates 637

DPDK documentation, Release 16.04.0

-LIBABIVER := 1
+LIBABIVER := 2

Deprecating an entire ABI version

While removing a symbol from and ABI may be useful, it is often more practical to remove an
entire version node at once. If a version node completely specifies an API, then removing part
of it, typically makes it incomplete. In those cases it is better to remove the entire node

To do this, start by modifying the version map file, such that all symbols from the node to be
removed are merged into the next node in the map

In the case of our map above, it would transform to look as follows

DPDK_2.1 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_dump;
rte_acl_create
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipv4vlan_add_rules;
rte_acl_ipv4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: *;
};

Then any uses of BIND_DEFAULT_SYMBOL that pointed to the old node should be updated
to point to the new version node in any header files for all affected symbols.

-BIND_DEFAULT_SYMBOL(rte_acl_create, _v20, 2.0);
+BIND_DEFAULT_SYMBOL(rte_acl_create, _v21, 2.1);

Lastly, any VERSION_SYMBOL macros that point to the old version node should be removed,
taking care to keep, where need old code in place to support newer versions of the symbol.

11.3.8 Running the ABI Validator

The scripts directory in the DPDK source tree contains a utility program,
validate-abi.sh, for validating the DPDK ABI based on the Linux ABI Compliance
Checker.

This has a dependency on the abi-compliance-checker and and abi-dumper utilities
which can be installed via a package manager. For example:

sudo yum install abi-compliance-checker
sudo yum install abi-dumper

The syntax of the validate-abi.sh utility is:

./scripts/validate-abi.sh <REV1> <REV2> <TARGET>

11.3. Managing ABI updates 638

http://ispras.linuxbase.org/index.php/ABI_compliance_checker
http://ispras.linuxbase.org/index.php/ABI_compliance_checker

DPDK documentation, Release 16.04.0

Where REV1 and REV2 are valid gitrevisions(7) https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
on the local repo and target is the usual DPDK compilation target.

For example:

Check between the previous and latest commit: ./scripts/validate-abi.sh HEAD~1
HEAD x86_64-native-linuxapp-gcc

Check between two tags: ./scripts/validate-abi.sh v2.0.0 v2.1.0 x86_64-native-
linuxapp-gcc

Check between git master and local topic-branch “vhost-hacking”:
./scripts/validate-abi.sh master vhost-hacking x86_64-native-linuxapp-gcc

After the validation script completes (it can take a while since it need to compile both tags) it
will create compatibility reports in the ./compat_report directory. Listed incompatibilities
can be found as follows:

grep -lr Incompatible compat_reports/

11.4 DPDK Documentation Guidelines

This document outlines the guidelines for writing the DPDK Guides and API documentation in
RST and Doxygen format.

It also explains the structure of the DPDK documentation and shows how to build the Html and
PDF versions of the documents.

11.4.1 Structure of the Documentation

The DPDK source code repository contains input files to build the API documentation and User
Guides.

The main directories that contain files related to documentation are shown below:

lib
|-- librte_acl
|-- librte_cfgfile
|-- librte_cmdline
|-- librte_compat
|-- librte_eal
| |-- ...
...
doc
|-- api
+-- guides

|-- freebsd_gsg
|-- linux_gsg
|-- prog_guide
|-- sample_app_ug
|-- guidelines
|-- testpmd_app_ug
|-- rel_notes
|-- nics
|-- xen
|-- ...

11.4. DPDK Documentation Guidelines 639

https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

DPDK documentation, Release 16.04.0

The API documentation is built from Doxygen comments in the header files. These files
are mainly in the lib/librte_* directories although some of the Poll Mode Drivers in
drivers/net are also documented with Doxygen.

The configuration files that are used to control the Doxygen output are in the doc/api direc-
tory.

The user guides such as The Programmers Guide and the FreeBSD and Linux Getting Started
Guides are generated from RST markup text files using the Sphinx Documentation Generator.

These files are included in the doc/guides/ directory. The output is controlled by the
doc/guides/conf.py file.

11.4.2 Role of the Documentation

The following items outline the roles of the different parts of the documentation and when they
need to be updated or added to by the developer.

• Release Notes

The Release Notes document which features have been added in the current and previ-
ous releases of DPDK and highlight any known issues. The Releases Notes also contain
notifications of features that will change ABI compatibility in the next major release.

Developers should include updates to the Release Notes with patch sets that relate to
any of the following sections:

– New Features

– Resolved Issues (see below)

– Known Issues

– API Changes

– ABI Changes

– Shared Library Versions

Resolved Issues should only include issues from previous releases that have been re-
solved in the current release. Issues that are introduced and then fixed within a release
cycle do not have to be included here.

