DPDK documentation

Release 2.0.0

Contents

1	Getting Started Guide for Linux	2
2	Getting Started Guide for FreeBSD	24
3	Xen Guide	35
4	Programmer's Guide	43
5	Network Interface Controller Drivers	201
6	Sample Applications User Guide	235
7	Testpmd Application User Guide	391
8	Release Notes	425

Contents:

Contents 1

Getting Started Guide for Linux

July 04, 2016

Contents

1.1 Introduction

This document contains instructions for installing and configuring the Intel® Data Plane Development Kit (DPDK) software. It is designed to get customers up and running quickly. The document describes how to compile and run a DPDK application in a Linux* application (linuxapp) environment, without going deeply into detail.

1.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

- Release Notes: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.
- Getting Started Guide (this document): Describes how to install and configure the DPDK; designed to get users up and running quickly with the software.
- Programmer's Guide: Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application
 - Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

 API Reference: Provides detailed information about DPDK functions, data structures and other programming constructs. Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

Note: These documents are available for download as a separate documentation package at the same location as the DPDK code package.

1.2 System Requirements

This chapter describes the packages required to compile the DPDK.

Note: If the DPDK is being used on an Intel® Communications Chipset 89xx Series platform, please consult the *Intel® Communications Chipset 89xx Series Software for Linux* Getting Started Guide*.

1.2.1 BIOS Setting Prerequisite on x86

For the majority of platforms, no special BIOS settings are needed to use basic DPDK functionality. However, for additional HPET timer and power management functionality, and high performance of small packets on 40G NIC, BIOS setting changes may be needed. Consult *Chapter 5. Enabling Additional Functionality* for more information on the required changes.

1.2.2 Compilation of the DPDK

Required Tools:

Note: Testing has been performed using Fedora* 18. The setup commands and installed packages needed on other systems may be different. For details on other Linux distributions and the versions tested, please consult the DPDK Release Notes.

- GNU make
- · coreutils: cmp, sed, grep, arch
- gcc: versions 4.5.x or later is recommended for i686/x86_64. versions 4.8.x or later
 is recommanded for ppc_64 and x86_x32 ABI. On some distributions, some specific
 compiler flags and linker flags are enabled by default and affect performance (- fstackprotector, for example). Please refer to the documentation of your distribution and to gcc
 -dumpspecs.
- libc headers (glibc-devel.i686 / libc6-dev-i386; glibc-devel.x86_64 for 64-bit compilation on Intel architecture; glibc-devel.ppc64 for 64 bit IBM Power architecture;)
- Linux kernel headers or sources required to build kernel modules. (kernel devel.x86_64; kernel - devel.ppc64)

Additional packages required for 32-bit compilation on 64-bit systems are:
 glibc.i686, libgcc.i686, libstdc++.i686 and glibc-devel.i686 for Intel i686/x86_64;
 glibc.ppc64, libgcc.ppc64, libstdc++.ppc64 and glibc-devel.ppc64 for IBM ppc_64;

Note: x86_x32 ABI is currently supported with distribution packages only on Ubuntu higher than 13.10 or recent debian distribution. The only supported compiler is gcc 4.8+.

Note: Python, version 2.6 or 2.7, to use various helper scripts included in the DPDK package

Optional Tools:

- Intel® C++ Compiler (icc). For installation, additional libraries may be required. See the icc Installation Guide found in the Documentation directory under the compiler installation. This release has been tested using version 12.1.
- IBM® Advance ToolChain for Powerlinux. This is a set of open source development tools and runtime libraries which allows users to take leading edge advantage of IBM's latest POWER hardware features on Linux. To install it, see the IBM official installation document.
- libpcap headers and libraries (libpcap-devel) to compile and use the libpcap-based poll-mode driver. This driver is disabled by default and can be enabled by setting CON-FIG_RTE_LIBRTE_PMD_PCAP=y in the build time config file.

1.2.3 Running DPDK Applications

To run an DPDK application, some customization may be required on the target machine.

System Software

Required:

Kernel version >= 2.6.33

The kernel version in use can be checked using the command:

```
uname -r
```

For details of the patches needed to use the DPDK with earlier kernel versions, see the DPDK FAQ included in the *DPDK Release Notes*. Note also that Redhat* Linux* 6.2 and 6.3 uses a 2.6.32 kernel that already has all the necessary patches applied.

• glibc >= 2.7 (for features related to cpuset)

The version can be checked using the ldd –version command. A sample output is shown below:

```
# ldd --version
ldd (GNU libc) 2.14.90
Copyright (C) 2011 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
```

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Written by Roland McGrath and Ulrich Drepper.

Kernel configuration

In the Fedora* OS and other common distributions, such as Ubuntu*, or RedHat Enterprise Linux*, the vendor supplied kernel configurations can be used to run most DPDK applications.

For other kernel builds, options which should be enabled for DPDK include:

- UIO support
- HUGETLBFS
- PROC_PAGE_MONITOR support
- HPET and HPET_MMAP configuration options should also be enabled if HPET support is required. See Section 5.1 High Precision Event Timer (HPET) Functionality for more details.

Use of Hugepages in the Linux* Environment

Hugepage support is required for the large memory pool allocation used for packet buffers (the HUGETLBFS option must be enabled in the running kernel as indicated in Section 2.3). By using hugepage allocations, performance is increased since fewer pages are needed, and therefore less Translation Lookaside Buffers (TLBs, high speed translation caches), which reduce the time it takes to translate a virtual page address to a physical page address. Without hugepages, high TLB miss rates would occur with the standard 4k page size, slowing performance.

Reserving Hugepages for DPDK Use

The allocation of hugepages should be done at boot time or as soon as possible after system boot to prevent memory from being fragmented in physical memory. To reserve hugepages at boot time, a parameter is passed to the Linux* kernel on the kernel command line.

For 2 MB pages, just pass the hugepages option to the kernel. For example, to reserve 1024 pages of 2 MB, use:

```
hugepages=1024
```

For other hugepage sizes, for example 1G pages, the size must be specified explicitly and can also be optionally set as the default hugepage size for the system. For example, to reserve 4G of hugepage memory in the form of four 1G pages, the following options should be passed to the kernel:

```
default hugepagesz=1G hugepagesz=1G hugepages=4
```

Note: The hugepage sizes that a CPU supports can be determined from the CPU flags on Intel architecture. If pse exists, 2M hugepages are supported; if pdpe1gb exists, 1G hugepages are supported. On IBM Power architecture, the supported hugepage sizes are 16MB and 16GB.

Note: For 64-bit applications, it is recommended to use 1 GB hugepages if the platform supports them.

In the case of a dual-socket NUMA system, the number of hugepages reserved at boot time is generally divided equally between the two sockets (on the assumption that sufficient memory is present on both sockets).

See the Documentation/kernel-parameters.txt file in your Linux* source tree for further details of these and other kernel options.

Alternative:

For 2 MB pages, there is also the option of allocating hugepages after the system has booted. This is done by echoing the number of hugepages required to a nr_hugepages file in the /sys/devices/ directory. For a single-node system, the command to use is as follows (assuming that 1024 pages are required):

```
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages
```

On a NUMA machine, pages should be allocated explicitly on separate nodes:

```
echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr hugepages
```

Note: For 1G pages, it is not possible to reserve the hugepage memory after the system has booted.

Using Hugepages with the DPDK

Once the hugepage memory is reserved, to make the memory available for DPDK use, perform the following steps:

```
mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge
```

The mount point can be made permanent across reboots, by adding the following line to the /etc/fstab file:

```
nodev /mnt/huge hugetlbfs defaults 0 0
```

For 1GB pages, the page size must be specified as a mount option:

```
nodev /mnt/huge 1GB hugetlbfs pagesize=1GB 0 0
```

Xen Domain⁰ Support in the Linux* Environment

The existing memory management implementation is based on the Linux* kernel hugepage mechanism. On the Xen hypervisor, hugepage support for DomainU (DomU) Guests means that DPDK applications work as normal for guests.

However, Domain0 (Dom0) does not support hugepages. To work around this limitation, a new kernel module rte_dom0_mm is added to facilitate the allocation and mapping of memory via **IOCTL** (allocation) and **MMAP** (mapping).

Enabling Xen Dom0 Mode in the DPDK

By default, Xen Dom0 mode is disabled in the DPDK build configuration files. To support Xen Dom0, the CONFIG_RTE_LIBRTE_XEN_DOM0 setting should be changed to "y", which enables the Xen Dom0 mode at compile time.

Furthermore, the CONFIG_RTE_EAL_ALLOW_INV_SOCKET_ID setting should also be changed to "y" in the case of the wrong socket ID being received.

Loading the DPDK rte_dom0_mm Module

To run any DPDK application on Xen Dom0, the rte_dom0_mm module must be loaded into the running kernel with rsv_memsize option. The module is found in the kmod sub-directory of the DPDK target directory. This module should be loaded using the insmod command as shown below (assuming that the current directory is the DPDK target directory):

```
sudo insmod kmod/rte dom0 mm.ko rsv memsize=X
```

The value X cannot be greater than 4096(MB).

Configuring Memory for DPDK Use

After the rte_dom0_mm.ko kernel module has been loaded, the user must configure the memory size for DPDK usage. This is done by echoing the memory size to a memsize file in the /sys/devices/ directory. Use the following command (assuming that 2048 MB is required):

```
echo 2048 > /sys/kernel/mm/dom0-mm/memsize-mB/memsize
```

The user can also check how much memory has already been used:

```
cat /sys/kernel/mm/dom0-mm/memsize-mB/memsize rsvd
```

Xen Domain0 does not support NUMA configuration, as a result the -socket-mem command line option is invalid for Xen Domain0.

Note: The memsize value cannot be greater than the rsv memsize value.

Running the DPDK Application on Xen Domain0

To run the DPDK application on Xen Domain0, an extra command line option –xen-dom0 is required.

1.3 Compiling the DPDK Target from Source

Note: Parts of this process can also be done using the setup script described in Chapter 6 of this document.

1.3.1 Install the DPDK and Browse Sources

First, uncompress the archive and move to the uncompressed DPDK source directory:

```
user@host:~$ unzip DPDK-<version>.zip
user@host:~$ cd DPDK-<version>
user@host:~/DPDK-<version>$ ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile mk/ scripts/
```

The DPDK is composed of several directories:

- lib: Source code of DPDK libraries
- app: Source code of DPDK applications (automatic tests)
- examples: Source code of DPDK application examples
- config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

1.3.2 Installation of DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

where:

- ARCH can be: i686, x86_64, ppc_64
- MACHINE can be: native, ivshmem, power8
- EXECENV can be: linuxapp, bsdapp
- TOOLCHAIN can be: gcc, icc

The targets to be installed depend on the 32-bit and/or 64-bit packages and compilers installed on the host. Available targets can be found in the DPDK/config directory. The defconfig_ prefix should not be used.

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within the configuration files, the RTE_MACHINE configuration value is set to native, which means that the compiled software is tuned for the platform on which it is built. For more information on this setting, and its possible values, see the *DPDK Programmers Guide*.

When using the Intel® C++ Compiler (icc), one of the following commands should be invoked for 64-bit or 32-bit use respectively. Notice that the shell scripts update the \$PATH variable and therefore should not be performed in the same session. Also, verify the compiler's installation directory since the path may be different:

```
source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh ia32
```

To install and make targets, use the make install T=<target> command in the top-level DPDK directory.

For example, to compile a 64-bit target using icc, run:

```
make install T=x86 64-native-linuxapp-icc
```

To compile a 32-bit build using gcc, the make command should be:

```
make install T=i686-native-linuxapp-gcc
```

To compile all 64-bit targets using gcc, use:

```
make install T=x86_64*gcc
```

To compile all 64-bit targets using both gcc and icc, use:

```
make install T=x86 64-*
```

Note: The wildcard operator (*) can be used to create multiple targets at the same time.

To prepare a target without building it, for example, if the configuration changes need to be made before compilation, use the make config T=<target> command:

```
make config T=x86 64-native-linuxapp-gcc
```

Warning: Any kernel modules to be used, e.g. igb_uio, kni, must be compiled with the same kernel as the one running on the target. If the DPDK is not being built on the target machine, the RTE_KERNELDIR environment variable should be used to point the compilation at a copy of the kernel version to be used on the target machine.

Once the target environment is created, the user may move to the target environment directory and continue to make code changes and re-compile. The user may also make modifications to the compile-time DPDK configuration by editing the .config file in the build directory. (This is a build-local copy of the defconfig file from the top- level config directory).

```
cd x86_64-native-linuxapp-gcc
vi .config
make
```

In addition, the make clean command can be used to remove any existing compiled files for a subsequent full, clean rebuild of the code.

1.3.3 Browsing the Installed DPDK Environment Target

Once a target is created it contains all libraries and header files for the DPDK environment that are required to build customer applications. In addition, the test and testpmd applications are built under the build/app directory, which may be used for testing. A kmod directory is also present that contains kernel modules which may be loaded if needed:

```
$ ls x86_64-native-linuxapp-gcc
app build hostapp include kmod lib Makefile
```

1.3.4 Loading Modules to Enable Userspace IO for DPDK

To run any DPDK application, a suitable uio module can be loaded into the running kernel. In many cases, the standard uio_pci_generic module included in the linux kernel can provide the uio capability. This module can be loaded using the command

```
sudo modprobe uio pci generic
```

As an alternative to the uio_pci_generic, the DPDK also includes the igb_uio module which can be found in the kmod subdirectory referred to above. It can be loaded as shown below:

sudo modprobe uio sudo insmod kmod/igb uio.ko

Note: For some devices which lack support for legacy interrupts, e.g. virtual function (VF) devices, the igb_uio module may be needed in place of uio_pci_generic.

Since DPDK release 1.7 onward provides VFIO support, use of UIO is optional for platforms that support using VFIO.

1.3.5 Loading VFIO Module

To run an DPDK application and make use of VFIO, the vfio-pci module must be loaded:

sudo modprobe vfio-pci

Note that in order to use VFIO, your kernel must support it. VFIO kernel modules have been included in the Linux kernel since version 3.6.0 and are usually present by default, however please consult your distributions documentation to make sure that is the case.

Also, to use VFIO, both kernel and BIOS must support and be configured to use IO virtualization (such as Intel® VT-d).

For proper operation of VFIO when running DPDK applications as a non-privileged user, correct permissions should also be set up. This can be done by using the DPDK setup script (called setup.sh and located in the tools directory).

1.3.6 Binding and Unbinding Network Ports to/from the Kernel Modules

As of release 1.4, DPDK applications no longer automatically unbind all supported network ports from the kernel driver in use. Instead, all ports that are to be used by an DPDK application must be bound to the uio_pci_generic, igb_uio or vfio-pci module before the application is run. Any network ports under Linux* control will be ignored by the DPDK poll-mode drivers and cannot be used by the application.

Warning: The DPDK will, by default, no longer automatically unbind network ports from the kernel driver at startup. Any ports to be used by an DPDK application must be unbound from Linux* control and bound to the uio_pci_generic, igb_uio or vfio-pci module before the application is run.

To bind ports to the uio_pci_generic, igb_uio or vfio-pci module for DPDK use, and then subsequently return ports to Linux* control, a utility script called dpdk_nic_bind.py is provided in the tools subdirectory. This utility can be used to provide a view of the current state of the network ports on the system, and to bind and unbind those ports from the different kernel modules, including the uio and vfio modules. The following are some examples of how the script can be used. A full description of the script and its parameters can be obtained by calling the script with the –help or –usage options. Note that the uio or vfio kernel modules to be used, should be loaded into the kernel before running the dpdk nic bind.py script.

Warning: Due to the way VFIO works, there are certain limitations to which devices can be used with VFIO. Mainly it comes down to how IOMMU groups work. Any Virtual Function device can be used with VFIO on its own, but physical devices will require either all ports bound to VFIO, or some of them bound to VFIO while others not being bound to anything at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU group in which your device is in. Therefore, the bridge driver should also be unbound from the bridge PCI device for VFIO to work with devices behind the bridge.

Warning: While any user can run the dpdk_nic_bind.py script to view the status of the network ports, binding or unbinding network ports requires root privileges.

To see the status of all network ports on the system:

```
root@host:DPDK# ./tools/dpdk nic bind.py --status
  Network devices using DPDK-compatible driver
  0000:82:00.0 '82599EB 10-Gigabit SFI/SFP+ Network Connection' drv=uio pci generic unused=ixgbe
  0000:82:00.1 '82599EB 10-Gigabit SFI/SFP+ Network Connection' drv=uio_pci_generic unused=ixgbe
  Network devices using kernel driver
  0000:04:00.0 'I350 Gigabit Network Connection' if=em0 drv=igb unused=uio pci generic *Active*
  0000:04:00.1 'I350 Gigabit Network Connection' if=eth1 drv=igb unused=uio pci generic
  0000:04:00.2 'I350 Gigabit Network Connection' if=eth2 drv=igb unused=uio pci generic
  0000:04:00.3 'I350 Gigabit Network Connection' if=eth3 drv=igb unused=uio pci generic
  Other network devices
  <none>
To bind device eth1, 04:00.1, to the uio pci generic driver:
  root@host:DPDK# ./tools/dpdk nic bind.py --bind=uio pci generic 04:00.1
or, alternatively,
  root@host:DPDK# ./tools/dpdk nic bind.py --bind=uio pci generic eth1
To restore device 82:00.0 to its original kernel binding:
  root@host:DPDK# ./tools/dpdk nic bind.py --bind=ixgbe 82:00.0
```

1.4 Compiling and Running Sample Applications

The chapter describes how to compile and run applications in an DPDK environment. It also provides a pointer to where sample applications are stored.

Note: Parts of this process can also be done using the setup script described in **Chapter 6** of this document.

1.4.1 Compiling a Sample Application

Once an DPDK target environment directory has been created (such as x86_64-native-linuxapp-gcc), it contains all libraries and header files required to build an application.

When compiling an application in the Linux* environment on the DPDK, the following variables must be exported:

- RTE SDK Points to the DPDK installation directory.
- RTE_TARGET Points to the DPDK target environment directory.

The following is an example of creating the helloworld application, which runs in the DPDK Linux environment. This example may be found in the \${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the DPDK target environment, calls the various functions to initialize the DPDK environment, then launches an entry point (dispatch application) for each core to be utilized. By default, the binary is generated in the build directory.

Note: In the above example, helloworld was in the directory structure of the DPDK. However, it could have been located outside the directory structure to keep the DPDK structure intact. In the following case, the helloworld application is copied to a new directory as a new starting point.

1.4.2 Running a Sample Application

Warning: The UIO drivers and hugepages must be setup prior to running an application.

Warning: Any ports to be used by the application must be already bound to an appropriate kernel module, as described in Section 3.5, prior to running the application.

The application is linked with the DPDK target environment's Environmental Abstraction Layer (EAL) library, which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

```
./rte-app -c COREMASK -n NUM [-b <domain:bus:devid.func>] [--socket-mem=MB,...] [-m MB] [-r NUM
```

The EAL options are as follows:

- -c COREMASK: An hexadecimal bit mask of the cores to run on. Note that core numbering can change between platforms and should be determined beforehand.
- -n NUM: Number of memory channels per processor socket
- -b <domain:bus:devid.func>: blacklisting of ports; prevent EAL from using specified PCI device (multiple -b options are allowed)
- -use-device: use the specified ethernet device(s) only. Use comma-separate <[domain:]bus:devid.func> values. Cannot be used with -b option
- -socket-mem: Memory to allocate from hugepages on specific sockets
- -m MB: Memory to allocate from hugepages, regardless of processor socket. It is recommended that —socket-mem be used instead of this option.
- · -r NUM: Number of memory ranks
- · -v: Display version information on startup
- -huge-dir: The directory where hugetlbfs is mounted
- -file-prefix: The prefix text used for hugepage filenames
- –proc-type: The type of process instance
- –xen-dom0: Support application running on Xen Domain0 without hugetlbfs
- –vmware-tsc-map: use VMware TSC map instead of native RDTSC
- –base-virtaddr: specify base virtual address
- -vfio-intr: specify interrupt type to be used by VFIO (has no effect if VFIO is not used)

The -c and the -n options are mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming the platform has four memory channels per processor socket, and that cores 0-3 are present and are to be used for running the application):

```
user@target:~$ ./helloworld -c f -n 4
```

Note: The –proc-type and –file-prefix EAL options are used for running multiple DPDK processes. See the "Multi-process Sample Application" chapter in the *DPDK Sample Applications User Guide* and the *DPDK Programmers Guide* for more details.

Logical Core Use by Applications

The coremask parameter is always mandatory for DPDK applications. Each bit of the mask corresponds to the equivalent logical core number as reported by Linux. Since these logical core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from

platform to platform, it is recommended that the core layout for each platform be considered when choosing the coremask to use in each case.

On initialization of the EAL layer by an DPDK application, the logical cores to be used and their socket location are displayed. This information can also be determined for all cores on the system by examining the /proc/cpuinfo file, for example, by running cat /proc/cpuinfo. The physical id attribute listed for each processor indicates the CPU socket to which it belongs. This can be useful when using other processors to understand the mapping of the logical cores to the sockets.

Note: A more graphical view of the logical core layout may be obtained using the Istopo Linux utility. On Fedora* Linux, this may be installed and run using the following command:

```
sudo yum install hwloc
./lstopo
```

Warning: The logical core layout can change between different board layouts and should be checked before selecting an application coremask.

Hugepage Memory Use by Applications

When running an application, it is recommended to use the same amount of memory as that allocated for hugepages. This is done automatically by the DPDK application at startup, if no -m or -socket-mem parameter is passed to it when run.

If more memory is requested by explicitly passing a -m or -socket-mem value, the application fails. However, the application itself can also fail if the user requests less memory than the reserved amount of hugepage-memory, particularly if using the -m option. The reason is as follows. Suppose the system has 1024 reserved 2 MB pages in socket 0 and 1024 in socket 1. If the user requests 128 MB of memory, the 64 pages may not match the constraints:

- The hugepage memory by be given to the application by the kernel in socket 1 only. In this case, if the application attempts to create an object, such as a ring or memory pool in socket 0, it fails. To avoid this issue, it is recommended that the socket-mem option be used instead of the -m option.
- These pages can be located anywhere in physical memory, and, although the DPDK EAL will attempt to allocate memory in contiguous blocks, it is possible that the pages will not be contiguous. In this case, the application is not able to allocate big memory pools.

The socket-mem option can be used to request specific amounts of memory for specific sockets. This is accomplished by supplying the –socket-mem flag followed by amounts of memory requested on each socket, for example, supply –socket-mem=0,512 to try and reserve 512 MB for socket 1 only. Similarly, on a four socket system, to allocate 1 GB memory on each of sockets 0 and 2 only, the parameter –socket-mem=1024,0,1024 can be used. No memory will be reserved on any CPU socket that is not explicitly referenced, for example, socket 3 in this case. If the DPDK cannot allocate enough memory on each socket, the EAL initialization fails.

1.4.3 Additional Sample Applications

Additional sample applications are included in the \${RTE_SDK}/examples directory. These sample applications may be built and run in a manner similar to that described in earlier sections in this manual. In addition, see the *DPDK Sample Applications User Guide* for a description of the application, specific instructions on compilation and execution and some explanation of the code.

1.4.4 Additional Test Applications

In addition, there are two other applications that are built when the libraries are created. The source files for these are in the DPDK/app directory and are called test and testpmd. Once the libraries are created, they can be found in the build/app directory.

- The test application provides a variety of specific tests for the various functions in the DPDK.
- The testpmd application provides a number of different packet throughput tests and examples of features such as how to use the Flow Director found in the Intel® 82599 10 Gigabit Ethernet Controller.

1.5 Enabling Additional Functionality

1.5.1 High Precision Event Timer HPET) Functionality

BIOS Support

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used. Otherwise, the Time Stamp Counter (TSC) is used by default. The BIOS is typically accessed by pressing F2 while the platform is starting up. The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is: **Advanced -> PCH-IO Configuration -> High Precision Timer ->** (Change from Disabled to Enabled if necessary).

On a system that has already booted, the following command can be issued to check if HPET is enabled:

```
# grep hpet /proc/timer_list
```

If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above) and the system rebooted.

Linux Kernel Support

The DPDK makes use of the platform HPET timer by mapping the timer counter into the process address space, and as such, requires that the HPET_MMAP kernel configuration option be enabled.

Warning: On Fedora*, and other common distributions such as Ubuntu*, the HPET_MMAP kernel option is not enabled by default. To recompile the Linux kernel with this option enabled, please consult the distributions documentation for the relevant instructions.

Enabling HPET in the DPDK

By default, HPET support is disabled in the DPDK build configuration files. To use HPET, the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to "y", which will enable the HPET settings at compile time.

For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API calls, and optionally to make the HPET the default time source for the rte_timer library, the new rte_eal_hpet_init() API call should be called at application initialization. This API call will ensure that the HPET is accessible, returning an error to the application if it is not, for example, if HPET_MMAP is not enabled in the kernel. The application can then determine what action to take, if any, if the HPET is not available at run-time.

Note: For applications that require timing APIs, but not the HPET timer specifically, it is recommended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used instead of the HPET-specific APIs. These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application call to rte_eal_hpet_init(), if any, and on what is available on the system at runtime.

1.5.2 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources directly, with a number of small permission adjustments it is possible to run these applications as a user other than "root". To do so, the ownership, or permissions, on the following Linux file system objects should be adjusted to ensure that the Linux user account being used to run the DPDK application has access to them:

- All directories which serve as hugepage mount points, for example, /mnt/huge
- The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on
- The userspace-io sysfs config and resource files, for example for uio0: /sys/class/uio/uio0/device/config /sys/class/uio/uio0/device/resource*
- If the HPET is to be used, /dev/hpet

Note: On some Linux installations, /dev/hugepages is also a hugepage mount point created by default.

1.5.3 Power Management and Power Saving Functionality

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used. Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based power management cannot be used. Consult the relevant BIOS documentation to determine how these settings can be accessed.

For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel SpeedStep® Technology is:

Advanced->Processor Configuration->Enhanced Intel SpeedStep® Tech

In addition, C3 and C6 should be enabled as well for power management. The path of C3 and C6 on the same platform BIOS is:

Advanced->Processor Configuration->Processor C3 Advanced->Processor Configuration-> Processor C6

1.5.4 Using Linux* Core Isolation to Reduce Context Switches

While the threads used by an DPDK application are pinned to logical cores on the system, it is possible for the Linux scheduler to run other tasks on those cores also. To help prevent additional workloads from running on those cores, it is possible to use the isolcpus Linux* kernel parameter to isolate them from the general Linux scheduler.

For example, if DPDK applications are to run on logical cores 2, 4 and 6, the following should be added to the kernel parameter list:

isolcpus=2,4,6

1.5.5 Loading the DPDK KNI Kernel Module

To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the kni module) must be loaded into the running kernel. The module is found in the kmod sub-directory of the DPDK target directory. Similar to the loading of the igb_uio module, this module should be loaded using the insmod command as shown below (assuming that the current directory is the DPDK target directory):

#insmod kmod/rte_kni.ko

Note: See the "Kernel NIC Interface Sample Application" chapter in the *DPDK Sample Applications User Guide* for more details.

1.5.6 Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set. These include:

- IOMMU_SUPPORT
- IOMMU API
- INTEL IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be used when using igb_uio driver. This results in pass-through of the DMAR (DMA Remapping) lookup in the host. Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the intel_iommu=on kernel parameter must be used too. This ensures that the Intel IOMMU is being initialized as expected.

Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci driver can actually work with both iommu=pt and iommu=on.

1.5.7 High Performance of Small Packets on 40G NIC

As there might be firmware fixes for performance enhancement in latest version of firmware image, the firmware update might be needed for getting high performance. Check with the local Intel's Network Division application engineers for firmware updates. The base driver to support firmware version of FVL3E will be integrated in the next DPDK release, so currently the validated firmware version is 4.2.6.

Enabling Extended Tag and Setting Max Read Request Size

PCI configurations of extended_tag and max _read_requ st_size have big impacts on performance of small packets on 40G NIC. Enabling extended_tag and setting max _read_requ st_size to small size such as 128 bytes provide great helps to high performance of small packets.

- These can be done in some BIOS implementations.
- For other BIOS implementations, PCI configurations can be changed by using command of setpci, or special configurations in DPDK config file of common_linux.
 - Bits 7:5 at address of 0xA8 of each PCI device is used for setting the max_read_request_size, and bit 8 of 0xA8 of each PCI device is used for enabling/disabling the extended_tag. Ispci and setpci can be used to read the values of 0xA8 and then write it back after being changed.
 - In config file of common_linux, below three configurations can be changed for the same purpose.

```
CONFIG_RTE_PCI_CONFIG

CONFIG_RTE_PCI_EXTENDED_TAG

CONFIG_RTE_PCI_MAX_READ_REQUEST_SIZE
```

Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes size can provide helps to high performance of small packets. Configuration of CON-FIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16 bytes size RX descriptors.

High Performance and per Packet Latency Tradeoff

Due to the hardware design, the interrupt signal inside NIC is needed for per packet descriptor write-back. The minimum interval of interrupts could be set at compile time by CON-FIG_RTE_LIBRTE_I40E_ITR_INTERVAL in configuration files. Though there is a default configuration, the interval could be tuned by the users with that configuration item depends on what the user cares about more, performance or per packet latency.

1.6 Quick Start Setup Script

The setup.sh script, found in the tools subdirectory, allows the user to perform the following tasks:

- · Build the DPDK libraries
- Insert and remove the DPDK IGB UIO kernel module
- Insert and remove VFIO kernel modules
- Insert and remove the DPDK KNI kernel module
- · Create and delete hugepages for NUMA and non-NUMA cases
- View network port status and reserve ports for DPDK application use
- Set up permissions for using VFIO as a non-privileged user
- · Run the test and testpmd applications
- Look at hugepages in the meminfo
- · List hugepages in /mnt/huge
- · Remove built DPDK libraries

Once these steps have been completed for one of the EAL targets, the user may compile their own application that links in the EAL libraries to create the DPDK image.

1.6.1 Script Organization

The setup.sh script is logically organized into a series of steps that a user performs in sequence. Each step provides a number of options that guide the user to completing the desired task. The following is a brief synopsis of each step.

Step 1: Build DPDK Libraries

Initially, the user must select a DPDK target to choose the correct target type and compiler options to use when building the libraries.

The user must have all libraries, modules, updates and compilers installed in the system prior to this, as described in the earlier chapters in this Getting Started Guide.

Step 2: Setup Environment

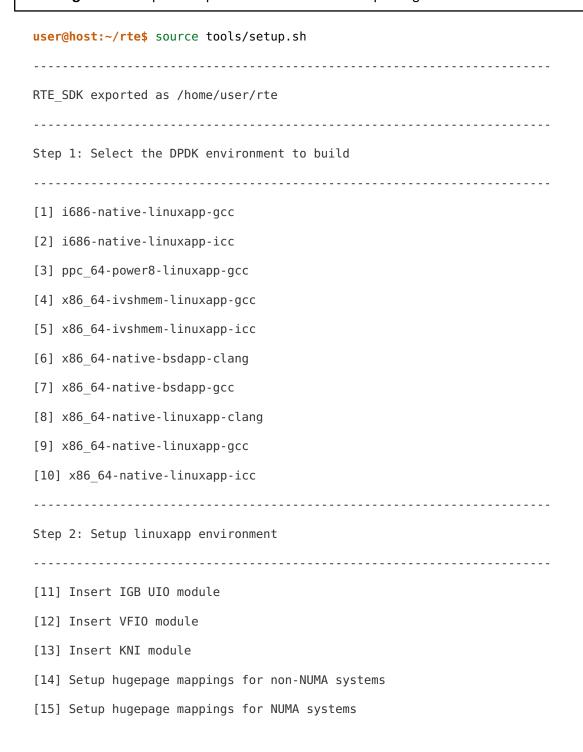
The user configures the Linux* environment to support the running of DPDK applications. Hugepages can be set up for NUMA or non-NUMA systems. Any existing hugepages will be removed. The DPDK kernel module that is needed can also be inserted in this step, and network ports may be bound to this module for DPDK application use.

Step 3: Run an Application

The user may run the test application once the other steps have been performed. The test application allows the user to run a series of functional tests for the DPDK. The testpmd application, which supports the receiving and sending of packets, can also be run.

Step 4: Examining the System

This step provides some tools for examining the status of hugepage mappings.


Step 5: System Cleanup

The final step has options for restoring the system to its original state.

1.6.2 Use Cases

The following are some example of how to use the setup.sh script. The script should be run using the source command. Some options in the script prompt the user for further data before proceeding.

Warning: The setup.sh script should be run with root privileges.


```
[16] Display current Ethernet device settings
  [17] Bind Ethernet device to IGB UIO module
  [18] Bind Ethernet device to VFIO module
  [19] Setup VFIO permissions
  Step 3: Run test application for linuxapp environment
  [20] Run test application ($RTE_TARGET/app/test)
  [21] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)
  Step 4: Other tools
  [22] List hugepage info from /proc/meminfo
  ______
  Step 5: Uninstall and system cleanup
  [23] Uninstall all targets
  [24] Unbind NICs from IGB UIO driver
  [25] Remove IGB UIO module
  [26] Remove VFIO module
  [27] Remove KNI module
  [28] Remove hugepage mappings
  [29] Exit Script
Option:
The following selection demonstrates the creation of the x86_64-native-linuxapp-gcc DPDK
library.
  Option: 9
```

```
configuration done
== Build lib
...
```

Build complete RTE TARGET exported as x86 64-native -linuxapp-gcc

The following selection demonstrates the starting of the DPDK UIO driver.

```
Option: 25
Unloading any existing DPDK UIO module Loading DPDK UIO module
```

The following selection demonstrates the creation of hugepages in a NUMA system. 1024 2 Mbyte pages are assigned to each node. The result is that the application should use -m 4096 for starting the application to access both memory areas (this is done automatically if the -m option is not provided).

Note: If prompts are displayed to remove temporary files, type 'y'.

```
Option: 15

Removing currently reserved hugepages nmounting /mnt/huge and removing directory Input the number of 2MB pages for each node Example: to have 128MB of hugepages available per node, enter '64' to reserve 64 * 2MB pages on each node Number of pages for node0: 1024

Number of pages for node1: 1024

Reserving hugepages

Creating /mnt/huge and mounting as hugetlbfs
```

The following selection demonstrates the launch of the test application to run on a single core.

```
Option: 20

Enter hex bitmask of cores to execute test app on Example: to execute app on cores 0 to 7, enter 0xff bitmask: 0x01
Launching app EAL: coremask set to 1
EAL: Detected lcore 0 on socket 0
...
EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>
```

1.6.3 Applications

Once the user has run the setup.sh script, built one of the EAL targets and set up hugepages (if using one of the Linux EAL targets), the user can then move on to building and running their application or one of the examples provided.

The examples in the /examples directory provide a good starting point to gain an understanding of the operation of the DPDK. The following command sequence shows how the helloworld sample application is built and run. As recommended in Section 4.2.1, "Logical Core Use by Applications", the logical core layout of the platform should be determined when selecting a core mask to use for an application.

```
rte@rte-desktop:~/rte/examples$ cd helloworld/
rte@rte-desktop:~/rte/examples/helloworld$ make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map
rte@rte-desktop:~/rte/examples/helloworld$ sudo ./build/app/helloworld -c 0xf -n 3
[sudo] password for rte:
```

```
EAL: coremask set to f
EAL: Detected lcore 0 as core 0 on socket 0
EAL: Detected lcore 1 as core 0 on socket 1
EAL: Detected lcore 2 as core 1 on socket 0
EAL: Detected lcore 3 as core 1 on socket 1
EAL: Setting up hugepage memory...
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0add800000 (size = 0x200000)
EAL: Ask a virtual area of 0x3d400000 bytes
EAL: Virtual area found at 0x7f0aa0200000 (size = 0x3d400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9fc00000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f000000 (size = 0x400000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9e600000 (size = 0x800000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9dc00000 (size = 0x800000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d000000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9ca00000 (size = 0x400000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c600000 (size = 0x200000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c200000 (size = 0x200000)
EAL: Ask a virtual area of 0x3fc00000 bytes
EAL: Virtual area found at 0x7f0a5c400000 (size = 0x3fc00000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a5c000000 (size = 0x200000)
EAL: Requesting 1024 pages of size 2MB from socket 0
EAL: Requesting 1024 pages of size 2MB from socket 1
EAL: Master core 0 is ready (tid=de25b700)
EAL: Core 1 is ready (tid=5b7fe700)
EAL: Core 3 is ready (tid=5a7fc700)
EAL: Core 2 is ready (tid=5affd700)
hello from core 1
hello from core 2
hello from core 3
hello from core 0
```

Getting Started Guide for FreeBSD

July 04, 2016

Contents

2.1 Introduction

This document contains instructions for installing and configuring the Data Plane Development Kit (DPDK) software. It is designed to get customers up and running quickly and describes how to compile and run a DPDK application in a FreeBSD* application (bsdapp) environment, without going deeply into detail.

For a comprehensive guide to installing and using FreeBSD*, the following handbook is available from the FreeBSD* Documentation Project:

http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/index.html

Note: The DPDK is now available as part of the FreeBSD ports collection. Installing via the ports collection infrastructure is now the recommended way to install the DPDK on FreeBSD, and is documented in the next chapter, *Installing DPDK from the Ports Collection*.

2.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

- Release Notes: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.
- **Getting Started Guide** (this document): Describes how to install and configure the DPDK; designed to get users up and running quickly with the software.
- Programmer's Guide: Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application

 Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

- **API Reference**: Provides detailed information about DPDK functions, data structures and other programming constructs.
- Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

Note: These documents are available for download as a separate documentation package at the same location as the DPDK code package.