Refer to the Release Notes from the previous DPDK release for the correct format of
each section.

• API documentation

The API documentation explains how to use the public DPDK functions. The API index
page shows the generated API documentation with related groups of functions.

The API documentation should be updated via Doxygen comments when new functions
are added.

• Getting Started Guides

The Getting Started Guides show how to install and configure DPDK and how to run
DPDK based applications on different OSes.

A Getting Started Guide should be added when DPDK is ported to a new OS.

11.4. DPDK Documentation Guidelines 640

http://www.stack.nl/~dimitri/doxygen/
http://sphinx-doc.org/index.html
http://dpdk.org/doc/api/
http://dpdk.org/doc/api/

DPDK documentation, Release 16.04.0

• The Programmers Guide

The Programmers Guide explains how the API components of DPDK such as the EAL,
Memzone, Rings and the Hash Library work. It also explains how some higher level
functionality such as Packet Distributor, Packet Framework and KNI work. It also shows
the build system and explains how to add applications.

The Programmers Guide should be expanded when new functionality is added to DPDK.

• App Guides

The app guides document the DPDK applications in the app directory such as testpmd.

The app guides should be updated if functionality is changed or added.

• Sample App Guides

The sample app guides document the DPDK example applications in the examples di-
rectory. Generally they demonstrate a major feature such as L2 or L3 Forwarding, Multi
Process or Power Management. They explain the purpose of the sample application,
how to run it and step through some of the code to explain the major functionality.

A new sample application should be accompanied by a new sample app guide. The
guide for the Skeleton Forwarding app is a good starting reference.

• Network Interface Controller Drivers

The NIC Drivers document explains the features of the individual Poll Mode Drivers, such
as software requirements, configuration and initialization.

New documentation should be added for new Poll Mode Drivers.

• Guidelines

The guideline documents record community process, expectations and design directions.

They can be extended, amended or discussed by submitting a patch and getting com-
munity approval.

11.4.3 Building the Documentation

Dependencies

The following dependencies must be installed to build the documentation:

• Doxygen.

• Sphinx (also called python-sphinx).

• TexLive (at least TexLive-core and the extra Latex support).

• Inkscape.

Doxygen generates documentation from commented source code. It can be installed as fol-
lows:

Ubuntu/Debian.
sudo apt-get -y install doxygen

Red Hat/Fedora.
sudo yum -y install doxygen

11.4. DPDK Documentation Guidelines 641

http://www.stack.nl/~dimitri/doxygen/

DPDK documentation, Release 16.04.0

Sphinx is a Python documentation tool for converting RST files to Html or to PDF (via LaTeX).
For full support with figure and table captioning the latest version of Sphinx can be installed as
follows:

Ubuntu/Debian.
sudo apt-get -y install python-pip
sudo pip install --upgrade sphinx

Red Hat/Fedora.
sudo yum -y install python-pip
sudo pip install --upgrade sphinx

For further information on getting started with Sphinx see the Sphinx Tutorial.

Note: To get full support for Figure and Table numbering it is best to install Sphinx 1.3.1 or
later.

Inkscape is a vector based graphics program which is used to create SVG images and also to
convert SVG images to PDF images. It can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install inkscape

Red Hat/Fedora.
sudo yum -y install inkscape

TexLive is an installation package for Tex/LaTeX. It is used to generate the PDF versions of the
documentation. The main required packages can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install texlive-latex-extra

Red Hat/Fedora, selective install.
sudo yum -y install texlive-collection-latexextra

Build commands

The documentation is built using the standard DPDK build system. Some examples are shown
below:

• Generate all the documentation targets:

make doc

• Generate the Doxygen API documentation in Html:

make doc-api-html

• Generate the guides documentation in Html:

make doc-guides-html

• Generate the guides documentation in Pdf:

make doc-guides-pdf

The output of these commands is generated in the build directory:

build/doc
|-- html
| |-- api
| +-- guides

11.4. DPDK Documentation Guidelines 642

http://sphinx-doc.org/index.html
http://sphinx-doc.org/tutorial.html
http://inkscape.org
http://www.tug.org/texlive/

DPDK documentation, Release 16.04.0

|
+-- pdf

+-- guides

Note: Make sure to fix any Sphinx or Doxygen warnings when adding or updating documen-
tation.