2.2 Installing DPDK from the Ports Collection

The easiest way to get up and running with the DPDK on FreeBSD is to install it from the ports collection. Details of getting and using the ports collection are documented in the FreeBSD Handbook at:

https://www.freebsd.org/doc/handbook/ports-using.html

Note: Testing has been performed using FreeBSD* 10.0-RELEASE (x86_64) and requires the installation of the kernel sources, which should be included during the installation of FreeBSD*.

2.2.1 Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK can be installed using the commands:

```
root@host:~ # cd /usr/ports/net/dpdk
root@host:~ # make install
```

After the installation of the DPDK port, instructions will be printed on how to install the kernel modules required to use the DPDK. A more complete version of these instructions can be found in the sections *Loading the DPDK contigmem Module* and *Loading the DPDK nic_uio Module*. Normally, lines like those below would be added to the file "/boot/loader.conf".

```
# reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"
# identify NIC devices for DPDK apps to use and load nic_uio driver
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"
```

2.2.2 Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs its example applications in "/usr/local/share/dpdk/examples" - also accessible via symlink as "/usr/local/share/examples/dpdk". These examples can be compiled and run as described in *Compiling and Running Sample Applications*. In this case, the required environmental variables should be set as below:

- RTE_SDK=/usr/local/share/dpdk
- RTE_TARGET=x86_64-native-bsdapp-clang

Note: To install a copy of the DPDK compiled using gcc, please download the official DPDK package from http://dpdk.org/ and install manually using the instructions given in the next chapter, *Compiling the DPDK Target from Source*

An example application can therefore be copied to a user's home directory and compiled and run as below:

```
user@host:~$ export RTE SDK=/usr/local/share/dpdk
user@host:~$ export RTE_TARGET=x86_64-native-bsdapp-clang
user@host:~$ cp -r /usr/local/share/dpdk/examples/helloworld .
user@host:~$ cd helloworld/
user@host:~/helloworld$ gmake
 CC main.o
 LD helloworld
  INSTALL-APP helloworld
  INSTALL-MAP helloworld.map
user@host:~/helloworld$ sudo ./build/helloworld -c F -n 2
EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus
EAL: Detected lcore 0
EAL: Detected lcore 1
EAL: Detected lcore 2
EAL: Detected lcore 3
EAL: Support maximum 64 logical core(s) by configuration.
EAL: Detected 4 lcore(s)
EAL: Setting up physically contiguous memory...
EAL: Mapped memory segment 1 @ 0x802400000: physaddr:0x40000000, len 1073741824
EAL: Mapped memory segment 2 @ 0x842400000: physaddr:0x100000000, len 1073741824
EAL: WARNING: clock gettime cannot use CLOCK MONOTONIC RAW and HPET is not available - clock t.
EAL: TSC frequency is ~3569023 KHz
EAL: PCI scan found 24 devices
EAL: Master core 0 is ready (tid=0x802006400)
EAL: Core 1 is ready (tid=0x802006800)
EAL: Core 3 is ready (tid=0x802007000)
EAL: Core 2 is ready (tid=0x802006c00)
EAL: PCI device 0000:01:00.0 on NUMA socket 0
EAL:
      probe driver: 8086:10fb rte ixgbe pmd
EAL:
      PCI memory mapped at 0x80074a000
      PCI memory mapped at 0x8007ca000
EAL:
EAL: PCI device 0000:01:00.1 on NUMA socket 0
       probe driver: 8086:10fb rte ixgbe pmd
EAL:
       PCI memory mapped at 0x8007ce000
```

PCI memory mapped at 0x80084e000

EAL:

```
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x800852000
EAL: PCI memory mapped at 0x8008d2000
EAL: PCI device 0000:02:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x801b3f000
EAL: PCI memory mapped at 0x8008d6000
hello from core 1
hello from core 2
hello from core 3
hello from core 0
```

Note: To run a DPDK process as a non-root user, adjust the permissions on the /dev/contigmem and /dev/uio device nodes as described in section *Running DPDK Applications Without Root Privileges*

Note: For an explanation of the command-line parameters that can be passed to an DPDK application, see section *Running a Sample Application*.

2.3 Compiling the DPDK Target from Source

Note: Testing has been performed using FreeBSD* 10.0-RELEASE (x86_64) and requires the installation of the kernel sources, which should be included during the installation of FreeBSD*. The DPDK also requires the use of FreeBSD* ports to compile and function.

2.3.1 System Requirements

The DPDK and its applications require the GNU make system (gmake) to build on FreeBSD*. Optionally, gcc may also be used in place of clang to build the DPDK, in which case it too must be installed prior to compiling the DPDK. The installation of these tools is covered in this section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be included during the installation of FreeBSD* on the development platform. The DPDK also requires the use of FreeBSD* ports to compile and function.

To use the FreeBSD* ports system, it is required to update and extract the FreeBSD* ports tree by issuing the following commands:

```
root@host:~ # portsnap fetch
root@host:~ # portsnap extract
```

If the environment requires proxies for external communication, these can be set using:

```
root@host:~ # setenv http_proxy <my_proxy_host>:<port>
root@host:~ # setenv ftp_proxy <my_proxy_host>:<port>
```

The FreeBSD* ports below need to be installed prior to building the DPDK. In general these can be installed using the following set of commands:

- cd /usr/ports/<port_location>
- 2. make config-recursive
- 3. make install
- 4. make clean

Each port location can be found using:

```
user@host:~ # whereis <port_name>
```

The ports required and their locations are as follows:

dialog4ports /usr/ports/ports-mgmt/dialog4ports

GNU make(gmake) /usr/ports/devel/gmake

coreutils /usr/ports/sysutils/coreutils

For compiling and using the DPDK with gcc, it too must be installed from the ports collection:

gcc: version 4.8 is recommended /usr/ports/lang/gcc48 (Ensure that CPU_OPTS is selected (default is OFF))

When running the make config-recursive command, a dialog may be presented to the user. For the installation of the DPDK, the default options were used.

Note: To avoid multiple dialogs being presented to the user during make install, it is advisable before running the make install command to re-run the make config -recursive command until no more dialogs are seen.

2.3.2 Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

```
user@host:~ # unzip DPDK-<version>zip
user@host:~ # cd DPDK-<version>
user@host:~/DPDK # ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile mk/ scripts/ tools/
```

The DPDK is composed of several directories:

- lib: Source code of DPDK libraries
- app: Source code of DPDK applications (automatic tests)
- examples: Source code of DPDK applications
- config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

2.3.3 Installation of the DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

Where:

ARCH is: x86 64

MACHINE is: nativeEXECENV is: bsdapp

• TOOLCHAIN is: gcc | clang

The configuration files for the DPDK targets can be found in the DPDK/config directory in the form of:

```
defconfig_ARCH-MACHINE-EXECENV-TOOLCHAIN
```

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within the configuration files, the RTE_MACHINE configuration value is set to native, which means that the compiled software is tuned for the platform on which it is built. For more information on this setting, and its possible values, see the *DPDK Programmers Guide*.

To install and make the target, use "gmake install T=<target>".

For example to compile for FreeBSD* use:

```
gmake install T=x86_64-native-bsdapp-clang
```

Note: If the compiler binary to be used does not correspond to that given in the TOOLCHAIN part of the target, the compiler command may need to be explicitly specified. For example, if compiling for gcc, where the gcc binary is called gcc4.8, the command would need to be "gmake install T=<target> CC=gcc4.8".

2.3.4 Browsing the Installed DPDK Environment Target

Once a target is created, it contains all the libraries and header files for the DPDK environment that are required to build customer applications. In addition, the test and testpmd applications are built under the build/app directory, which may be used for testing. A kmod directory is also present that contains the kernel modules to install:

```
user@host:~/DPDK # ls x86_64-native-bsdapp-gcc
app build hostapp include kmod lib Makefile
```

2.3.5 Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required. In the absence of non-transparent superpages, the included sources for the contigmem kernel module provides the ability to present contiguous blocks of memory for the DPDK to use. The contigmem module must be loaded into the running kernel before any DPDK is run. The module is found in the kmod sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically contiguous blocks to be reserved by the module can be set at runtime prior to module loading using:

```
root@host:~ # kenv hw.contigmem.num_buffers=n
root@host:~ # kenv hw.contigmem.buffer_size=m
```

The kernel environment variables can also be specified during boot by placing the following in /boot/loader.conf:

```
hw.contigmem.num buffers=n hw.contigmem.buffer size=m
```

The variables can be inspected using the following command:

```
root@host:~ # sysctl -a hw.contigmem
```

Where n is the number of blocks and m is the size in bytes of each area of contiguous memory. A default of two buffers of size 1073741824 bytes (1 Gigabyte) each is set during module load if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory is the DPDK target directory):

```
kldload ./kmod/contigmem.ko
```

It is advisable to include the loading of the contigmem module during the boot process to avoid issues with potential memory fragmentation during later system up time. This can be achieved by copying the module to the /boot/kernel/ directory and placing the following into /boot/loader.conf:

```
contigmem load="YES"
```

Note: The contigmem_load directive should be placed after any definitions of hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values are not to be used.

An error such as:

```
kldload: can't load ./x86 64-native-bsdapp-gcc/kmod/contigmem.ko: Exec format error
```

is generally attributed to not having enough contiguous memory available and can be verified via dmesg or /var/log/messages:

```
kernel: contigmalloc failed for buffer <n>
```

To avoid this error, reduce the number of buffers or the buffer size.

2.3.6 Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio must also be loaded into the running kernel prior to running any DPDK application. This module must be loaded using the kldload command as shown below (assuming that the current directory is the DPDK target directory).

```
kldload ./kmod/nic uio.ko
```

Note: If the ports to be used are currently bound to a existing kernel driver then the hw.nic_uio.bdfs sysctl value will need to be set before loading the module. Setting this value is described in the next section below.

Currently loaded modules can be seen by using the "kldstat" command and a module can be removed from the running kernel by using "kldunload <module name>".

To load the module during boot, copy the nic_uio module to /boot/kernel and place the following into /boot/loader.conf:

```
nic uio load="YES"
```

Note: nic uio load="YES" must appear after the contigmem load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are recognized DPDK devices and are not owned by another module. However, since the FreeBSD kernel includes support, either built-in, or via a separate driver module, for most network card devices, it is likely that the ports to be used are already bound to a driver other than nic_uio. The following sub-section describe how to query and modify the device ownership of the ports to be used by DPDK applications.

Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -I command. The example below shows four Intel® 82599 network ports under "if_ixgbe" module ownership.

```
user@host:~ # pciconf -l
ix0@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pci0:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
```

The first column constitutes three components:

Device name: ixN
 Unit name: pci0

3. Selector (Bus:Device:Function): 1:0:0

Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD* kernel will include built-in drivers for the most common devices; a kernel rebuild would normally be required to either remove the drivers or configure them as loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port from its current device driver. This is achieved by setting the hw.nic_uio.bdfs kernel environment variable prior to loading nic_uio, as follows:

```
hw.nic uio.bdfs="b:d:f,b:d:f,..."
```

Where a comma separated list of selectors is set, the list must not contain any whitespace.

For example to re-bind "ix2@pci0:2:0:0" and "ix3@pci0:2:0:1" to the nic_uio module upon loading, use the following command:

```
kenv hw.nic_uio.bdfs="2:0:0,2:0:1"
```

The variable can also be specified during boot by placing the following into "/boot/loader.conf", before the previously-described "nic_uio_load" line - as shown.

```
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"
```

Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel, it is necessary to reboot FreeBSD* to restore the original device binding. Before doing so, update or remove the

"hw.nic_uio.bdfs" in "/boot/loader.conf".

If rebinding to a driver that is a loadable module, the network port binding can be reset without rebooting. To do so, unload both the target kernel module and the nic_uio module, modify or clear the "hw.nic_uio.bdfs" kernel environment (kenv) value, and reload the two drivers - first the original kernel driver, and then the nic_uio driver. [The latter does not need to be reloaded unless there are ports that are still to be bound to it].

Example commands to perform these steps are shown below:

```
kldunload nic_uio
kldunload <original_driver>
kenv -u hw.nic_uio.bdfs # to clear the value completely
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..." # to update the list of ports to bind
kldload <original_driver>
kldload nic uio # optional
```

2.4 Compiling and Running Sample Applications

The chapter describes how to compile and run applications in a DPDK environment. It also provides a pointer to where sample applications are stored.

2.4.1 Compiling a Sample Application

Once a DPDK target environment directory has been created (such as x86_64-native-bsdapp-clang), it contains all libraries and header files required to build an application.

When compiling an application in the FreeBSD* environment on the DPDK, the following variables must be exported:

- RTE SDK Points to the DPDK installation directory.
- RTE_TARGET Points to the DPDK target environment directory. For FreeBSD*, this is the x86_64-native-bsdapp-clang or x86_64-native-bsdapp-gcc directory.

The following is an example of creating the helloworld application, which runs in the DPDK FreeBSD* environment. While the example demonstrates compiling using gcc version 4.8, compiling with clang will be similar, except that the "CC=" parameter can probably be omitted. The "helloworld" example may be found in the \${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the DPDK target environment, calls the various functions to initialize the DPDK environment, then launches an entry point (dispatch application) for each core to be utilized. By default, the binary is generated in the build directory.

```
user@host:~/DPDK$ cd examples/helloworld/
user@host:~/DPDK/examples/helloworld$ setenv RTE_SDK $HOME/DPDK
user@host:~/DPDK/examples/helloworld$ setenv RTE_TARGET x86_64-native-bsdapp-gcc
user@host:~/DPDK/examples/helloworld$ gmake CC=gcc48
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map
```

```
user@host:~/DPDK/examples/helloworld$ ls build/app
helloworld helloworld.map
```

Note: In the above example, helloworld was in the directory structure of the DPDK. However, it could have been located outside the directory structure to keep the DPDK structure intact. In the following case, the helloworld application is copied to a new directory as a new starting point.

```
user@host:~$ setenv RTE_SDK /home/user/DPDK
user@host:~$ cp -r $(RTE_SDK)/examples/helloworld my_rte_app
user@host:~$ cd my_rte_app/
user@host:~$ setenv RTE_TARGET x86_64-native-bsdapp-gcc
user@host:~/my_rte_app$ gmake CC=gcc48
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map
```

2.4.2 Running a Sample Application

- 1. The contigmem and nic_uio modules must be set up prior to running an application.
- 2. Any ports to be used by the application must be already bound to the nic_uio module, as described in section *Binding Network Ports to the nic_uio Module*, prior to running the application. The application is linked with the DPDK target environment's Environment Abstraction Layer (EAL) library, which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

```
te. EAL has a common interface between all operating systems and is based on the Linux*
```

./rte-app -c COREMASK -n NUM [-b <domain:bus:devid.func>] [-r NUM] [-v] [--proc-type <primary|

Note: EAL has a common interface between all operating systems and is based on the Linux* notation for PCI devices. For example, a FreeBSD* device selector of pci0:2:0:1 is referred to as 02:00.1 in EAL.

The EAL options for FreeBSD* are as follows:

- -c COREMASK: A hexadecimal bit mask of the cores to run on. Note that core numbering can change between platforms and should be determined beforehand.
- -n NUM : Number of memory channels per processor socket.
- -b <domain:bus:devid.func> : blacklisting of ports; prevent EAL from using specified PCI device (multiple -b options are allowed).
- -use-device : use the specified ethernet device(s) only. Use comma-separate <[domain:]bus:devid.func> values. Cannot be used with -b option.
- · -r NUM: Number of memory ranks.
- -v : Display version information on startup.
- –proc-type: The type of process instance.

Other options, specific to Linux* and are not supported under FreeBSD* are as follows:

- socket-mem: Memory to allocate from hugepages on specific sockets.
- –huge-dir: The directory where hugetlbfs is mounted.
- -file-prefix : The prefix text used for hugepage filenames.
- -m MB: Memory to allocate from hugepages, regardless of processor socket. It is recommended that –socket-mem be used instead of this option.

The -c and the -n options are mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming the platform has four memory channels, and that cores 0-3 are present and are to be used for running the application):

```
root@target:~$ ./helloworld -c f -n 4
```

Note: The –proc-type and –file-prefix EAL options are used for running multiple DPDK processes. See the "Multi-process Sample Application" chapter in the *DPDK Sample Applications User Guide and the DPDK Programmers Guide* for more details.

2.4.3 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources directly, with a number of small permission adjustments, it is possible to run these applications as a user other than "root". To do so, the ownership, or permissions, on the following file system objects should be adjusted to ensure that the user account being used to run the DPDK application has access to them:

- The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on
- The userspace contiguous memory device: /dev/contigmem

Note: Please refer to the DPDK Release Notes for supported applications.

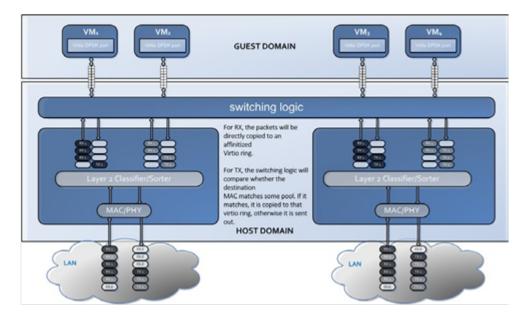
Xen Guide

July 04, 2016

Contents

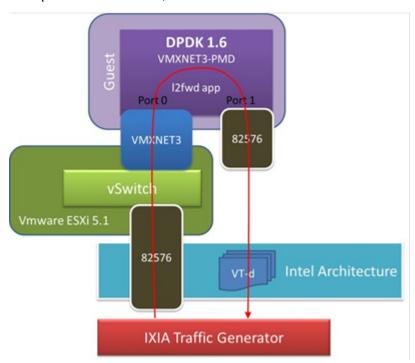
3.1 DPDK Xen Based Packet-Switching Solution

3.1.1 Introduction


DPDK provides a para-virtualization packet switching solution, based on the Xen hypervisor's Grant Table, Note 1, which provides simple and fast packet switching capability between guest domains and host domain based on MAC address or VLAN tag.

This solution is comprised of two components; a Poll Mode Driver (PMD) as the front end in the guest domain and a switching back end in the host domain. XenStore is used to exchange configure information between the PMD front end and switching back end, including grant reference IDs for shared Virtio RX/TX rings, MAC address, device state, and so on. XenStore is an information storage space shared between domains, see further information on XenStore below.

The front end PMD can be found in the DPDK directory lib/ librte_pmd_xenvirt and back end example in examples/vhost_xen.


The PMD front end and switching back end use shared Virtio RX/TX rings as para- virtualized interface. The Virtio ring is created by the front end, and Grant table references for the ring are passed to host. The switching back end maps those grant table references and creates shared rings in a mapped address space.

The following diagram describes the functionality of the DPDK Xen Packet- Switching Solution.

Note 1 The Xen hypervisor uses a mechanism called a Grant Table to share memory between domains (http://wiki.xen.org/wiki/Grant Table).

A diagram of the design is shown below, where "gva" is the Guest Virtual Address, which is the data pointer of the mbuf, and "hva" is the Host Virtual Address:

In this design, a Virtio ring is used as a para-virtualized interface for better performance over a Xen private ring when packet switching to and from a VM. The additional performance is gained by avoiding a system call and memory map in each memory copy with a XEN private ring.

3.1.2 Device Creation

Poll Mode Driver Front End

Mbuf pool allocation:

use a Xen switching solution, the DPDK application should rte mempool antalloc create() reserve mbuf pools during initialization. to rte mempool gntalloc create() creates a mempool with objects from memory allocated and managed via gntalloc/gntdev.

The DPDK now supports construction of mempools from allocated virtual memory through the rte mempool xmem create() API.

This front end constructs mempools based on memory allocated through the xen_gntalloc driver. rte_mempool_gntalloc_create() allocates Grant pages, maps them to continuous virtual address space, and calls rte_mempool_xmem_create() to build mempools. The Grant IDs for all Grant pages are passed to the host through XenStore.

Virtio Ring Creation:

The Virtio queue size is defined as 256 by default in the VQ_DESC_NUM macro. Using the queue setup function, Grant pages are allocated based on ring size and are mapped to continuous virtual address space to form the Virtio ring. Normally, one ring is comprised of several pages. Their Grant IDs are passed to the host through XenStore.

There is no requirement that this memory be physically continuous.

Interrupt and Kick:

There are no interrupts in DPDK Xen Switching as both front and back ends work in polling mode. There is no requirement for notification.

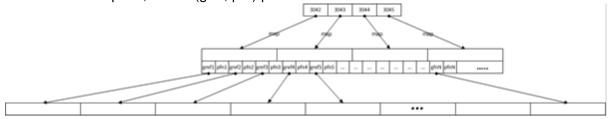
· Feature Negotiation:

Currently, feature negotiation through XenStore is not supported.

• Packet Reception & Transmission:

With mempools and Virtio rings created, the front end can operate Virtio devices, as it does in Virtio PMD for KVM Virtio devices with the exception that the host does not require notifications or deal with interrupts.

XenStore is a database that stores guest and host information in the form of (key, value) pairs. The following is an example of the information generated during the startup of the front end PMD in a guest VM (domain ID 1):


```
xenstore -ls /local/domain/1/control/dpdk
0_mempool_gref="3042,3043,3044,3045"
0_mempool_va="0x7fcbc6881000"
0_tx_vring_gref="3049"
0_rx_vring_gref="3053"
0_ether_addr="4e:0b:d0:4e:aa:f1"
0_vring_flag="3054"
...
```

Multiple mempools and multiple Virtios may exist in the guest domain, the first number is the index, starting from zero.

The idx# mempool va stores the guest virtual address for mempool idx#.

The idx# ether adder stores the MAC address of the guest Virtio device.

For idx#_rx_ring_gref, idx#_tx_ring_gref, and idx#_mempool_gref, the value is a list of Grant references. Take idx#_mempool_gref node for example, the host maps those Grant references to a continuous virtual address space. The real Grant reference information is stored in this virtual address space, where (gref, pfn) pairs follow each other with -1 as the terminator.

After all gref# IDs are retrieved, the host maps them to a continuous virtual address space. With the guest mempool virtual address, the host establishes 1:1 address mapping. With multiple guest mempools, the host establishes multiple address translation regions.

Switching Back End

The switching back end monitors changes in XenStore. When the back end detects that a new Virtio device has been created in a guest domain, it will:

- 1. Retrieve Grant and configuration information from XenStore.
- 2. Map and create a Virtio ring.
- 3. Map mempools in the host and establish address translation between the guest address and host address.
- 4. Select a free VMDQ pool, set its affinity with the Virtio device, and set the MAC/ VLAN filter.

Packet Reception

When packets arrive from an external network, the MAC?VLAN filter classifies packets into queues in one VMDQ pool. As each pool is bonded to a Virtio device in some guest domain, the switching back end will:

- 1. Fetch an available entry from the Virtio RX ring.
- 2. Get gva, and translate it to hva.
- 3. Copy the contents of the packet to the memory buffer pointed to by gva.

The DPDK application in the guest domain, based on the PMD front end, is polling the shared Virtio RX ring for available packets and receives them on arrival.

Packet Transmission

When a Virtio device in one guest domain is to transmit a packet, it puts the virtual address of the packet's data area into the shared Virtio TX ring.

The packet switching back end is continuously polling the Virtio TX ring. When new packets are available for transmission from a quest, it will:

- 1. Fetch an available entry from the Virtio TX ring.
- 2. Get gva, and translate it to hva.
- 3. Copy the packet from hva to the host mbuf's data area.
- 4. Compare the destination MAC address with all the MAC addresses of the Virtio devices it manages. If a match exists, it directly copies the packet to the matched VIrtio RX ring. Otherwise, it sends the packet out through hardware.

Note: The packet switching back end is for demonstration purposes only. The user could implement their switching logic based on this example. In this example, only one physical port on the host is supported. Multiple segments are not supported. The biggest mbuf supported is 4KB. When the back end is restarted, all front ends must also be restarted.

3.1.3 Running the Application

The following describes the steps required to run the application.

Validated Environment

Host:

Xen-hypervisor: 4.2.2

Distribution: Fedora release 18

Kernel: 3.10.0

Xen development package (including Xen, Xen-libs, xen-devel): 4.2.3

Guest:

Distribution: Fedora 16 and 18

Kernel: 3.6.11

Xen Host Prerequisites

Note that the following commands might not be the same on different Linux* distributions.

Install xen-devel package:

```
yum install xen-devel.x86_64
```

Start xend if not already started:

```
/etc/init.d/xend start
```

· Mount xenfs if not already mounted:

```
mount -t xenfs none /proc/xen
```

Enlarge the limit for xen gntdev driver:

```
modprobe -r xen_gntdev
modprobe xen gntdev limit=1000000
```

Note: The default limit for earlier versions of the xen_gntdev driver is 1024. That is insufficient to support the mapping of multiple Virtio devices into multiple VMs, so it is necessary to enlarge the limit by reloading this module. The default limit of recent versions of xen_gntdev is 1048576. The rough calculation of this limit is:

```
limit=nb_mbuf# * VM#.
```

In DPDK examples, nb_mbuf# is normally 8192.

Building and Running the Switching Backend

 Edit config/common_linuxapp, and change the default configuration value for the following two items:

```
CONFIG_RTE_LIBRTE_XEN_DOM0=y
CONFIG_RTE_LIBRTE_PMD_XENVIRT=n
```

2. Build the target:

```
make install T=x86_64-native-linuxapp-gcc
```

3. Ensure that RTE_SDK and RTE_TARGET are correctly set. Build the switching example:

```
make -C examples/vhost xen/
```

4. Load the Xen DPDK memory management module and preallocate memory:

```
insmod ./x86_64-native-linuxapp-gcc/build/lib/librte_eal/linuxapp/xen_dom0/rte_dom0_mm.ko
echo 2048> /sys/kernel/mm/dom0-mm/memsize-mB/memsize
```

Note: On Xen Dom0, there is no hugepage support. Under Xen Dom0, the DPDK uses a special memory management kernel module to allocate chunks of physically continuous memory. Refer to the *DPDK Getting Started Guide* for more information on memory management in the DPDK. In the above command, 4 GB memory is reserved (2048 of 2 MB pages) for DPDK.

5. Load uio_pci_generic and bind one Intel NIC controller to it:

```
modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 0000:09:00:00.0
```

In this case, 0000:09:00.0 is the PCI address for the NIC controller.

6. Run the switching back end example:

```
examples/vhost xen/build/vhost-switch -c f -n 3 --xen-dom0 -- -p1
```

Note: The -xen-dom0 option instructs the DPDK to use the Xen kernel module to allocate memory.

Other Parameters:

-vm2vm

The vm2vm parameter enables/disables packet switching in software. Disabling vm2vm implies that on a VM packet transmission will always go to the Ethernet port and will not be switched to another VM

-Stats

The Stats parameter controls the printing of Virtio-net device statistics. The parameter specifies the interval (in seconds) at which to print statistics, an interval of 0 seconds will disable printing statistics.

Xen PMD Frontend Prerequisites

1. Install xen-devel package for accessing XenStore:

```
yum install xen-devel.x86 64
```

2. Mount xenfs, if it is not already mounted:

```
mount -t xenfs none /proc/xen
```

3. Enlarge the default limit for xen gntalloc driver:

```
modprobe -r xen_gntalloc
modprobe xen gntalloc limit=6000
```

Note: Before the Linux kernel version 3.8-rc5, Jan 15th 2013, a critical defect occurs when a guest is heavily allocating Grant pages. The Grant driver allocates fewer pages than expected which causes kernel memory corruption. This happens, for example, when a guest uses the v1 format of a Grant table entry and allocates more than 8192 Grant pages (this number might be different on different hypervisor versions). To work around this issue, set the limit for gntalloc driver to 6000. (The kernel normally allocates hundreds of Grant pages with one Xen front end per virtualized device). If the kernel allocates a lot of Grant pages, for example, if the user uses multiple net front devices, it is best to upgrade the Grant alloc driver. This defect has been fixed in kernel version 3.8-rc5 and later.

Building and Running the Front End

1. Edit config/common_linuxapp, and change the default configuration value:

```
CONFIG_RTE_LIBRTE_XEN_DOM0=n
CONFIG_RTE_LIBRTE_PMD_XENVIRT=y
```

2. Build the package:

```
make install T=x86 64-native-linuxapp-gcc
```

- 3. Enable hugepages. Refer to the *DPDK Getting Started Guide* for instructions on how to use hugepages in the DPDK.
- 4. Run TestPMD. Refer to *DPDK TestPMD Application User Guide* for detailed parameter usage.

As an example to run two TestPMD instances over 2 Xen Virtio devices:

```
--vdev="eth xenvirt0,mac=00:00:00:00:00:11" --vdev="eth xenvirt1;mac=00:00:00:00:00:22"
```

Usage Examples: Injecting a Packet Stream Using a Packet Generator

Loopback Mode

Run TestPMD in a guest VM:

```
./x86\_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth\_xenvirt0,mac=00:00:00:00:00:11" testpmd> set fwd mac testpmd> start
```

Example output of the vhost_switch would be:

```
DATA:(0) MAC ADDRESS 00:00:00:00:00:11 and VLAN TAG 1000 registered.
```

The above message indicates that device 0 has been registered with MAC address 00:00:00:00:00:11 and VLAN tag 1000. Any packets received on the NIC with these values is placed on the device's receive queue.

Configure a packet stream in the packet generator, set the destination MAC address to 00:00:00:00:00:11, and VLAN to 1000, the guest Virtio receives these packets and sends them out with destination MAC address 00:00:00:00:22.

Inter-VM Mode

Run TestPMD in guest VM1:

```
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth_xenvirt0,mac=00:00:00:00:00:11"
```

./x86 64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="eth xenvirt0,mac=00:00:00:00:00:22"

Run TestPMD in guest VM2:

```
Configure a packet stream in the packet generator, and set the destination MAC address to
```

Configure a packet stream in the packet generator, and set the destination MAC address to 00:00:00:00:00:11 and VLAN to 1000. The packets received in Virtio in guest VM1 will be forwarded to Virtio in guest VM2 and then sent out through hardware with destination MAC address 00:00:00:00:00:33.

The packet flow is:

packet generator->Virtio in guest VM1->switching backend->Virtio in guest VM2->switching backend->wire

Programmer's Guide

July 04, 2016

Contents

4.1 Introduction

This document provides software architecture information, development environment information and optimization guidelines.

For programming examples and for instructions on compiling and running each sample application, see the *DPDK Sample Applications User Guide* for details.

For general information on compiling and running applications, see the *DPDK Getting Started Guide*.

4.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

- Release Notes (this document): Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.
- **Getting Started Guide**: Describes how to install and configure the DPDK software; designed to get users up and running quickly with the software.
- FreeBSD* Getting Started Guide: A document describing the use of the DPDK with FreeBSD* has been added in DPDK Release 1.6.0. Refer to this guide for installation and configuration instructions to get started using the DPDK with FreeBSD*.
- Programmer's Guide (this document): Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application
 - Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

- API Reference: Provides detailed information about DPDK functions, data structures and other programming constructs.
- Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

4.1.2 Related Publications

The following documents provide information that is relevant to the development of applications using the DPDK:

Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System Programming Guide

Part 1: Architecture Overview

4.2 Overview

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane applications. Users may use the code to understand some of the techniques employed, to build upon for prototyping or to add their own protocol stacks. Alternative ecosystem options that use the DPDK are available.

The framework creates a set of libraries for specific environments through the creation of an Environment Abstraction Layer (EAL), which may be specific to a mode of the Intel® architecture (32-bit or 64-bit), Linux* user space compilers or a specific platform. These environments are created through the use of make files and configuration files. Once the EAL library is created, the user may link with the library to create their own applications. Other libraries, outside of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also provided. Sample applications are provided to help show the user how to use various features of the DPDK.

The DPDK implements a run to completion model for packet processing, where all resources must be allocated prior to calling Data Plane applications, running as execution units on logical processing cores. The model does not support a scheduler and all devices are accessed by polling. The primary reason for not using interrupts is the performance overhead imposed by interrupt processing.

In addition to the run-to-completion model, a pipeline model may also be used by passing packets or messages between cores via the rings. This allows work to be performed in stages and may allow more efficient use of code on cores.

4.2.1 Development Environment

The DPDK project installation requires Linux and the associated toolchain, such as one or more compilers, assembler, make utility, editor and various libraries to create the DPDK components and libraries.

4.2. Overview 44

Once these libraries are created for the specific environment and architecture, they may then be used to create the user's data plane application.

When creating applications for the Linux user space, the glibc library is used. For DPDK applications, two environmental variables (RTE_SDK and RTE_TARGET) must be configured before compiling the applications. The following are examples of how the variables can be set:

```
export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for information on setting up the development environment.

4.2.2 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface that hides the environment specifics from the applications and libraries. The services provided by the EAL are:

- DPDK loading and launching
- Support for multi-process and multi-thread execution types
- Core affinity/assignment procedures
- System memory allocation/de-allocation
- Atomic/lock operations
- · Time reference
- · PCI bus access
- Trace and debug functions
- CPU feature identification
- Interrupt handling
- Alarm operations

The EAL is fully described in *Environment Abstraction Layer*.

4.2.3 Core Components

The *core components* are a set of libraries that provide all the elements needed for high-performance packet processing applications. **Figure 1. Core Components Architecture**

Memory Manager (librte malloc)

The librte_malloc library provides an API to allocate memory from the memzones created from the hugepages instead of the heap. This helps when allocating large numbers of items that may become susceptible to TLB misses when using typical 4k heap pages in the Linux user space environment.

This memory allocator is fully described in *Malloc Library*.

4.2. Overview 45

Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO API in a finite size table. It has some advantages over lockless queues; easier to implement, adapted to bulk operations and faster. A ring is used by the *Memory Pool Manager* (*librte_mempool*) and may be used as a general communication mechanism between cores and/or execution blocks connected together on a logical core.

This ring buffer and its usage are fully described in *Ring Library*.

Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory. A pool is identified by name and uses a ring to store free objects. It provides some other optional services, such as a per-core object cache and an alignment helper to ensure that objects are padded to spread them equally on all RAM channels.

This memory pool allocator is described in *Mempool Library*.

Network Packet Buffer Management (librte mbuf)

The mbuf library provides the facility to create and destroy buffers that may be used by the DPDK application to store message buffers. The message buffers are created at startup time and stored in a mempool, using the DPDK mempool library.

This library provide an API to allocate/free mbufs, manipulate control message buffers (ctrlm-buf) which are generic message buffers, and packet buffers (pktmbuf) which are used to carry network packets.

Network Packet Buffer Management is described in Mbuf Library.

Timer Manager (librte timer)

This library provides a timer service to DPDK execution units, providing the ability to execute a function asynchronously. It can be periodic function calls, or just a one-shot call. It uses the timer interface provided by the Environment Abstraction Layer (EAL) to get a precise time reference and can be initiated on a per-core basis as required.

The library documentation is available in *Timer Library*.

4.2.4 Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtualized virtio Ethernet controllers which are designed to work without asynchronous, interrupt-based signaling mechanisms.

See Poll Mode Driver.

4.2. Overview 46

4.2.5 Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm) libraries to support the corresponding packet forwarding algorithms.

See *Hash Library* and *LPM Library* for more information.

4.2.6 librte_net

The librte_net library is a collection of IP protocol definitions and convenience macros. It is based on code from the FreeBSD* IP stack and contains protocol numbers (for use in IP headers), IP-related macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header structures.

4.3 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level resources such as hardware and memory space. It provides a generic interface that hides the environment specifics from the applications and libraries. It is the responsibility of the initialization routine to decide how to allocate these resources (that is, memory space, PCI devices, timers, consoles, and so on).

Typical services expected from the EAL are:

- DPDK Loading and Launching: The DPDK and its application are linked as a single application and must be loaded by some means.
- Core Affinity/Assignment Procedures: The EAL provides mechanisms for assigning execution units to specific cores as well as creating execution instances.
- System Memory Reservation: The EAL facilitates the reservation of different memory zones, for example, physical memory areas for device interactions.
- PCI Address Abstraction: The EAL provides an interface to access PCI address space.
- Trace and Debug Functions: Logs, dump_stack, panic and so on.
- Utility Functions: Spinlocks and atomic counters that are not provided in libc.
- CPU Feature Identification: Determine at runtime if a particular feature, for example, Intel® AVX is supported. Determine if the current CPU supports the feature set that the binary was compiled for.
- Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt sources.
- Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

4.3.1 EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application using the pthread library. PCI information about devices and address space is discovered through the /sys kernel interface and through kernel modules such as uio_pci_generic, or

igb_uio. Refer to the UIO: User-space drivers documentation in the Linux kernel. This memory is mmap'd in the application.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page sizes to increase performance). This memory is exposed to DPDK service layers such as the *Mempool Library*.

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls, each execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel API through a mmap() call.

Initialization and Core Launching

Part of the initialization is done by the start function of glibc. A check is also performed at initialization time to ensure that the micro architecture type chosen in the config file is supported by the CPU. Then, the main() function is called. The core initialization and launch is done in rte_eal_init() (see the API documentation). It consist of calls to the pthread library (more specifically, pthread_self(), pthread_create(), and pthread_setaffinity_np()). Figure 2. EAL Initialization in a Linux Application Environment

Note: Initialization of objects, such as memory zones, rings, memory pools, lpm tables and hash tables, should be done as part of the overall application initialization on the master lcore. The creation and initialization functions for these objects are not multi-thread safe. However, once initialized, the objects themselves can safely be used in multiple threads simultaneously.

Multi-process Support

The Linuxapp EAL allows a multi-process as well as a multi-threaded (pthread) deployment model. See chapter 2.20 *Multi-process Support* for more details.

Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesystem. The EAL provides an API to reserve named memory zones in this contiguous memory. The physical address of the reserved memory for that memory zone is also returned to the user by the memory zone reservation API.

Note: Memory reservations done using the APIs provided by the rte_malloc library are also backed by pages from the hugetlbfs filesystem. However, physical address information is not available for the blocks of memory allocated in this way.

Xen Dom0 support without hugetbls

The existing memory management implementation is based on the Linux kernel hugepage mechanism. However, Xen Dom0 does not support hugepages, so a new Linux kernel module

rte_dom0_mm is added to workaround this limitation.

The EAL uses IOCTL interface to notify the Linux kernel module rte_dom0_mm to allocate memory of specified size, and get all memory segments information from the module, and the EAL uses MMAP interface to map the allocated memory. For each memory segment, the physical addresses are contiguous within it but actual hardware addresses are contiguous within 2MB.

PCI Access

The EAL uses the /sys/bus/pci utilities provided by the kernel to scan the content on the PCI bus. To access PCI memory, a kernel module called uio_pci_generic provides a /dev/uioX device file and resource files in /sys that can be mmap'd to obtain access to PCI address space from the application. The DPDK-specific igb_uio module can also be used for this. Both drivers use the uio kernel feature (userland driver).

Per-Icore and Shared Variables

Note: Icore refers to a logical execution unit of the processor, sometimes called a hardware *thread*.

Shared variables are the default behavior. Per-lcore variables are implemented using *Thread Local Storage* (TLS) to provide per-thread local storage.

Logs

A logging API is provided by EAL. By default, in a Linux application, logs are sent to syslog and also to the console. However, the log function can be overridden by the user to use a different logging mechanism.

Trace and Debug Functions

There are some debug functions to dump the stack in glibc. The rte_panic() function can voluntarily provoke a SIG_ABORT, which can trigger the generation of a core file, readable by gdb.

CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_feature() function) to determine which CPU features are available.

User Space Interrupt and Alarm Handling

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts. Callbacks can be registered or unregistered by the EAL functions for a specific interrupt event

and are called in the host thread asynchronously. The EAL also allows timed callbacks to be used in the same way as for NIC interrupts.

Note: The only interrupts supported by the DPDK Poll-Mode Drivers are those for link status change, i.e. link up and link down notification.

Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted, so they are ignored by the DPDK. The ports to be blacklisted are identified using the PCIe* description (Domain:Bus:Device.Function).

Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

4.3.2 Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL. As physical memory can have gaps, the memory is described in a table of descriptors, and each descriptor (called rte_memseg) describes a contiguous portion of memory.

On top of this, the memzone allocator's role is to reserve contiguous portions of physical memory. These zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure. This structure is accessed using rte_eal_get_configuration(). The lookup (by name) of a memory zone returns a descriptor containing the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align parameter (by default, they are aligned to cache line size). The alignment value should be a power of two and not less than the cache line size (64 bytes). Memory zones can also be reserved from either 2 MB or 1 GB hugepages, provided that both are available on the system.

4.3.3 Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for significant performance gains, but lacks flexibility and is not always efficient.

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency. However, alternately it is possible to utilize the idle cycles available to take advantage of the full capability of the CPU.

By taking advantage of cgroup, the CPU utilization quota can be simply assigned. This gives another way to improve the CPU efficienct, however, there is a prerequisite; DPDK must handle the context switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

EAL pthread and Icore Affinity

The term "lcore" refers to an EAL thread, which is really a Linux/FreeBSD pthread. "EAL pthreads" are created and managed by EAL and execute the tasks issued by *remote_launch*. In each EAL pthread, there is a TLS (Thread Local Storage) called *_lcore_id* for unique identification. As EAL pthreads usually bind 1:1 to the physical CPU, the *_lcore_id* is typically equal to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL pthread and a specified physical CPU. The EAL pthread may have affinity to a CPU set, and as such the _lcore_id will not be the same as the CPU ID. For this reason, there is an EAL long option '—lcores' defined to assign the CPU affinity of lcores. For a specified lcore ID or ID group, the option allows setting the CPU set for that EAL pthread.