The documentation output files can be removed as follows:

make doc-clean

11.4.4 Document Guidelines

Here are some guidelines in relation to the style of the documentation:

• Document the obvious as well as the obscure since it won’t always be obvious to the
reader. For example an instruction like “Set up 64 2MB Hugepages” is better when fol-
lowed by a sample commandline or a link to the appropriate section of the documentation.

• Use American English spellings throughout. This can be checked using the aspell
utility:

aspell --lang=en_US --check doc/guides/sample_app_ug/mydoc.rst

11.4.5 RST Guidelines

The RST (reStructuredText) format is a plain text markup format that can be converted to Html,
PDF or other formats. It is most closely associated with Python but it can be used to document
any language. It is used in DPDK to document everything apart from the API.

The Sphinx documentation contains a very useful RST Primer which is a good place to learn
the minimal set of syntax required to format a document.

The official reStructuredText website contains the specification for the RST format and also
examples of how to use it. However, for most developers the RST Primer is a better resource.

The most common guidelines for writing RST text are detailed in the Documenting Python
guidelines. The additional guidelines below reiterate or expand upon those guidelines.

Line Length

• The recommended style for the DPDK documentation is to put sentences on separate
lines. This allows for easier reviewing of patches. Multiple sentences which are not
separated by a blank line are joined automatically into paragraphs, for example:

Here is an example sentence.
Long sentences over the limit shown below can be wrapped onto
a new line.
These three sentences will be joined into the same paragraph.

This is a new paragraph, since it is separated from the
previous paragraph by a blank line.

This would be rendered as follows:

11.4. DPDK Documentation Guidelines 643

http://sphinx-doc.org/rest.html#rst-primer
http://docutils.sourceforge.net/rst.html
https://docs.python.org/devguide/documenting.html

DPDK documentation, Release 16.04.0

Here is an example sentence. Long sentences over the limit shown below can
be wrapped onto a new line. These three sentences will be joined into the
same paragraph.

This is a new paragraph, since it is separated from the previous paragraph by
a blank line.

• Long sentences should be wrapped at 120 characters +/- 10 characters. They should be
wrapped at words.

• Lines in literal blocks must by less than 80 characters since they aren’t wrapped by the
document formatters and can exceed the page width in PDF documents.

Whitespace

• Standard RST indentation is 3 spaces. Code can be indented 4 spaces, especially if it is
copied from source files.

• No tabs. Convert tabs in embedded code to 4 or 8 spaces.

• No trailing whitespace.

• Add 2 blank lines before each section header.

• Add 1 blank line after each section header.

• Add 1 blank line between each line of a list.

Section Headers

• Section headers should use the use the following underline formats:

Level 1 Heading
===============

Level 2 Heading

Level 3 Heading
~~~~~~~~~~~~~~~

Level 4 Heading
^^^^^^^^^^^^^^^

• Level 4 headings should be used sparingly.

• The underlines should match the length of the text.

• In general, the heading should be less than 80 characters, for conciseness.

• As noted above:

– Add 2 blank lines before each section header.

– Add 1 blank line after each section header.

11.4. DPDK Documentation Guidelines 644



DPDK documentation, Release 16.04.0

Lists

• Bullet lists should be formatted with a leading * as follows:

* Item one.

* Item two is a long line that is wrapped and then indented to match
the start of the previous line.

* One space character between the bullet and the text is preferred.

• Numbered lists can be formatted with a leading number but the preference is to use #.
which will give automatic numbering. This is more convenient when adding or removing
items:

#. Item one.

#. Item two is a long line that is wrapped and then indented
to match the start of the e first line.

#. Item two is a long line that is wrapped and then indented to match
the start of the previous line.

• Definition lists can be written with or without a bullet:

* Item one.

Some text about item one.

* Item two.

Some text about item two.

• All lists, and sub-lists, must be separated from the preceding text by a blank line. This is
a syntax requirement.

• All list items should be separated by a blank line for readability.

Code and Literal block sections

• Inline text that is required to be rendered with a fixed width font should be enclosed in
backquotes like this: ‘‘text‘‘, so that it appears like this: text.

• Fixed width, literal blocks of texts should be indented at least 3 spaces and prefixed with
:: like this:

Here is some fixed width text::

0x0001 0x0001 0x00FF 0x00FF

• It is also possible to specify an encoding for a literal block using the .. code-block::
directive so that syntax highlighting can be applied. Examples of supported highlighting
are:

.. code-block:: console

.. code-block:: c

.. code-block:: python

.. code-block:: diff

.. code-block:: none

That can be applied as follows:

11.4. DPDK Documentation Guidelines 645



DPDK documentation, Release 16.04.0

.. code-block:: c

#include<stdio.h>

int main() {

printf("Hello World\n");

return 0;
}

Which would be rendered as:

#include<stdio.h>

int main() {

printf("Hello World\n");

return 0;
}

• The default encoding for a literal block using the simplified :: directive is none.

• Lines in literal blocks must be less than 80 characters since they can exceed the page
width when converted to PDF documentation. For long literal lines that exceed that limit
try to wrap the text at sensible locations. For example a long command line could be
documented like this and still work if copied directly from the docs:

build/app/testpmd -c7 -n3 --vdev=eth_pcap0,iface=eth0 \
--vdev=eth_pcap1,iface=eth1 \
-- -i --nb-cores=2 --nb-ports=2 \

--total-num-mbufs=2048

• Long lines that cannot be wrapped, such as application output, should be truncated to be
less than 80 characters.

Images

• All images should be in SVG scalar graphics format. They should be true SVG XML files
and should not include binary formats embedded in a SVG wrapper.

• The DPDK documentation contains some legacy images in PNG format. These will be
converted to SVG in time.

• Inkscape is the recommended graphics editor for creating the images. Use some
of the older images in doc/guides/prog_guide/img/ as a template, for example
mbuf1.svg or ring-enqueue.svg.

• The SVG images should include a copyright notice, as an XML comment.

• Images in the documentation should be formatted as follows:

– The image should be preceded by a label in the format .. _figure_XXXX: with
a leading underscore and where XXXX is a unique descriptive name.

– Images should be included using the .. figure:: directive and the file type
should be set to * (not .svg). This allows the format of the image to be changed if
required, without updating the documentation.

– Images must have a caption as part of the .. figure:: directive.

11.4. DPDK Documentation Guidelines 646

http://inkscape.org


DPDK documentation, Release 16.04.0

• Here is an example of the previous three guidelines:

.. _figure_mempool:

.. figure:: img/mempool.*

A mempool in memory with its associated ring.

• Images can then be linked to using the :numref: directive:

The mempool layout is shown in :numref:`figure_mempool`.

This would be rendered as: The mempool layout is shown in Fig 6.3.

Note: The :numref: directive requires Sphinx 1.3.1 or later. With earlier versions it will
still be rendered as a link but won’t have an automatically generated number.

• The caption of the image can be generated, with a link, using the :ref: directive:

:ref:`figure_mempool`

This would be rendered as: A mempool in memory with its associated ring.

Tables

• RST tables should be used sparingly. They are hard to format and to edit, they are often
rendered incorrectly in PDF format, and the same information can usually be shown just
as clearly with a definition or bullet list.

• Tables in the documentation should be formatted as follows:

– The table should be preceded by a label in the format .. _table_XXXX: with a
leading underscore and where XXXX is a unique descriptive name.

– Tables should be included using the .. table:: directive and must have a cap-
tion.

• Here is an example of the previous two guidelines:

.. _table_qos_pipes:

.. table:: Sample configuration for QOS pipes.

+----------+----------+----------+
| Header 1 | Header 2 | Header 3 |
| | | |
+==========+==========+==========+
| Text | Text | Text |
+----------+----------+----------+
| ... | ... | ... |
+----------+----------+----------+

• Tables can be linked to using the :numref: and :ref: directives, as shown in the
previous section for images. For example:

The QOS configuration is shown in :numref:`table_qos_pipes`.

• Tables should not include merged cells since they are not supported by the PDF renderer.

11.4. DPDK Documentation Guidelines 647



DPDK documentation, Release 16.04.0

Hyperlinks

• Links to external websites can be plain URLs. The following is rendered as
http://dpdk.org:

http://dpdk.org

• They can contain alternative text. The following is rendered as Check out DPDK:

`Check out DPDK <http://dpdk.org>`_

• An internal link can be generated by placing labels in the document with the format ..
_label_name.

• The following links to the top of this section: Hyperlinks:

.. _links:

Hyperlinks
~~~~~~~~~~

* The following links to the top of this section: :ref:`links`:

Note: The label must have a leading underscore but the reference to it must omit it. This is a
frequent cause of errors and warnings.

• The use of a label is preferred since it works across files and will still work if the header
text changes.

11.4.6 Doxygen Guidelines

The DPDK API is documented using Doxygen comment annotations in the header files. Doxy-
gen is a very powerful tool, it is extremely configurable and with a little effort can be used to
create expressive documents. See the Doxygen website for full details on how to use it.