```
The format pattern: -lcores='<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],...]'
```

'lcore_set' and 'cpu_set' can be a single number, range or a group.

A number is a "digit([0-9]+)"; a range is "<number>-<number>"; a group is "(<number|range>[,<number|range>,...])".

If a '@cpu_set' value is not supplied, the value of 'cpu_set' will default to the value of 'lcore_set'.

```
For example, "--lcores='1,2@(5-7),(3-5)@(0,2),(0,6),7-8'" which means start 9 EAL thread; lcore 0 runs on cpuset 0x41 (cpu 0,6); lcore 1 runs on cpuset 0x2 (cpu 1); lcore 2 runs on cpuset 0xe0 (cpu 5,6,7); lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2); lcore 6 runs on cpuset 0x41 (cpu 0,6); lcore 7 runs on cpuset 0x80 (cpu 7); lcore 8 runs on cpuset 0x100 (cpu 8).
```

Using this option, for each given lcore ID, the associated CPUs can be assigned. It's also compatible with the pattern of corelist('-I') option.

non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. Non-EAL pthreads). In a non-EAL pthread, the _lcore_id is always LCORE_ID_ANY which identifies that it is not an EAL thread with a valid, unique, _lcore_id. Some libraries will use an alternative unique ID (e.g. TID), some will not be impacted at all, and some will work but with limitations (e.g. timer and mempool libraries).

All these impacts are mentioned in *Known Issues* section.

Public Thread API

There are two public APIs rte_thread_set_affinity() and rte_pthread_get_affinity() introduced for threads. When they're used in any pthread context, the Thread Local Storage(TLS) will be set/get.

Those TLS include cpuset and socket id:

- _cpuset stores the CPUs bitmap to which the pthread is affinitized.
- _socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to different NUMA node, the socket id will be set to SOCKTE ID ANY.

Known Issues

rte_mempool

The rte_mempool uses a per-lcore cache inside the mempool. For non-EAL pthreads, rte_lcore_id() will not return a valid number. So for now, when rte_mempool is used with non-EAL pthreads, the put/get operations will bypass the mempool cache and there is a performance penalty because of this bypass. Support for non-EAL mempool cache is currently being enabled.

rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue. However, it is non-preemptive, this has a knock on effect of making rte mempool non-preemtable.

Note: The "non-preemptive" constraint means:

- a pthread doing multi-producers enqueues on a given ring must not be preempted by another pthread doing a multi-producer enqueue on the same ring.
- a pthread doing multi-consumers dequeues on a given ring must not be preempted by another pthread doing a multi-consumer dequeue on the same ring.

Bypassing this constraint it may cause the 2nd pthread to spin until the 1st one is scheduled again. Moreover, if the 1st pthread is preempted by a context that has an higher priority, it may even cause a dead lock.

This does not mean it cannot be used, simply, there is a need to narrow down the situation when it is used by multi-pthread on the same core.

- 1. It CAN be used for any single-producer or single-consumer situation.
- 2. It MAY be used by multi-producer/consumer pthread whose scheduling policy are all SCHED_OTHER(cfs). User SHOULD be aware of the performance penalty before using it.
- 3. It MUST not be used by multi-producer/consumer pthreads, whose scheduling policies are SCHED_FIFO or SCHED_RR.

RTE_RING_PAUSE_REP_COUNT is defined for rte_ring to reduce contention. It's mainly for case 2, a yield is issued after number of times pause repeat.

It adds a sched_yield() syscall if the thread spins for too long while waiting on the other thread to finish its operations on the ring. This gives the pre-empted thread a chance to proceed and finish with the ring enqueue/dequeue operation.

· rte timer

Running rte_timer_manager() on a non-EAL pthread is not allowed. However, resetting/stopping the timer from a non-EAL pthread is allowed.

rte log

In non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are used.

• misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in a non-EAL pthread.

cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1) doing packet I/O on the same core (\$CPU). We expect only 50% of CPU spend on packet IO.

```
mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo $cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us
```

4.4 Malloc Library

The librte_malloc library provides an API to allocate any-sized memory.

The objective of this library is to provide malloc-like functions to allow allocation from hugepage memory and to facilitate application porting. The *DPDK API Reference* manual describes the available functions.

Typically, these kinds of allocations should not be done in data plane processing because they are slower than pool-based allocation and make use of locks within the allocation and free paths. However, they can be used in configuration code.

Refer to the rte_malloc() function description in the *DPDK API Reference* manual for more information.

4.4.1 Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains overwrite protection fields to help identify buffer overflows.

4.4.2 Alignment and NUMA Constraints

The rte_malloc() takes an align argument that can be used to request a memory area that is aligned on a multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return memory that has been allocated on the NUMA socket of the core which made the call. A set of APIs is also provided, to allow memory to be explicitly allocated on a NUMA socket directly, or by allocated on the NUMA socket where another core is located, in the case where the memory is to be used by a logical core other than on the one doing the memory allocation.

4.4.3 Use Cases

This library is needed by an application that requires malloc-like functions at initialization time, and does not require the physical address information for the individual memory blocks.

For allocating/freeing data at runtime, in the fast-path of an application, the memory pool library should be used instead.

If a block of memory with a known physical address is needed, e.g. for use by a hardware device, a memory zone should be used.

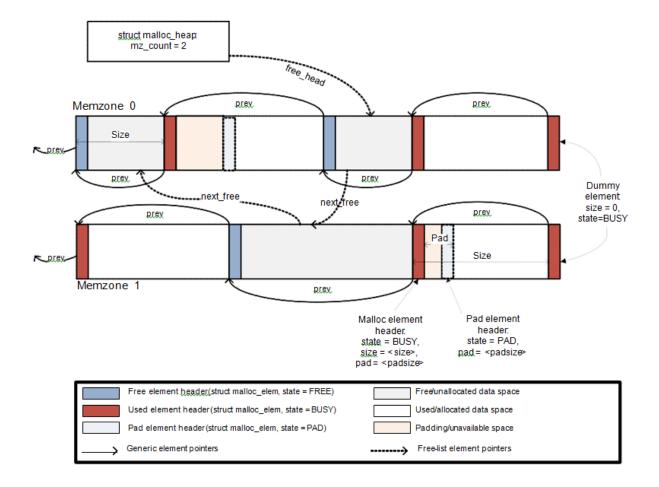
4.4.4 Internal Implementation

Data Structures

There are two data structure types used internally in the malloc library:

- struct malloc_heap used to track free space on a per-socket basis
- struct malloc_elem the basic element of allocation and free-space tracking inside the library.

Structure: malloc_heap


The malloc_heap structure is used in the library to manage free space on a per-socket basis. Internally in the library, there is one heap structure per NUMA node, which allows us to allocate memory to a thread based on the NUMA node on which this thread runs. While this does not guarantee that the memory will be used on that NUMA node, it is no worse than a scheme where the memory is always allocated on a fixed or random node.

The key fields of the heap structure and their function are described below (see also diagram above):

- mz_count field to count the number of memory zones which have been allocated for heap memory on this NUMA node. The sole use of this value is, in combination with the numa_socket value, to generate a suitable, unique name for each memory zone.
- lock the lock field is needed to synchronize access to the heap. Given that the free space in the heap is tracked using a linked list, we need a lock to prevent two threads manipulating the list at the same time.
- free_head this points to the first element in the list of free nodes for this malloc heap.

Note: The malloc_heap structure does not keep track of either the memzones allocated, since there is little point as they cannot be freed. Neither does it track the in-use blocks of memory, since these are never touched except when they are to be freed again - at which point the pointer to the block is an input to the free() function.

Figure 3. Example of a malloc heap and malloc elements within the malloc library

Structure: malloc_elem

The malloc_elem structure is used as a generic header structure for various blocks of memory in a memzone. It is used in three different ways - all shown in the diagram above:

- 1. As a header on a block of free or allocated memory normal case
- 2. As a padding header inside a block of memory
- 3. As an end-of-memzone marker

The most important fields in the structure and how they are used are described below.

Note: If the usage of a particular field in one of the above three usages is not described, the field can be assumed to have an undefined value in that situation, for example, for padding headers only the "state" and "pad" fields have valid values.

- heap this pointer is a reference back to the heap structure from which this block was allocated. It is used for normal memory blocks when they are being freed, to add the newly-freed block to the heap's free-list.
- prev this pointer points to the header element/block in the memzone immediately behind the current one. When freeing a block, this pointer is used to reference the previous block to check if that block is also free. If so, then the two free blocks are merged to form a single larger block.

- next_free this pointer is used to chain the free-list of unallocated memory blocks together. Again, it is only used in normal memory blocks on malloc() to find a suitable free block to allocate, and on free() to add the newly freed element to the free-list.
- state This field can have one of three values: "Free", "Busy" or "Pad". The former two, are to indicate the allocation state of a normal memory block, and the latter is to indicate that the element structure is a dummy structure at the end of the start-of-block padding (i.e. where the start of the data within a block is not at the start of the block itself, due to alignment constraints). In this case, the pad header is used to locate the actual malloc element header for the block. For the end-of-memzone structure, this is always a "busy" value, which ensures that no element, on being freed, searches beyond the end of the memzone for other blocks to merge with into a larger free area.
- pad this holds the length of the padding present at the start of the block. In the case
 of a normal block header, it is added to the address of the end of the header to give the
 address of the start of the data area i.e. the value passed back to the application on
 a malloc. Within a dummy header inside the padding, this same value is stored, and is
 subtracted from the address of the dummy header to yield the address of the actual block
 header.
- size the size of the data block, including the header itself. For end-of-memzone structures, this size is given as zero, though it is never actually checked. For normal blocks which are being freed, this size value is used in place of a "next" pointer to identify the location of the next block of memory (so that if it too is free, the two free blocks can be merged into one).

Memory Allocation

When an application makes a call to a malloc-like function, the malloc function will first index the lcore_config structure for the calling thread, and determine the NUMA node idea of that thread. That is used to index the array of malloc_heap structures, and the heap_alloc () function is called with that heap as parameter, along with the requested size, type and alignment parameters.

The heap_alloc() function will scan the free_list for the heap, and attempt to find a free block suitable for storing data of the requested size, with the requested alignment constraints. If no suitable block is found - for example, the first time malloc is called for a node, and the free-list is NULL - a new memzone is reserved and set up as heap elements. The setup involves placing a dummy structure at the end of the memzone to act as a sentinel to prevent accesses beyond the end (as the sentinel is marked as BUSY, the malloc library code will never attempt to reference it further), and a proper element header at the start of the memzone. This latter header identifies all space in the memzone, bar the sentinel value at the end, as a single free heap element, and it is then added to the free list for the heap.

Once the new memzone has been set up, the scan of the free-list for the heap is redone, and on this occasion should find the newly created, suitable element as the size of memory reserved in the memzone is set to be at least the size of the requested data block plus the alignment - subject to a minimum size specified in the DPDK compile-time configuration.

When a suitable, free element has been identified, the pointer to be returned to the user is calculated, with the space to be provided to the user being at the end of the free block. The cache-line of memory immediately preceding this space is filled with a struct malloc_elem header: if the remaining space within the block is small e.g. <=128 bytes, then a pad header is used, and the remaining space is wasted. If, however, the remaining space is greater than

this, then the single free element block is split into two, and a new, proper, malloc_elem header is put before the returned data space. [The advantage of allocating the memory from the end of the existing element is that in this case no adjustment of the free list needs to take place - the existing element on the free list just has its size pointer adjusted, and the following element has its "prev" pointer redirected to the newly created element].

Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed to the free function. The size of the malloc_elem structure is subtracted from this pointer to get the element header for the block. If this header is of type "PAD" then the pad length is further subtracted from the pointer to get the proper element header for the entire block.

From this element header, we get pointers to the heap from which the block came – and to where it must be freed, as well as the pointer to the previous element, and, via the size field, we can calculate the pointer to the next element. These next and previous elements are then checked to see if they too are free, and if so, they are merged with the current elements. This means that we can never have two free memory blocks adjacent to one another, they are always merged into a single block.

4.5 Ring Library

The ring allows the management of queues. Instead of having a linked list of infinite size, the rte_ring has the following properties:

- FIFO
- Maximum size is fixed, the pointers are stored in a table
- Lockless implementation
- Multi-consumer or single-consumer dequeue
- Multi-producer or single-producer enqueue
- Bulk dequeue Dequeues the specified count of objects if successful; otherwise fails
- Bulk enqueue Enqueues the specified count of objects if successful; otherwise fails
- Burst dequeue Dequeue the maximum available objects if the specified count cannot be fulfilled
- Burst enqueue Enqueue the maximum available objects if the specified count cannot be fulfilled

The advantages of this data structure over a linked list queue are as follows:

- Faster; only requires a single Compare-And-Swap instruction of sizeof(void *) instead of several double-Compare-And-Swap instructions.
- Simpler than a full lockless queue.
- Adapted to bulk enqueue/dequeue operations. As pointers are stored in a table, a dequeue of several objects will not produce as many cache misses as in a linked queue.
 Also, a bulk dequeue of many objects does not cost more than a dequeue of a simple object.

The disadvantages:

- Size is fixed
- Having many rings costs more in terms of memory than a linked list queue. An empty ring contains at least N pointers.

A simplified representation of a Ring is shown in with consumer and producer head and tail pointers to objects stored in the data structure. **Figure 4. Ring Structure**

4.5.1 References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at least in Intel drivers):

- bufring.h in FreeBSD
- bufring.c in FreeBSD

4.5.2 Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design.

4.5.3 Additional Features

Name

A ring is identified by a unique name. It is not possible to create two rings with the same name (rte_ring_create() returns NULL if this is attempted).

Water Marking

The ring can have a high water mark (threshold). Once an enqueue operation reaches the high water mark, the producer is notified, if the water mark is configured.

This mechanism can be used, for example, to exert a back pressure on I/O to inform the LAN to PAUSE.

Debug

When debug is enabled (CONFIG_RTE_LIBRTE_RING_DEBUG is set), the library stores some per-ring statistic counters about the number of enqueues/dequeues. These statistics are per-core to avoid concurrent accesses or atomic operations.

4.5.4 Use Cases

Use cases for the Ring library include:

- Communication between applications in the DPDK
- Used by memory pool allocator

4.5.5 Anatomy of a Ring Buffer

This section explains how a ring buffer operates. The ring structure is composed of two head and tail couples; one is used by producers and one is used by the consumers. The figures of the following sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

Each figure represents a simplified state of the ring, which is a circular buffer. The content of the function local variables is represented on the top of the figure, and the content of ring structure is represented on the bottom of the figure.

Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring. In this example, only the producer head and tail (prod_head and prod_tail) are modified, and there is only one producer.

The initial state is to have a prod head and prod tail pointing at the same location.

Enqueue First Step

First, *ring->prod_head* and ring->cons_tail are copied in local variables. The prod_next local variable points to the next element of the table, or several elements after in case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

Enqueue Second Step

The second step is to modify *ring->prod_head* in ring structure to point to the same location as prod_next.

A pointer to the added object is copied in the ring (obj4).

Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to the same location as *ring->prod_head*. The enqueue operation is finished.

Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring. In this example, only the consumer head and tail (cons_head and cons_tail) are modified and there is only one consumer.

The initial state is to have a cons head and cons tail pointing at the same location.

Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables. The cons_next local variable points to the next element of the table, or several elements after in the case of bulk dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an error.

Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location as cons_next.

The pointer to the dequeued object (obj1) is copied in the pointer given by the user.

Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring->cons head. The dequeue operation is finished.

Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring. In this example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod head and prod tail pointing at the same location.

MC Enqueue First Step

On both cores, *ring->prod_head* and ring->cons_tail are copied in local variables. The prod_next local variable points to the next element of the table, or several elements after in the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

MC Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location as prod_next. This operation is done using a Compare And Swap (CAS) instruction, which does the following operations atomically:

- If ring->prod_head is different to local variable prod_head, the CAS operation fails, and the code restarts at first step.
- Otherwise, ring->prod_head is set to local prod_next, the CAS operation is successful, and processing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

4.5. Ring Library

MC Enqueue Third Step

The CAS operation is retried on core 2 with success.

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

MC Enqueue Fourth Step

Each core now wants to update ring->prod_tail. A core can only update it if ring->prod_tail is equal to the prod_head local variable. This is only true on core 1. The operation is finished on core 1.

MC Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too. The operation is also finished on core 2.

Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are represented by arrows. In the actual implementation, these values are not between 0 and size(ring)-1 as would be assumed. The indexes are between 0 and 2^32 -1, and we mask their value when we access the pointer table (the ring itself). 32-bit modulo also implies that operations on indexes (such as, add/subtract) will automatically do 2^32 modulo if the result overflows the 32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

Note: To simplify the explanation, operations with modulo 16-bit are used instead of modulo 32-bit. In addition, the four indexes are defined as unsigned 16-bit integers, as opposed to unsigned 32-bit integers in the more realistic case.

This ring contains 11000 entries.

This ring contains 12536 entries.

Note: For ease of understanding, we use modulo 65536 operations in the above examples. In real execution cases, this is redundant for low efficiency, but is done automatically when the result overflows.

The code always maintains a distance between producer and consumer between 0 and size(ring)-1. Thanks to this property, we can do subtractions between 2 index values in a modulo-32bit base: that's why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1, even if only the first term of subtraction has overflowed:

```
uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);
```

4.5.6 References

- bufring.h in FreeBSD (version 8)
- bufring.c in FreeBSD (version 8)
- Linux Lockless Ring Buffer Design

4.6 Mempool Library

A memory pool is an allocator of a fixed-sized object. In the DPDK, it is identified by name and uses a ring to store free objects. It provides some other optional services such as a percore object cache and an alignment helper to ensure that objects are padded to spread them equally on all DRAM or DDR3 channels.

This library is used by the *Mbuf Library* and the *Environment Abstraction Layer* (for logging history).

4.6.1 Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added at the beginning and end of allocated blocks. The allocated objects then contain overwrite protection fields to help debugging buffer overflows.

4.6.2 Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), statistics about get from/put in the pool are stored in the mempool structure. Statistics are per-lcore to avoid concurrent access to statistics counters.

4.6.3 Memory Alignment Constraints

Depending on hardware memory configuration, performance can be greatly improved by adding a specific padding between objects. The objective is to ensure that the beginning of each object starts on a different channel and rank in memory so that all channels are equally loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification. Only the first 64 bytes are accessed, so performance can be increased by spreading the start addresses of objects among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMs that can be accessed for the full data bit-width of the DIMM. The ranks cannot be accessed simultaneously since they share the same data path. The physical layout of the DRAM chips on the DIMM itself does not necessarily relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the number of memory channels and ranks.

Note: The command line must always have the number of memory channels specified for the processor.

Examples of alignment for different DIMM architectures are shown in Figure 5 and Figure 6. Figure 5. Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases, no padding is required between objects (except for objects whose size are n x 3 x 64 bytes blocks). **Figure 6. Three Channels and Two Dual-ranked DIMM Example**

When creating a new pool, the user can specify to use this feature or not.

4.6.4 Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool's ring of free buffers may be high since each access requires a compare-and-set (CAS) operation. To avoid having too many access requests to the memory pool's ring, the memory pool allocator can maintain a per-core cache and do bulk requests to the memory pool's ring, via the cache with many fewer locks on the actual memory pool structure. In this way, each core has full access to its own cache (with locks) of free objects and only when the cache fills does the core need to shuffle some of the free objects back to the pools ring or obtain more objects when the cache is empty.

While this may mean a number of buffers may sit idle on some core's cache, the speed at which a core can access its own cache for a specific memory pool without locks provides performance gains.

The cache is composed of a small, per-core table of pointers and its length (used as a stack). This cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CON-FIG RTE MEMPOOL CACHE MAX SIZE).

Figure 7 shows a cache in operation. **Figure 7. A mempool in Memory with its Associated Ring**

4.6.5 Use Cases

All allocations that require a high level of performance should use a pool-based memory allocator. Below are some examples:

- Mbuf Library
- · Environment Abstraction Layer, for logging service
- Any application that needs to allocate fixed-sized objects in the data plane and that will be continuously utilized by the system.

4.7 Mbuf Library

The mbuf library provides the ability to allocate and free buffers (mbufs) that may be used by the DPDK application to store message buffers. The message buffers are stored in a mempool, using the *Mempool Library*.

A rte_mbuf struct can carry network packet buffers or generic control buffers (indicated by the CTRL_MBUF_FLAG). This can be extended to other types. The rte_mbuf header structure is kept as small as possible and currently uses just two cache lines, with the most frequently used fields being on the first of the two cache lines.

4.7.1 Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were considered:

- 1. Embed metadata within a single memory buffer the structure followed by a fixed size area for the packet data.
- 2. Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole memory representation of a packet. On the other hand, the second method is more flexible and allows the complete separation of the allocation of metadata structures from the allocation of packet data buffers.

The first method was chosen for the DPDK. The metadata contains control information such as message type, length, offset to the start of the data and a pointer for additional mbuf structures allowing buffer chaining.

Message buffers that are used to carry network packets can handle buffer chaining where multiple buffers are required to hold the complete packet. This is the case for jumbo frames that are composed of many mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned. Message buffers may be used to carry control information, packets, events, and so on between different entities in the system. Message buffers may also use their buffer pointers to point to other message buffer data sections or other structures.

Figure 8 and Figure 9 show some of these scenarios. Figure 8. An mbuf with One Segment

Figure 9. An mbuf with Three Segments

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate network packets.

4.7.2 Buffers Stored in Memory Pools

The Buffer Manager uses the *Mempool Library* to allocate buffers. Therefore, it ensures that the packet header is interleaved optimally across the channels and ranks for L3 processing. An mbuf contains a field indicating the pool that it originated from. When calling rte_ctrlmbuf_free(m) or rte_pktmbuf_free(m), the mbuf returns to its original pool.

4.7.3 Constructors

Packet and control mbuf constructors are provided by the API. The rte_pktmbuf_init() and rte_ctrlmbuf_init() functions initialize some fields in the mbuf structure that are not modified by the user once created (mbuf type, origin pool, buffer start address, and so on). This function is given as a callback function to the rte_mempool_create() function at pool creation time.

4.7.4 Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf should be taken. For any newly-allocated mbuf, it contains one segment, with a length of 0. The offset to data is initialized to have some bytes of headroom in the buffer (RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool. The content of an mbuf is not modified when it is stored in a pool (as a free mbuf). Fields initialized by the constructor do not need to be re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned to their original mempool.

4.7.5 Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:

- Get data length
- · Get a pointer to the start of data
- · Prepend data before data
- · Append data after data
- Remove data at the beginning of the buffer (rte_pktmbuf_adj())
- Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Reference for details.

4.7.6 Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make processing easier. For instance, the VLAN, the RSS hash result (see *Poll Mode Driver*) and a flag indicating that the checksum was computed by hardware.

An mbuf also contains the input port (where it comes from), and the number of segment mbufs in the chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet timestamp mechanism, the VLAN tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some processing to the hardware if it supports it. For instance, the PKT_TX_IP_CKSUM flag allows to offload the computation of the IPv4 checksum.

The following examples explain how to configure different TX offloads on a vxlan-encapsulated tcp packet: out eth/out ip/out udp/vxlan/in eth/in ip/in tcp/payload

· calculate checksum of out_ip:

```
mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet
```

This is supported on hardwares advertising DEV TX OFFLOAD IPV4 CKSUM.

calculate checksum of out_ip and out_udp:

```
mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
set out_ip checksum to 0 in the packet
set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()
This is supported on hardwares advertising DEV_TX_OFFLOAD_IPV4_CKSUM
and DEV_TX_OFFLOAD_UDP_CKSUM.
```

calculate checksum of in_ip:

```
mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set in ip checksum to 0 in the packet
```

This is similar to case 1), but I2_len is different. It is supported on hardwares advertising DEV_TX_OFFLOAD_IPV4_CKSUM. Note that it can only work if outer L4 checksum is 0.

· calculate checksum of in ip and in tcp:

```
mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()
```

This is similar to case 2), but I2_len is different. It is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM and DEV_TX_OFFLOAD_TCP_CKSUM. Note that it can only work if outer L4 checksum is 0.

segment inner TCP:

```
mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->l4_len = len(in_tcp)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |
    PKT_TX_TCP_SEG;
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header without including the IP
    payload length using rte ipv4 phdr cksum()
```

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO. Note that it can only work if outer L4 checksum is 0.

calculate checksum of out ip, in ip, in tcp:

```
mb->outer_l2_len = len(out_eth)
mb->outer_l3_len = len(out_ip)
mb->l2_len = len(out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
```