The following are some guidelines for use of Doxygen in the DPDK API documentation:

• New libraries that are documented with Doxygen should be added to the Doxygen con-
figuration file: doc/api/doxy-api.conf. It is only required to add the directory that
contains the files. It isn’t necessary to explicitly name each file since the configuration
matches all rte_*.h files in the directory.

• Use proper capitalization and punctuation in the Doxygen comments since they will be-
come sentences in the documentation. This in particular applies to single line comments,
which is the case the is most often forgotten.

• Use @ style Doxygen commands instead of \ style commands.

• Add a general description of each library at the head of the main header files:

/**
* @file

* RTE Mempool.

*
* A memory pool is an allocator of fixed-size object. It is

* identified by its name, and uses a ring to store free objects.

* ...

*/

11.4. DPDK Documentation Guidelines 648

http://dpdk.org
http://dpdk.org
http://www.stack.nl/~dimitri/doxygen/

DPDK documentation, Release 16.04.0

• Document the purpose of a function, the parameters used and the return value:

/**
* Attach a new Ethernet device specified by arguments.

*
* @param devargs

* A pointer to a strings array describing the new device

* to be attached. The strings should be a pci address like

* `0000:01:00.0` or **virtual** device name like `eth_pcap0`.

* @param port_id

* A pointer to a port identifier actually attached.

*
* @return

* 0 on success and port_id is filled, negative on error.

*/
int rte_eth_dev_attach(const char *devargs, uint8_t *port_id);

• Doxygen supports Markdown style syntax such as bold, italics, fixed width text and lists.
For example the second line in the devargs parameter in the previous example will be
rendered as:

The strings should be a pci address like 0000:01:00.0 or virtual device
name like eth_pcap0.

• Use - instead of * for lists within the Doxygen comment since the latter can get confused
with the comment delimiter.

• Add an empty line between the function description, the @params and @return for
readability.

• Place the @params description on separate line and indent it by 2 spaces. (It would be
better to use no indentation since this is more common and also because checkpatch
complains about leading whitespace in comments. However this is the convention used
in the existing DPDK code.)

• Documented functions can be linked to simply by adding () to the function name:

/**
* The functions exported by the application Ethernet API to setup

* a device designated by its port identifier must be invoked in

* the following order:

* - rte_eth_dev_configure()

* - rte_eth_tx_queue_setup()

* - rte_eth_rx_queue_setup()

* - rte_eth_dev_start()

*/

In the API documentation the functions will be rendered as links, see the online section
of the rte_ethdev.h docs that contains the above text.

• The @see keyword can be used to create a see also link to another file or library. This
directive should be placed on one line at the bottom of the documentation section.

/**
* ...

*
* Some text that references mempools.

*
* @see eal_memzone.c

*/

• Doxygen supports two types of comments for documenting variables, constants and
members: prefix and postfix:

11.4. DPDK Documentation Guidelines 649

http://dpdk.org/doc/api/rte__ethdev_8h.html
http://dpdk.org/doc/api/rte__ethdev_8h.html

DPDK documentation, Release 16.04.0

/** This is a prefix comment. */
#define RTE_FOO_ERROR 0x023.

#define RTE_BAR_ERROR 0x024. /**< This is a postfix comment. */

• Postfix comments are preferred for struct members and constants if they can be docu-
mented in the same way:

struct rte_eth_stats {
uint64_t ipackets; /**< Total number of received packets. */
uint64_t opackets; /**< Total number of transmitted packets.*/
uint64_t ibytes; /**< Total number of received bytes. */
uint64_t obytes; /**< Total number of transmitted bytes. */
uint64_t imissed; /**< Total of RX missed packets. */
uint64_t ibadcrc; /**< Total of RX packets with CRC error. */
uint64_t ibadlen; /**< Total of RX packets with bad length. */

}

Note: postfix comments should be aligned with spaces not tabs in accordance with the
DPDK Coding Style.

• If a single comment type can’t be used, due to line length limitations then prefix comments
should be preferred. For example this section of the code contains prefix comments,
postfix comments on the same line and postfix comments on a separate line:

/** Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
uint32_t pg_shift; /**< LOG2 of the physical pages. */
uintptr_t pg_mask; /**< Physical page mask value. */
uintptr_t elt_va_start;
/**< Virtual address of the first mempool object. */
uintptr_t elt_va_end;
/**< Virtual address of the <size + 1> mempool object. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];
/**< Array of physical page addresses for the mempool buffer. */

This doesn’t have an effect on the rendered documentation but it is confusing for the
developer reading the code. It this case it would be clearer to use prefix comments
throughout:

/** Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
/** LOG2 of the physical pages. */
uint32_t pg_shift;
/** Physical page mask value. */
uintptr_t pg_mask;
/** Virtual address of the first mempool object. */
uintptr_t elt_va_start;
/** Virtual address of the <size + 1> mempool object. */
uintptr_t elt_va_end;
/** Array of physical page addresses for the mempool buffer. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];

• Check for Doxygen warnings in new code by checking the API documentation build:

make doc-api-html >/dev/null

• Read the rendered section of the documentation that you have added for correctness,
clarity and consistency with the surrounding text.

11.4. DPDK Documentation Guidelines 650

DPDK documentation, Release 16.04.0

11.5 Contributing Code to DPDK

This document outlines the guidelines for submitting code to DPDK.

The DPDK development process is modelled (loosely) on the Linux Kernel development model
so it is worth reading the Linux kernel guide on submitting patches: How to Get Your Change
Into the Linux Kernel. The rationale for many of the DPDK guidelines is explained in greater
detail in the kernel guidelines.

11.5.1 The DPDK Development Process

The DPDK development process has the following features:

• The code is hosted in a public git repository.

• There is a mailing list where developers submit patches.

• There are maintainers for hierarchical components.

• Patches are reviewed publicly on the mailing list.

• Successfully reviewed patches are merged to the master branch of the repository.

The mailing list for DPDK development is dev@dpkg.org. Contributors will need to register for
the mailing list in order to submit patches. It is also worth registering for the DPDK Patchwork

The development process requires some familiarity with the git version control system. Refer
to the Pro Git Book for further information.

11.5.2 Getting the Source Code

The source code can be cloned using either of the following:

git clone git://dpdk.org/dpdk

git clone http://dpdk.org/git/dpdk

11.5.3 Make your Changes

Make your planned changes in the cloned dpdk repo. Here are some guidelines and require-
ments:

• Follow the DPDK Coding Style guidelines.

• If you add new files or directories you should add your name to the MAINTAINERS file.

• New external functions should be added to the local version.map file. See the Guide-
lines for ABI policy and versioning. New external functions should also be added in
alphabetical order.

• Important changes will require an addition to the release notes in
doc/guides/rel_notes/. See the Release Notes section of the Documenta-
tion Guidelines for details.

• Test the compilation works with different targets, compilers and options, see Checking
Compilation.

11.5. Contributing Code to DPDK 651

http://www.kernel.org/doc/Documentation/SubmittingPatches
http://www.kernel.org/doc/Documentation/SubmittingPatches
http://dpdk.org/ml/archives/dev/
http://dpdk.org/ml/listinfo/dev
http://dpdk.org/ml/listinfo/dev
http://dpdk.org/dev/patchwxispork/project/dpdk/list/
http://www.git-scm.com/book/

DPDK documentation, Release 16.04.0

• Don’t break compilation between commits with forward dependencies in a patchset. Each
commit should compile on its own to allow for git bisect and continuous integration
testing.

• Add tests to the the app/test unit test framework where possible.

• Add documentation, if relevant, in the form of Doxygen comments or a User Guide in
RST format. See the Documentation Guidelines.

Once the changes have been made you should commit them to your local repo.

For small changes, that do not require specific explanations, it is better to keep things together
in the same patch. Larger changes that require different explanations should be separated into
logical patches in a patchset. A good way of thinking about whether a patch should be split is
to consider whether the change could be applied without dependencies as a backport.

As a guide to how patches should be structured run git log on similar files.

11.5.4 Commit Messages: Subject Line

The first, summary, line of the git commit message becomes the subject line of the patch email.
Here are some guidelines for the summary line:

• The summary line must capture the area and the impact of the change.

• The summary line should be around 50 characters.

• The summary line should be lowercase apart from acronyms.

• It should be prefixed with the component name (use git log to check existing compo-
nents). For example:

ixgbe: fix offload config option name

config: increase max queues per port

• Use the imperative of the verb (like instructions to the code base).

• Don’t add a period/full stop to the subject line or you will end up two in the patch name:
dpdk_description..patch.

The actual email subject line should be prefixed by [PATCH] and the version, if greater
than v1, for example: PATCH v2. The is generally added by git send-email or git
format-patch, see below.

If you are submitting an RFC draft of a feature you can use [RFC] instead of [PATCH]. An
RFC patch doesn’t have to be complete. It is intended as a way of getting early feedback.

11.5.5 Commit Messages: Body

Here are some guidelines for the body of a commit message:

• The body of the message should describe the issue being fixed or the feature being
added. It is important to provide enough information to allow a reviewer to understand
the purpose of the patch.