```
mb->ol_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM | \
    PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM;
set out_ip checksum to 0 in the packet
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM,
DEV_TX_OFFLOAD_UDP_CKSUM and DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.
```

The list of flags and their precise meaning is described in the mbuf API documentation (rte_mbuf.h). Also refer to the testpmd source code (specifically the csumonly.c file) for details.

4.7.7 Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained. An indirect buffer behaves like a direct buffer but for the fact that the buffer pointer and data offset in it refer to data in another direct buffer. This is useful in situations where packets need to be duplicated or fragmented, since indirect buffers provide the means to reuse the same packet data across multiple buffers.

A buffer becomes indirect when it is "attached" to a direct buffer using the rte_pktmbuf_attach() function. Each buffer has a reference counter field and whenever an indirect buffer is attached to the direct buffer, the reference counter on the direct buffer is incremented. Similarly, whenever the indirect buffer is detached, the reference counter on the direct buffer is decremented. If the resulting reference counter is equal to 0, the direct buffer is freed since it is no longer in use.

There are a few things to remember when dealing with indirect buffers. First of all, it is not possible to attach an indirect buffer to another indirect buffer. Secondly, for a buffer to become indirect, its reference counter must be equal to 1, that is, it must not be already referenced by another indirect buffer. Finally, it is not possible to reattach an indirect buffer to the direct buffer (unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended rte_pktmbuf_attach() and rte_pktmbuf_detach() functions, it is suggested to use the higher-level rte_pktmbuf_clone() function, which takes care of the correct initialization of an indirect buffer and can clone buffers with multiple segments.

Since indirect buffers are not supposed to actually hold any data, the memory pool for indirect buffers should be configured to indicate the reduced memory consumption. Examples of the initialization of a memory pool for indirect buffers (as well as use case examples for indirect buffers) can be found in several of the sample applications, for example, the IPv4 Multicast sample application.

4.7.8 Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled), the functions of the mbuf library perform sanity checks before any operation (such as, buffer corruption, bad type, and so on).

4.7.9 Use Cases

All networking application should use mbufs to transport network packets.

4.8 Poll Mode Driver

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user space, to configure the devices and their respective queues. In addition, a PMD accesses the RX and TX descriptors directly without any interrupts (with the exception of Link Status Change interrupts) to quickly receive, process and deliver packets in the user's application. This section describes the requirements of the PMDs, their global design principles and proposes a high-level architecture and a generic external API for the Ethernet PMDs.

4.8.1 Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-completion and pipe-line:

- In the *run-to-completion* model, a specific port's RX descriptor ring is polled for packets through an API. Packets are then processed on the same core and placed on a port's TX descriptor ring through an API for transmission.
- In the *pipe-line* model, one core polls one or more port's RX descriptor ring through an API. Packets are received and passed to another core via a ring. The other core continues to process the packet which then may be placed on a port's TX descriptor ring through an API for transmission.

In a synchronous run-to-completion model, each logical core assigned to the DPDK executes a packet processing loop that includes the following steps:

- Retrieve input packets through the PMD receive API
- · Process each received packet one at a time, up to its forwarding
- Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the retrieval of received packets and other logical cores to the processing of previously received packets. Received packets are exchanged between logical cores through rings. The loop for packet retrieval includes the following steps:

- Retrieve input packets through the PMD receive API
- Provide received packets to processing lcores through packet queues

The loop for packet processing includes the following steps:

- Retrieve the received packet from the packet queue
- Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not use any asynchronous notification mechanisms. Whenever needed and appropriate, asynchronous communication should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment. To address this issue, PMDs are designed to work with per-core private resources as much as possible. For example, a PMD maintains a separate transmit queue per-core, per-port. In the same way, every receive queue of a port is assigned to and polled by a single logical core (lcore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to assign to each logical core a private buffer pool in local memory to minimize remote memory access. The configuration of packet buffer pools should take into account the underlying physical memory architecture in terms of DIMMS, channels and ranks. The application must ensure that appropriate parameters are given at memory pool creation time. See *Mempool Library*.

4.8.2 Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level. Conversely, NIC PMD functions should not impede the benefits expected by upper-level global policies, or worse prevent such policies from being applied.

For instance, both the receive and transmit functions of a PMD have a maximum number of packets/descriptors to poll. This allows a run-to-completion processing stack to statically fix or to dynamically adapt its overall behavior through different global loop policies, such as:

- Receive, process immediately and transmit packets one at a time in a piecemeal fashion.
- Receive as many packets as possible, then process all received packets, transmitting them immediately.
- Receive a given maximum number of packets, process the received packets, accumulate them and finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimization techniques must be considered and balanced against available low-level hardware-based optimization features (CPU cache properties, bus speed, NIC PCI bandwidth, and so on). The case of packet transmission is an example of this software/hardware tradeoff issue when optimizing burst-oriented network packet processing engines. In the initial case, the PMD could export only an rte_eth_tx_one function to transmit one packet at a time on a given queue. On top of that, one can easily build an rte_eth_tx_burst function that loops invoking the rte_eth_tx_one function to transmit several packets at a time. However, an rte_eth_tx_burst function is effectively implemented by the PMD to minimize the driver-level transmit cost per packet through the following optimizations:

- Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one function
- Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware features (prefetch data in cache, use of NIC head/tail registers) to minimize the number of CPU cycles per packet, for example by avoiding unnecessary read memory accesses to ring transmit descriptors, or by systematically using arrays of pointers that exactly fit cache line boundaries and sizes.
- Apply burst-oriented software optimization techniques to remove operations that would otherwise be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used by the PMD. This applies in particular to buffer allocators used to populate NIC rings, which provide functions to allocate/free several buffers at a time. For example, an mbuf_multiple_alloc function returning an array of pointers to rte_mbuf buffers which speeds up the receive poll function of the PMD when replenishing multiple descriptors of the receive ring.

4.8.3 Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor's logical cores and interfaces utilize its local memory. Therefore, mbuf allocation associated with local PCIe* interfaces should be allocated from memory pools created in the local memory. The buffers should, if possible, remain on the local processor to obtain the best performance results and RX and TX buffer descriptors should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local memory instead of a remote processors memory. This is also true for the pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this would require global locks and hinder performance.

4.8.4 Device Identification and Configuration

Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI identifiers assigned by the PCI probing/enumeration function executed at DPDK initialization. Based on their PCI identifier, NIC ports are assigned two other identifiers:

- A port index used to designate the NIC port in all functions exported by the PMD API.
- A port name used to designate the port in console messages, for administration or debugging purposes. For ease of use, the port name includes the port index.

Device Configuration

The configuration of each NIC port includes the following operations:

- Allocate PCI resources
- Reset the hardware (issue a Global Reset) to a well-known default state
- Set up the PHY and the link
- · Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and functions to set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through specific configuration parameters. This is the case for the Receive Side Scaling (RSS) and Data Center Bridging (DCB) features for example.

On-the-Fly Configuration

All device features that can be started or stopped "on the fly" (that is, without stopping the device) do not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the configuration of these features in specific functions outside of the drivers.

For this purpose, the PMD API exports a function that provides all the information associated with a device that can be used to set up a given device feature outside of the driver. This includes the PCI vendor identifier, the PCI device identifier, the mapping address of the PCI device registers, and the name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the API used to configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Gigabit Ethernet Controller and the Intel® 82599 10 Gigabit Ethernet Controller controllers in the testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in the same way. Ethernet* flow control (pause frame) can be configured on the individual port. Refer to the testpmd source code for details. Also, L4 (UDP/TCP/ SCTP) checksum offload by the NIC can be enabled for an individual packet as long as the packet mbuf is set up correctly. See *Hardware Offload* for details.

Configuration of Transmit and Receive Queues

Each transmit queue is independently configured with the following information:

- · The number of descriptors of the transmit ring
- The socket identifier used to identify the appropriate DMA memory zone from which to allocate the transmit ring in NUMA architectures
- The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue
- The minimum transmit packets to free threshold (tx_free_thresh). When the number of descriptors used to transmit packets exceeds this threshold, the network adaptor should be checked to see if it has written back descriptors. A value of 0 can be passed during the TX queue configuration to indicate the default value should be used. The default value for tx_free_thresh is 32. This ensures that the PMD does not search for completed descriptors until at least 32 have been processed by the NIC for this queue.
- The *minimum* RS bit threshold. The minimum number of transmit descriptors to use before setting the Report Status (RS) bit in the transmit descriptor. Note that this parameter may only be valid for Intel 10 GbE network adapters. The RS bit is set on the last descriptor used to transmit a packet if the number of descriptors used since the last RS bit setting, up to the first descriptor used to transmit the packet, exceeds the transmit RS bit threshold (tx_rs_thresh). In short, this parameter controls which transmit descriptors are written back to host memory by the network adapter. A value of 0 can be passed during the TX queue configuration to indicate that the default value should be used. The default value for tx_rs_thresh is 32. This ensures that at least 32 descriptors are used before the network adapter writes back the most recently used descriptor. This saves upstream PCle* bandwidth resulting from TX descriptor write-backs. It is important to note that the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh is greater than 1. Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:

- tx rs thresh must be greater than 0.
- tx_rs_thresh must be less than the size of the ring minus 2.

- tx_rs_thresh must be less than or equal to tx_free_thresh.
- tx_free_thresh must be greater than 0.
- tx_free_thresh must be less than the size of the ring minus 3.
- For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence the maximum threshold constraints.

Note: When configuring for DCB operation, at port initialization, both the number of transmit queues and the number of receive queues must be set to 128.

Hardware Offload

Depending on driver capabilities advertised by rte_eth_dev_info_get(), the PMD may support hardware offloading feature like checksumming, TCP segmentation or VLAN insertion.

The support of these offload features implies the addition of dedicated status bit(s) and value field(s) into the rte_mbuf data structure, along with their appropriate handling by the receive/transmit functions exported by each PMD. The list of flags and their precise meaning is described in the mbuf API documentation and in the in *Mbuf Library*, section "Meta Information".

4.8.5 Poll Mode Driver API

Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed not to be invoked in parallel on different logical cores to work on the same target object. For instance, a PMD receive function cannot be invoked in parallel on two logical cores to poll the same RX queue of the same port. Of course, this function can be invoked in parallel by different logical cores on different RX queues. It is the responsibility of the upper-level application to enforce this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly protected by dedicated inline lock-aware functions built on top of their corresponding lock-free functions of the PMD API.

Generic Packet Representation

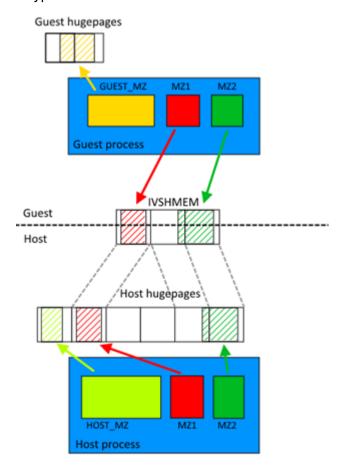
A packet is represented by an rte_mbuf structure, which is a generic metadata structure containing all necessary housekeeping information. This includes fields and status bits corresponding to offload hardware features, such as checksum computation of IP headers or VLAN tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload features provided by network controllers. For an input packet, most fields of the rte_mbuf structure are filled in by the PMD receive function with the information contained in the receive

descriptor. Conversely, for output packets, most fields of rte_mbuf structures are used by the PMD transmit function to initialize transmit descriptors.

The mbuf structure is fully described in the *Mbuf Library* chapter.

Ethernet Device API


The Ethernet device API exported by the Ethernet PMDs is described in the *DPDK API Reference*.

4.9 IVSHMEM Library

The DPDK IVSHMEM library facilitates fast zero-copy data sharing among virtual machines (host-to-guest or guest-to-guest) by means of QEUMU's IVSHMEM mechanism.

The library works by providing a command line for QEMU to map several hugepages into a single IVSHMEM device. For the guest to know what is inside any given IVSHMEM device (and to distinguish between DPDK and non-DPDK IVSHMEM devices), a metadata file is also mapped into the IVSHMEM segment. No work needs to be done by the guest application to map IVSHMEM devices into memory; they are automatically recognized by the DPDK Environment Abstraction Layer (EAL).

A typical DPDK IVSHMEM use case looks like the following.

The same could work with several virtual machines, providing host-to-VM or VM-to-VM communication. The maximum number of metadata files is 32 (by default) and each metadata file

can contain different (or even the same) hugepages. The only constraint is that each VM has to have access to the memory it is sharing with other entities (be it host or another VM). For example, if the user wants to share the same memzone across two VMs, each VM must have that memzone in its metadata file.

4.9.1 IVHSHMEM Library API Overview

The following is a simple guide to using the IVSHMEM Library API:

- Call rte_ivshmem_metadata_create() to create a new metadata file. The metadata name is used to distinguish between multiple metadata files.
- Populate each metadata file with DPDK data structures. This can be done using the following API calls:
 - rte_ivhshmem_metadata_add_memzone() to add rte_memzone to metadata file
 - rte_ivshmem_metadata_add_ring() to add rte_ring to metadata file
 - rte ivshmem metadata add mempool() to add rte mempool to metadata file
- Finally, call rte_ivshmem_metadata_cmdline_generate() to generate the command line for QEMU. Multiple metadata files (and thus multiple command lines) can be supplied to a single VM.

Note: Only data structures fully residing in DPDK hugepage memory work correctly. Supported data structures created by malloc(), mmap() or otherwise using non-DPDK memory cause undefined behavior and even a segmentation fault.

4.9.2 IVSHMEM Environment Configuration

The steps needed to successfully run IVSHMEM applications are the following:

- Compile a special version of QEMU from sources.
 - The source code can be found on the QEMU website (currently, version 1.4.x is supported, but version 1.5.x is known to work also), however, the source code will need to be patched to support using regular files as the IVSHMEM memory backend. The patch is not included in the DPDK package, but is available on the Intel®DPDK-vswitch project webpage (either separately or in a DPDK vSwitch package).
- Enable IVSHMEM library in the DPDK build configuration.
 - In the default configuration, IVSHMEM library is not compiled. To compile the IVSH-MEM library, one has to either use one of the provided IVSHMEM targets (for example, x86_64-ivshmem-linuxapp-gcc), or set CONFIG_RTE_LIBRTE_IVSHMEM to "y" in the build configuration.
- Set up hugepage memory on the virtual machine.
 - The guest applications run as regular DPDK (primary) processes and thus need their own hugepage memory set up inside the VM. The process is identical to the one described in the *DPDK Getting Started Guide*.

4.9.3 Best Practices for Writing IVSHMEM Applications

When considering the use of IVSHMEM for sharing memory, security implications need to be carefully evaluated. IVSHMEM is not suitable for untrusted guests, as IVSHMEM is essentially a window into the host processs memory. This also has implications for the multiple VM scenarios. While the IVSHMEM library tries to share as little memory as possible, it is quite probable that data designated for one VM might also be present in an IVSMHMEM device designated for another VM. Consequently, any shared memory corruption will affect both host and all VMs sharing that particular memory.

IVSHMEM applications essentially behave like multi-process applications, so it is important to implement access serialization to data and thread safety. DPDK ring structures are already thread-safe, however, any custom data structures that the user might need would have to be thread-safe also.

Similar to regular DPDK multi-process applications, it is not recommended to use function pointers as functions might have different memory addresses in different processes.

It is best to avoid freeing the rte_mbuf structure on a different machine from where it was allocated, that is, if the mbuf was allocated on the host, the host should free it. Consequently, any packet transmission and reception should also happen on the same machine (whether virtual or physical). Failing to do so may lead to data corruption in the mempool cache.

Despite the IVSHMEM mechanism being zero-copy and having good performance, it is still desirable to do processing in batches and follow other procedures described in *Performance Optimization*.

4.9.4 Best Practices for Running IVSHMEM Applications

For performance reasons, it is best to pin host processes and QEMU processes to different cores so that they do not interfere with each other. If NUMA support is enabled, it is also desirable to keep host process' hugepage memory and QEMU process on the same NUMA node.

For the best performance across all NUMA nodes, each QUEMU core should be pinned to host CPU core on the appropriate NUMA node. QEMU's virtual NUMA nodes should also be set up to correspond to physical NUMA nodes. More on how to set up DPDK and QEMU NUMA support can be found in *DPDK Getting Started Guide* and QEMU documentation respectively. A script called cpu_layout.py is provided with the DPDK package (in the tools directory) that can be used to identify which CPU cores correspond to which NUMA node.

The QEMU IVSHMEM command line creation should be considered the last step before starting the virtual machine. Currently, there is no hot plug support for QEMU IVSHMEM devices, so one cannot add additional memory to an IVSHMEM device once it has been created. Therefore, the correct sequence to run an IVSHMEM application is to run host application first, obtain the command lines for each IVSHMEM device and then run all QEMU instances with guest applications afterwards.

It is important to note that once QEMU is started, it holds on to the hugepages it uses for IVSHMEM devices. As a result, if the user wishes to shut down or restart the IVSHMEM host application, it is not enough to simply shut the application down. The virtual machine must also be shut down (if not, it will hold onto outdated host data).

4.10 Link Bonding Poll Mode Driver Library

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, DPDK also includes a pure-software library that allows physical PMD's to be bonded together to create a single logical PMD.

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of rte_eth_dev ports of the same speed and duplex to provide similar the capabilities to that found in Linux bonding driver to allow the aggregation of multiple (slave) NICs into a single logical interface between a server and a switch. The new bonded PMD will then process these interfaces based on the mode of operation specified to provide support for features such as redundant links, fault tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the creation of bonded devices as well as the configuration and management of the bonded device and its slave devices.

Note: The Link Bonding PMD Library is enabled by default in the build configuration files, the library can be disabled by setting CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the DPDK.

4.10.1 Link Bonding Modes Overview

Currently the Link Bonding PMD library supports 4 modes of operation:

• Round-Robin (Mode 0):

This mode provides load balancing and fault tolerance by transmission of packets in sequential order from the first available slave device through the last. Packets are bulk dequeued from devices then serviced in a round-robin manner. This mode does not guarantee in order reception of packets and down stream should be able to handle out of order packets.

Active Backup (Mode 1):

In this mode only one slave in the bond is active at any time, a different slave becomes active if, and only if, the primary active slave fails, thereby providing fault tolerance to slave failure. The single logical bonded interface's MAC address is externally visible on only one NIC (port) to avoid confusing the network switch.

• Balance XOR (Mode 2):

This mode provides transmit load balancing (based on the selected transmission policy) and fault tolerance. The default policy (layer2) uses a simple calculation based on the packet flow source and destination MAC addresses aswell as the number of active slaves available to the bonded device to classify the packet to a specific slave to transmit on. Alternate transmission policies supported are layer 2+3, this takes the IP source and destination addresses into the calculation of the transmit slave port and the final supported policy is layer 3+4, this uses IP source and destination addresses as well as the TCP/UDP source and destination port.

Note: The colouring differences of the packets are used to identify different flow classification calculated by the selected transmit policy

• Broadcast (Mode 3):

This mode provides fault tolerance by transmission of packets on all slave ports.

Link Aggregation 802.3AD (Mode 4):

This mode provides dynamic link aggregation according to the 802.3ad specification. It negotiates and monitors aggregation groups that share the same speed and duplex settings using the selected balance transmit policy for balancing outgoing traffic.

DPDK implementation of this mode provide some additional requirements of the application.

- 1. It needs to call rte_eth_tx_burst and rte_eth_rx_burst with intervals period of less than 100ms.
- 2. Calls to rte_eth_tx_burst must have a buffer size of at least 2xN, where N is the number of slaves. This is a space required for LACP frames. Additionally LACP packets are included in the statistics, but they are not returned to the application.

Transmit Load Balancing (Mode 5):

This mode provides an adaptive transmit load balancing. It dynamically changes the transmitting slave, according to the computed load. Statistics are collected in 100ms intervals and scheduled every 10ms.

4.10.2 Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API exported by the Ethernet PMDs described in the *DPDK API Reference*.

The Link Bonding Library supports the creation of bonded devices at application startup time during EAL initialization using the --vdev option as well as programmatically via the C API rte_eth_bond_create function.

Bonded devices support the dynamical addition and removal of slave devices using the rte_eth_bond_slave_add/rte_eth_bond_slave_remove APIs.

After a slave device is added to a bonded device slave is stopped using rte_eth_dev_stop and then reconfigured using rte_eth_dev_configure the RX and TX queues are also reconfigured using rte_eth_tx_queue_setup / rte_eth_rx_queue_setup with the parameters use to configure the bonding device.

Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback, using the rte_eth_dev_callback_register API, this will be called when the status of the bonding device changes. For example in the case of a bonding device which has 3 slaves, the link status will change to up when one slave becomes active or change to down when all slaves

become inactive. There is no callback notification when a single slave changes state and the previous conditions are not met. If a user wishes to monitor individual slaves then they must register callbacks with that slave directly.

The link bonding library also supports devices which do not implement link status change interrupts, this is achieve by polling the devices link status at a defined period which is set using the rte_eth_bond_link_monitoring_set API, the default polling interval is 10ms. When a device is added as a slave to a bonding device it is determined using the RTE_PCI_DRV_INTR_LSC flag whether the device supports interrupts or whether the link status should be monitored by polling it.

Requirements / Limitations

The current implementation only supports devices that support the same speed and duplex to be added as a slaves to the same bonded device. The bonded device inherits these attributes from the first active slave added to the bonded device and then all further slaves added to the bonded device must support these parameters.

A bonding device must have a minimum of one slave before the bonding device itself can be started.

Like all other PMD, all functions exported by a PMD are lock-free functions that are assumed not to be invoked in parallel on different logical cores to work on the same target object.

It should also be noted that the PMD receive function should not be invoked directly on a slave devices after they have been to a bonded device since packets read directly from the slave device will no longer be available to the bonded device to read.

Configuration

Link bonding devices are created using the rte_eth_bond_create API which requires a unique device name, the bonding mode, and the socket Id to allocate the bonding device's resources on. The other configurable parameters for a bonded device are its slave devices, its primary slave, a user defined MAC address and transmission policy to use if the device is in balance XOR mode.

Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices of the same speed and duplex. Ethernet devices can be added as a slave to a maximum of one bonded device. Slave devices are reconfigured with the configuration of the bonded device on being added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its original value of removal of a slave from it.

Primary Slave

The primary slave is used to define the default port to use when a bonded device is in active backup mode. A different port will only be used if, and only if, the current primary port goes

down. If the user does not specify a primary port it will default to being the first port added to the bonded device.

MAC Address

The bonded device can be configured with a user specified MAC address, this address will be inherited by the some/all slave devices depending on the operating mode. If the device is in active backup mode then only the primary device will have the user specified MAC, all other slaves will retain their original MAC address. In mode 0, 2, 3, 4 all slaves devices are configure with the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will default to using the primary slaves MAC address.

Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in Balance XOR mode. Layer 2, Layer 2+3, Layer 3+4.

- Layer 2: Ethernet MAC address based balancing is the default transmission policy for Balance XOR bonding mode. It uses a simple XOR calculation on the source MAC address and destination MAC address of the packet and then calculate the modulus of this value to calculate the slave device to transmit the packet on.
- Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a combination of source/destination MAC addresses and the source/destination IP addresses of the data packet to decide which slave port the packet will be transmitted on.
- Layer 3 + 4: IP Address & UDP Port based balancing uses a combination of source/destination IP Address and the source/destination UDP ports of the packet of the data packet to decide which slave port the packet will be transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6 and UDP protocols for load balancing.

4.10.3 Using Link Bonding Devices

The librte_pmd_bond library support two modes of device creation, the libraries export full C API or using the EAL command line to statically configure link bonding devices at application startup. Using the EAL option it is possible to use link bonding functionality transparently without specific knowledge of the libraries API, this can be used, for example, to add bonding functionality, such as active backup, to an existing application which has no knowledge of the link bonding C API.

Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create and manage link bonding device from within any application. Link bonding device are created using the rte_eth_bond_create API which requires a unique device name, the link bonding mode to initial the device in and finally the socket Id which to allocate the devices resources onto. After successful creation of a bonding device it must be configured using the generic Ethernet

device configure API rte_eth_dev_configure and then the RX and TX queues which will be used must be setup using rte eth tx queue setup / rte eth rx queue setup.

Slave devices can be dynamically added and removed from a link bonding device using the rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs but at least one slave device must be added to the link bonding device before it can be started using rte eth dev start.

The link status of a bonded device is dictated by that of its slaves, if all slave device link status are down or if all slaves are removed from the link bonding device then the link status of the bonding device will go down.

It is also possible to configure / query the configuration of the control parameters of a bonded device using the provided APIs rte_eth_bond_mode_set/get, rte_eth_bond_primary_set/get, rte_eth_bond_mac_set/reset and rte_eth_bond_xmit_policy_set/get.

Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the --vdev EAL command line option. The device name must start with the eth_bond prefix followed by numbers or letters. The name must be unique for each device. Each device can have multiple options arranged in a comma separated list. Multiple devices definitions can be arranged by calling the --vdev option multiple times.

Device names and bonding options must be separated by commas as shown below:

```
$RTE TARGET/app/testpmd -c f -n 4 --vdev 'eth bond0,bond opt0=..,bond opt1=..'--vdev 'eth bond
```

Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as long as the following two rules are respected:

- A unique device name, in the format of eth_bondX is provided, where X can be any combination of numbers and/or letters, and the name is no greater than 32 characters long.
- A least one slave device is provided with for each bonded device definition.
- The operation mode of the bonded device being created is provided.

The different options are:

• mode: Integer value defining the bonding mode of the device. Currently supports modes 0,1,2,3,4,5 (round-robin, active backup, balance, broadcast, link aggregation, transmit load balancing).

mode=2

slave: Defines the PMD device which will be added as slave to the bonded device. This option can be selected multiple time, for each device to be added as a slave. Physical devices should be specified using their PCI address, in the format domain:bus:devid.function

```
slave=0000:0a:00.0,slave=0000:0a:00.1
```

 primary: Optional parameter which defines the primary slave port, is used in active backup mode to select the primary slave for data TX/RX if it is available. The primary port also is used to select the MAC address to use when it is not defined by the user. This defaults to the first slave added to the device if it is specified. The primary device must be a slave of the bonded device.

```
primary=0000:0a:00.0
```

 socket_id: Optional parameter used to select which socket on a NUMA device the bonded devices resources will be allocated on.

```
socket_id=0
```

• mac: Optional parameter to select a MAC address for link bonding device, this overrides the value of the primary slave device.

```
mac=00:1e:67:1d:fd:1d
```

• xmit_policy: Optional parameter which defines the transmission policy when the bonded device is in balance mode. If not user specified this defaults to I2 (layer 2) forwarding, the other transmission policies available are I23 (layer 2+3) and I34 (layer 3+4)

```
xmit_policy=l23
```

 Isc_poll_period_ms: Optional parameter which defines the polling interval in milliseconds at which devices which don't support lsc interrupts are checked for a change in the devices link status

```
lsc poll period ms=100
```

 up_delay: Optional parameter which adds a delay in milli-seconds to the propagation of a devices link status changing to up, by default this parameter is zero.

```
up_delay=10
```

• down_delay: Optional parameter which adds a delay in milli-seconds to the propagation of a devices link status changing to down, by default this parameter is zero.