• When the change is obvious the body can be blank, apart from the signoff.

• The commit message must end with a Signed-off-by: line which is added using:

11.5. Contributing Code to DPDK 652

DPDK documentation, Release 16.04.0

git commit --signoff # or -s

The purpose of the signoff is explained in the Developer’s Certificate of Origin section of
the Linux kernel guidelines.

Note: All developers must ensure that they have read and understood the Developer’s
Certificate of Origin section of the documentation prior to applying the signoff and sub-
mitting a patch.

• The signoff must be a real name and not an alias or nickname. More than one signoff is
allowed.

• The text of the commit message should be wrapped at 72 characters.

• When fixing a regression, it is a good idea to reference the id of the commit which intro-
duced the bug. You can generate the required text using the following git alias:

git config alias.fixline "log -1 --abbrev=12 --format='Fixes: %h (\"%s\")'"

The Fixes: line can then be added to the commit message:

doc: fix vhost sample parameter

Update the docs to reflect removed dev-index.

Fixes: 17b8320a3e11 ("vhost: remove index parameter")

Signed-off-by: Alex Smith <alex.smith@example.com>

• When fixing an error or warning it is useful to add the error message and instructions on
how to reproduce it.

• Use correct capitalization, punctuation and spelling.

In addition to the Signed-off-by: name the commit messages can also have one or more
of the following:

• Reported-by: The reporter of the issue.

• Tested-by: The tester of the change.

• Reviewed-by: The reviewer of the change.

• Suggested-by: The person who suggested the change.

• Acked-by: When a previous version of the patch was acked and the ack is still relevant.

11.5.6 Creating Patches

It is possible to send patches directly from git but for new contributors it is recommended to
generate the patches with git format-patch and then when everything looks okay, and the
patches have been checked, to send them with git send-email.

Here are some examples of using git format-patch to generate patches:

Generate a patch from the last commit.
git format-patch -1

Generate a patch from the last 3 commits.
git format-patch -3

11.5. Contributing Code to DPDK 653

http://www.kernel.org/doc/Documentation/SubmittingPatches

DPDK documentation, Release 16.04.0

Generate the patches in a directory.
git format-patch -3 -o ~/patch/

Add a cover letter to explain a patchset.
git format-patch -3 -o ~/patch/ --cover-letter

Add a prefix with a version number.
git format-patch -3 -o ~/patch/ -v 2

Cover letters are useful for explaining a patchset and help to generate a logical threading to
the patches. Smaller notes can be put inline in the patch after the --- separator, for example:

Subject: [PATCH] fm10k/base: add FM10420 device ids

Add the device ID for Boulder Rapids and Atwood Channel to enable
drivers to support those devices.

Signed-off-by: Alex Smith <alex.smith@example.com>

ADD NOTES HERE.

drivers/net/fm10k/base/fm10k_api.c | 6 ++++++
drivers/net/fm10k/base/fm10k_type.h | 6 ++++++
2 files changed, 12 insertions(+)

...

Version 2 and later of a patchset should also include a short log of the changes so the reviewer
knows what has changed. This can be added to the cover letter or the annotations. For
example:

v3:

* Fixed issued with version.map.

v2:

* Added i40e support.

* Renamed ethdev functions from rte_eth_ieee15888_*() to rte_eth_timesync_*()
since 802.1AS can be supported through the same interfaces.

11.5.7 Checking the Patches

Patches should be checked for formatting and syntax issues using the checkpatches.sh
script in the scripts directory of the DPDK repo. This uses the Linux kernel development
tool checkpatch.pl which can be obtained by cloning, and periodically, updating the Linux
kernel sources.

The path to the original Linux script must be set in the environment variable
DPDK_CHECKPATCH_PATH. This, and any other configuration variables required by the de-
velopment tools, are loaded from the following files, in order of preference:

.develconfig
~/.config/dpdk/devel.config
/etc/dpdk/devel.config.

Once the environment variable the script can be run as follows:

scripts/checkpatches.sh ~/patch/

The script usage is:

11.5. Contributing Code to DPDK 654

DPDK documentation, Release 16.04.0

checkpatches.sh [-h] [-q] [-v] [patch1 [patch2] ...]]"

Where:

• -h: help, usage.

• -q: quiet. Don’t output anything for files without issues.

• -v: verbose.

• patchX: path to one or more patches.

Then the git logs should be checked using the check-git-log.sh script.

The script usage is:

check-git-log.sh [range]

Where the range is a git log option.

11.5.8 Checking Compilation

Compilation of patches and changes should be tested using the the test-build.sh script in
the scripts directory of the DPDK repo:

scripts/test-build.sh x86_64-native-linuxapp-gcc+next+shared

The script usage is:

test-build.sh [-h] [-jX] [-s] [config1 [config2] ...]]

Where:

• -h: help, usage.

• -jX: use X parallel jobs in “make”.

• -s: short test with only first config and without examples/doc.

• config: default config name plus config switches delimited with a + sign.

Examples of configs are:

x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-gcc+next+shared
x86_64-native-linuxapp-clang+shared

The builds can be modifies via the following environmental variables:

• DPDK_BUILD_TEST_CONFIGS (target1+option1+option2 target2)

• DPDK_DEP_CFLAGS

• DPDK_DEP_LDFLAGS

• DPDK_DEP_MOFED (y/[n])

• DPDK_DEP_PCAP (y/[n])

• DPDK_NOTIFY (notify-send)

These can be set from the command line or in the config files shown above in the Checking
the Patches.

The recommended configurations and options to test compilation prior to submitting patches
are:

11.5. Contributing Code to DPDK 655

DPDK documentation, Release 16.04.0

x86_64-native-linuxapp-gcc+shared+next
x86_64-native-linuxapp-clang+shared
i686-native-linuxapp-gcc

export DPDK_DEP_ZLIB=y
export DPDK_DEP_PCAP=y
export DPDK_DEP_SSL=y

11.5.9 Sending Patches

Patches should be sent to the mailing list using git send-email. You can configure an
external SMTP with something like the following:

[sendemail]
smtpuser = name@domain.com
smtpserver = smtp.domain.com
smtpserverport = 465
smtpencryption = ssl

See the Git send-email documentation for more details.

The patches should be sent to dev@dpdk.org. If the patches are a change to existing files
then you should send them TO the maintainer(s) and CC dev@dpdk.org. The appropriate
maintainer can be found in the MAINTAINERS file:

git send-email --to maintainer@some.org --cc dev@dpdk.org 000*.patch

New additions can be sent without a maintainer:

git send-email --to dev@dpdk.org 000*.patch

You can test the emails by sending it to yourself or with the --dry-run option.

If the patch is in relation to a previous email thread you can add it to the same thread using the
Message ID:

git send-email --to dev@dpdk.org --in-reply-to <1234-foo@bar.com> 000*.patch

The Message ID can be found in the raw text of emails or at the top of each Patchwork patch,
for example. Shallow threading (--thread --no-chain-reply-to) is preferred for a patch
series.

Once submitted your patches will appear on the mailing list and in Patchwork.

Experienced committers may send patches directly with git send-email without the git
format-patch step. The options --annotate and confirm = always are recommended
for checking patches before sending.

11.5.10 The Review Process

The more work you put into the previous steps the easier it will be to get a patch accepted.

The general cycle for patch review and acceptance is:

1. Submit the patch.

2. Check the automatic test reports in the coming hours.

3. Wait for review comments. While you are waiting review some other patches.

4. Fix the review comments and submit a v n+1 patchset:

11.5. Contributing Code to DPDK 656

https://git-scm.com/docs/git-send-email
http://dpdk.org/dev/patchwork/patch/7646/

DPDK documentation, Release 16.04.0

git format-patch -3 -v 2

5. Update Patchwork to mark your previous patches as “Superseded”.

6. If the patch is deemed suitable for merging by the relevant maintainer(s) or other devel-
opers they will ack the patch with an email that includes something like:

Acked-by: Alex Smith <alex.smith@example.com>

Note: When acking patches please remove as much of the text of the patch email as
possible. It is generally best to delete everything after the Signed-off-by: line.

7. Having the patch Reviewed-by: and/or Tested-by: will also help the patch to be
accepted.

8. If the patch isn’t deemed suitable based on being out of scope or conflicting with existing
functionality it may receive a nack. In this case you will need to make a more convincing
technical argument in favor of your patches.

9. In addition a patch will not be accepted if it doesn’t address comments from a previous
version with fixes or valid arguments.

10. Acked patches will be merged in the current or next merge window.

11.6 Patch Cheatsheet

Fig. 11.1: Cheat sheet for submitting patches to dev@dpdk.org

11.6. Patch Cheatsheet 657

mailto:dev@dpdk.org

	Getting Started Guide for Linux
	Getting Started Guide for FreeBSD
	Xen Guide
	Programmer's Guide
	Network Interface Controller Drivers
	Crypto Device Drivers
	Sample Applications User Guide
	Testpmd Application User Guide
	FAQ
	Release Notes
	Contributor's Guidelines