```
down delay=50
```

Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=0000
```

Create a bonded device in round robin mode with two slaves specified by their PCI address and an overriding MAC address:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_bond0,mode=0, slave=0000:00a:00.01,slave=000
```

Create a bonded device in active backup mode with two slaves specified, and a primary slave specified by their PCI addresses:

```
$RTE TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth bond0, mode=1, slave=0000:00a:00.01, slave=000
```

Create a bonded device in balance mode with two slaves specified by their PCI addresses, and a transmission policy of layer 3 + 4 forwarding:

```
$RTE TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth bond0, mode=2, slave=0000:00a:00.01, slave=000
```

4.11 Timer Library

The Timer library provides a timer service to DPDK execution units to enable execution of callback functions asynchronously. Features of the library are:

- Timers can be periodic (multi-shot) or single (one-shot).
- Timers can be loaded from one core and executed on another. It has to be specified in the call to rte_timer_reset().
- Timers provide high precision (depends on the call frequency to rte_timer_manage() that checks timer expiration for the local core).
- If not required in the application, timers can be disabled at compilation time by not calling the rte timer manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event Timer (HPET) or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The API is based on BSD callout() with a few differences. Refer to the callout manual.

4.11.1 Implementation Details

Timers are tracked on a per-lcore basis, with all pending timers for a core being maintained in order of timer expiry in a skiplist data structure. The skiplist used has ten levels and each entry in the table appears in each level with probability ½^level. This means that all entries are present in level 0, 1 in every 4 entries is present at level 1, one in every 16 at level 2 and so on up to level 9. This means that adding and removing entries from the timer list for a core can be done in log(n) time, up to 4^10 entries, that is, approximately 1,000,000 timers per lcore.

A timer structure contains a special field called status, which is a union of a timer state (stopped, pending, running, config) and an owner (lcore id). Depending on the timer state, we know if a timer is present in a list or not:

- STOPPED: no owner, not in a list
- CONFIG: owned by a core, must not be modified by another core, maybe in a list or not, depending on previous state
- PENDING: owned by a core, present in a list
- RUNNING: owned by a core, must not be modified by another core, present in a list

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed. When modifying the state of a timer, a Compare And Swap instruction should be used to guarantee that the status (state+owner) is modified atomically.

Inside the rte_timer_manage() function, the skiplist is used as a regular list by iterating along the level 0 list, which contains all timer entries, until an entry which has not yet expired has been encountered. To improve performance in the case where there are entries in the timer list but none of those timers have yet expired, the expiry time of the first list entry is maintained within the per-core timer list structure itself. On 64-bit platforms, this value can be checked without the need to take a lock on the overall structure. (Since expiry times are maintained as 64-bit values, a check on the value cannot be done on 32-bit platforms without using either a compare-and-swap (CAS) instruction or using a lock, so this additional check is skipped in favour of checking as normal once the lock has been taken.) On both 64-bit and 32-bit

platforms, a call to rte_timer_manage() returns without taking a lock in the case where the timer list for the calling core is empty.

4.11.2 Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines (ARP, bridging, and so on).

4.11.3 References

- callout manual The callout facility that provides timers with a mechanism to execute a function at a given time.
- HPET Information about the High Precision Event Timer (HPET).

4.12 Hash Library

The DPDK provides a Hash Library for creating hash table for fast lookup. The hash table is a data structure optimized for searching through a set of entries that are each identified by a unique key. For increased performance the DPDK Hash requires that all the keys have the same number of bytes which is set at the hash creation time.

4.12.1 Hash API Overview

The main configuration parameters for the hash are:

- Total number of hash entries
- · Size of the key in bytes

The hash also allows the configuration of some low-level implementation related parameters such as:

- Hash function to translate the key into a bucket index
- Number of entries per bucket

The main methods exported by the hash are:

- Add entry with key: The key is provided as input. If a new entry is successfully added to
 the hash for the specified key, or there is already an entry in the hash for the specified
 key, then the position of the entry is returned. If the operation was not successful, for
 example due to lack of free entries in the hash, then a negative value is returned;
- Delete entry with key: The key is provided as input. If an entry with the specified key is found in the hash, then the entry is removed from the hash and the position where the entry was found in the hash is returned. If no entry with the specified key exists in the hash, then a negative value is returned
- Lookup for entry with key: The key is provided as input. If an entry with the specified key is found in the hash (lookup hit), then the position of the entry is returned, otherwise (lookup miss) a negative value is returned.

The current hash implementation handles the key management only. The actual data associated with each key has to be managed by the user using a separate table that mirrors the hash in terms of number of entries and position of each entry, as shown in the Flow Classification use case describes in the following sections.

The example hash tables in the L2/L3 Forwarding sample applications defines which port to forward a packet to based on a packet flow identified by the five-tuple lookup. However, this table could also be used for more sophisticated features and provide many other functions and actions that could be performed on the packets and flows.

4.12.2 Implementation Details

The hash table is implemented as an array of entries which is further divided into buckets, with the same number of consecutive array entries in each bucket. For any input key, there is always a single bucket where that key can be stored in the hash, therefore only the entries within that bucket need to be examined when the key is looked up. The lookup speed is achieved by reducing the number of entries to be scanned from the total number of hash entries down to the number of entries in a hash bucket, as opposed to the basic method of linearly scanning all the entries in the array. The hash uses a hash function (configurable) to translate the input key into a 4-byte key signature. The bucket index is the key signature modulo the number of hash buckets. Once the bucket is identified, the scope of the hash add, delete and lookup operations is reduced to the entries in that bucket.

To speed up the search logic within the bucket, each hash entry stores the 4-byte key signature together with the full key for each hash entry. For large key sizes, comparing the input key against a key from the bucket can take significantly more time than comparing the 4-byte signature of the input key against the signature of a key from the bucket. Therefore, the signature comparison is done first and the full key comparison done only when the signatures matches. The full key comparison is still necessary, as two input keys from the same bucket can still potentially have the same 4-byte hash signature, although this event is relatively rare for hash functions providing good uniform distributions for the set of input keys.

4.12.3 Use Case: Flow Classification

Flow classification is used to map each input packet to the connection/flow it belongs to. This operation is necessary as the processing of each input packet is usually done in the context of their connection, so the same set of operations is applied to all the packets from the same flow.

Applications using flow classification typically have a flow table to manage, with each separate flow having an entry associated with it in this table. The size of the flow table entry is application specific, with typical values of 4, 16, 32 or 64 bytes.

Each application using flow classification typically has a mechanism defined to uniquely identify a flow based on a number of fields read from the input packet that make up the flow key. One example is to use the DiffServ 5-tuple made up of the following fields of the IP and transport layer packet headers: Source IP Address, Destination IP Address, Protocol, Source Port, Destination Port.

The DPDK hash provides a generic method to implement an application specific flow classification mechanism. Given a flow table implemented as an array, the application should create

a hash object with the same number of entries as the flow table and with the hash key size set to the number of bytes in the selected flow key.

The flow table operations on the application side are described below:

- Add flow: Add the flow key to hash. If the returned position is valid, use it to access the flow entry in the flow table for adding a new flow or updating the information associated with an existing flow. Otherwise, the flow addition failed, for example due to lack of free entries for storing new flows.
- Delete flow: Delete the flow key from the hash. If the returned position is valid, use it to
 access the flow entry in the flow table to invalidate the information associated with the
 flow.
- Lookup flow: Lookup for the flow key in the hash. If the returned position is valid (flow lookup hit), use the returned position to access the flow entry in the flow table. Otherwise (flow lookup miss) there is no flow registered for the current packet.

4.12.4 References

• Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition), 1998, Addison-Wesley Professional

4.13 LPM Library

The DPDK LPM library component implements the Longest Prefix Match (LPM) table search method for 32-bit keys that is typically used to find the best route match in IP forwarding applications.

4.13.1 LPM API Overview

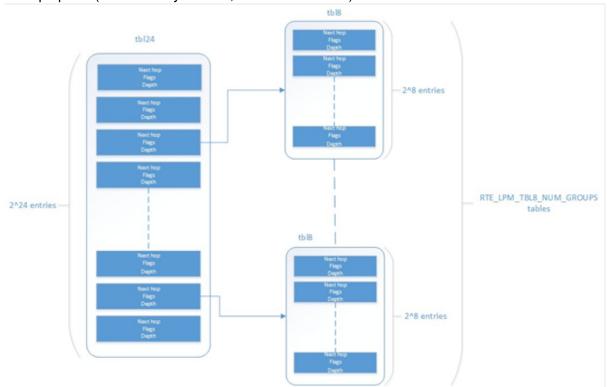
The main configuration parameter for LPM component instances is the maximum number of rules to support. An LPM prefix is represented by a pair of parameters (32- bit key, depth), with depth in the range of 1 to 32. An LPM rule is represented by an LPM prefix and some user data associated with the prefix. The prefix serves as the unique identifier of the LPM rule. In this implementation, the user data is 1-byte long and is called next hop, in correlation with its main use of storing the ID of the next hop in a routing table entry.

The main methods exported by the LPM component are:

- Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix
 present in the table, then the new rule is added to the LPM table. If a rule with the same
 prefix is already present in the table, the next hop of the rule is updated. An error is
 returned when there is no available rule space left.
- Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the specified prefix is present in the LPM table, then it is removed.
- Lookup LPM key: The 32-bit key is provided as input. The algorithm selects the rule that
 represents the best match for the given key and returns the next hop of that rule. In the
 case that there are multiple rules present in the LPM table that have the same 32-bit key,
 the algorithm picks the rule with the highest depth as the best match rule, which means

that the rule has the highest number of most significant bits matching between the input key and the rule key.

4.13.2 Implementation Details


The current implementation uses a variation of the DIR-24-8 algorithm that trades memory usage for improved LPM lookup speed. The algorithm allows the lookup operation to be performed with typically a single memory read access. In the statistically rare case when the best match rule is having a depth bigger than 24, the lookup operation requires two memory read accesses. Therefore, the performance of the LPM lookup operation is greatly influenced by whether the specific memory location is present in the processor cache or not.

The main data structure is built using the following elements:

- A table with 2²⁴ entries.
- A number of tables (RTE LPM TBL8 NUM GROUPS) with 2^8 entries.

The first table, called tbl24, is indexed using the first 24 bits of the IP address to be looked up, while the second table(s), called tbl8, is indexed using the last 8 bits of the IP address. This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24 we might need to continue the lookup process in the second level.

Since every entry of the tbl24 can potentially point to a tbl8, ideally, we would have 2^24 tbl8s, which would be the same as having a single table with 2^32 entries. This is not feasible due to resource restrictions. Instead, this approach takes advantage of the fact that rules longer than 24 bits are very rare. By splitting the process in two different tables/levels and limiting the number of tbl8s, we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access, most of the times).

An entry in tbl24 contains the following fields:

- next hop / index to the tbl8
- valid flag
- · external entry flag
- depth of the rule (length)

The first field can either contain a number indicating the tbl8 in which the lookup process should continue or the next hop itself if the longest prefix match has already been found. The two flags are used to determine whether the entry is valid or not and whether the search process have finished or not respectively. The depth or length of the rule is the number of bits of the rule that is stored in a specific entry.

An entry in a tbl8 contains the following fields:

- next hop
- valid
- · valid group
- · depth

Next hop and depth contain the same information as in the tbl24. The two flags show whether the entry and the table are valid respectively.

The other main data structure is a table containing the main information about the rules (IP and next hop). This is a higher level table, used for different things:

- Check whether a rule already exists or not, prior to addition or deletion, without having to actually perform a lookup.
- When deleting, to check whether there is a rule containing the one that is to be deleted. This is important, since the main data structure will have to be updated accordingly.

Addition

When adding a rule, there are different possibilities. If the rule's depth is exactly 24 bits, then:

- Use the rule (IP address) as an index to the tbl24.
- If the entry is invalid (i.e. it doesn't already contain a rule) then set its next hop to its value, the valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning the lookup process ends at this point, since this is the longest prefix that matches).

If the rule's depth is exactly 32 bits, then:

- Use the first 24 bits of the rule as an index to the tbl24.
- If the entry is invalid (i.e. it doesn't already contain a rule) then look for a free tbl8, set the index to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the external entry flag to 1 (meaning the lookup process must continue since the rule hasn't been explored completely).

If the rule's depth is any other value, prefix expansion must be performed. This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let's assume the depth is 20 bits. This means that there are $2^{(24 - 20)} = 16$ different combinations of the first 24 bits of an IP address that would cause a match.

Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists, it is found in either one or two memory accesses, depending on whether we need to move to the next table or not. Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by adding redundancy.

Lookup

The lookup process is much simpler and quicker. In this case:

- Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use, then it means we don't have a rule matching this IP. If it is valid and the external entry flag is set to 0, then the next hop is returned.
- If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8 to be checked, and the last 8 bits of the IP address as an index to this table. Similarly, if the entry is not in use, then we don't have a rule matching this IP address. If it is valid then the next hop is returned.

Limitations in the Number of Rules

There are different things that limit the number of rules that can be added. The first one is the maximum number of rules, which is a parameter passed through the API. Once this number is reached, it is not possible to add any more rules to the routing table unless one or more are removed.

The second reason is an intrinsic limitation of the algorithm. As explained before, to avoid high memory consumption, the number of tbl8s is limited in compilation time (this value is by default 256). If we exhaust tbl8s, we won't be able to add any more rules. How many of them are necessary for a specific routing table is hard to determine in advance.

A tbl8 is consumed whenever we have a new rule with depth bigger than 24, and the first 24 bits of this rule are not the same as the first 24 bits of a rule previously added. If they are, then the new rule will share the same tbl8 than the previous one, since the only difference between the two rules is within the last byte.

With the default value of 256, we can have up to 256 rules longer than 24 bits that differ on their first three bytes. Since routes longer than 24 bits are unlikely, this shouldn't be a problem in most setups. Even if it is, however, the number of tbl8s can be modified.

Use Case: IPv4 Forwarding

The LPM algorithm is used to implement Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IPv4 forwarding.

References

RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy, http://www.ietf.org/rfc/rfc1519

 Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis, Stanford University, 2000 (http://klamath.stanford.edu/~pankaj/thesis/ thesis_1sided.pdf)

4.14 LPM6 Library

The LPM6 (LPM for IPv6) library component implements the Longest Prefix Match (LPM) table search method for 128-bit keys that is typically used to find the best match route in IPv6 forwarding applications.

4.14.1 LPM6 API Overview

The main configuration parameters for the LPM6 library are:

- Maximum number of rules: This defines the size of the table that holds the rules, and therefore the maximum number of rules that can be added.
- Number of tbl8s: A tbl8 is a node of the trie that the LPM6 algorithm is based on.

This parameter is related to the number of rules you can have, but there is no way to accurately predict the number needed to hold a specific number of rules, since it strongly depends on the depth and IP address of every rule. One tbl8 consumes 1 kb of memory. As a recommendation, 65536 tbl8s should be sufficient to store several thousand IPv6 rules, but the number can vary depending on the case.

An LPM prefix is represented by a pair of parameters (128-bit key, depth), with depth in the range of 1 to 128. An LPM rule is represented by an LPM prefix and some user data associated with the prefix. The prefix serves as the unique identifier for the LPM rule. In this implementation, the user data is 1-byte long and is called "next hop", which corresponds to its main use of storing the ID of the next hop in a routing table entry.

The main methods exported for the LPM component are:

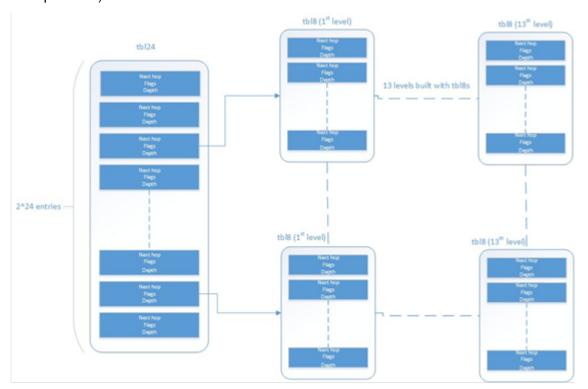
- Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix
 present in the table, then the new rule is added to the LPM table. If a rule with the same
 prefix is already present in the table, the next hop of the rule is updated. An error is
 returned when there is no available space left.
- Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the specified prefix is present in the LPM table, then it is removed.
- Lookup LPM key: The 128-bit key is provided as input. The algorithm selects the rule
 that represents the best match for the given key and returns the next hop of that rule. In
 the case that there are multiple rules present in the LPM table that have the same 128-bit
 value, the algorithm picks the rule with the highest depth as the best match rule, which
 means the rule has the highest number of most significant bits matching between the
 input key and the rule key.

Implementation Details

This is a modification of the algorithm used for IPv4 (see Section 19.2 "Implementation Details"). In this case, instead of using two levels, one with a tbl24 and a second with a tbl8, 14 levels are used.

The implementation can be seen as a multi-bit trie where the *stride* or number of bits inspected on each level varies from level to level. Specifically, 24 bits are inspected on the root node, and the remaining 104 bits are inspected in groups of 8 bits. This effectively means that the trie has 14 levels at the most, depending on the rules that are added to the table.

The algorithm allows the lookup operation to be performed with a number of memory accesses that directly depends on the length of the rule and whether there are other rules with bigger depths and the same key in the data structure. It can vary from 1 to 14 memory accesses, with 5 being the average value for the lengths that are most commonly used in IPv6.


The main data structure is built using the following elements:

- A table with 224 entries
- A number of tables, configurable by the user through the API, with 28 entries

The first table, called tbl24, is indexed using the first 24 bits of the IP address be looked up, while the rest of the tables, called tbl8s, are indexed using the rest of the bytes of the IP address, in chunks of 8 bits. This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24 or the subsequent tbl8s we might need to continue the lookup process in deeper levels of the tree.

Similar to the limitation presented in the algorithm for IPv4, to store every possible IPv6 rule, we would need a table with 2¹²⁸ entries. This is not feasible due to resource restrictions.

By splitting the process in different tables/levels and limiting the number of tbl8s, we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access per level).

An entry in a table contains the following fields:

- next hop / index to the tbl8
- depth of the rule (length)

- · valid flag
- · valid group flag
- · external entry flag

The first field can either contain a number indicating the tbl8 in which the lookup process should continue or the next hop itself if the longest prefix match has already been found. The depth or length of the rule is the number of bits of the rule that is stored in a specific entry. The flags are used to determine whether the entry/table is valid or not and whether the search process have finished or not respectively.

Both types of tables share the same structure.

The other main data structure is a table containing the main information about the rules (IP, next hop and depth). This is a higher level table, used for different things:

• Check whether a rule already exists or not, prior to addition or deletion, without having to actually perform a lookup.

When deleting, to check whether there is a rule containing the one that is to be deleted. This is important, since the main data structure will have to be updated accordingly.

Addition

When adding a rule, there are different possibilities. If the rule's depth is exactly 24 bits, then:

- Use the rule (IP address) as an index to the tbl24.
- If the entry is invalid (i.e. it doesn't already contain a rule) then set its next hop to its value, the valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning the lookup process ends at this point, since this is the longest prefix that matches).

If the rule's depth is bigger than 24 bits but a multiple of 8, then:

- Use the first 24 bits of the rule as an index to the tbl24.
- If the entry is invalid (i.e. it doesn't already contain a rule) then look for a free tbl8, set the index to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the external entry flag to 1 (meaning the lookup process must continue since the rule hasn't been explored completely).
- Use the following 8 bits of the rule as an index to the next tbl8.
- Repeat the process until the tbl8 at the right level (depending on the depth) has been reached and fill it with the next hop, setting the next entry flag to 0.

If the rule's depth is any other value, prefix expansion must be performed. This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let's assume the depth is 20 bits. This means that there are $2^{(24-20)}$ = 16 different combinations of the first 24 bits of an IP address that would cause a match. Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists, it is found in, at the most, 14 memory accesses, depending on how many times we need to move to the next table. Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by adding redundancy.

Prefix expansion can be performed at any level. So, for example, is the depth is 34 bits, it will be performed in the third level (second tbl8-based level).

Lookup

The lookup process is much simpler and quicker. In this case:

- Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use, then it means we don't have a rule matching this IP. If it is valid and the external entry flag is set to 0, then the next hop is returned.
- If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8 to be checked, and the next 8 bits of the IP address as an index to this table. Similarly, if the entry is not in use, then we don't have a rule matching this IP address. If it is valid then check the external entry flag for a new tbl8 to be inspected.
- Repeat the process until either we find an invalid entry (lookup miss) or a valid entry with the external entry flag set to 0. Return the next hop in the latter case.

Limitations in the Number of Rules

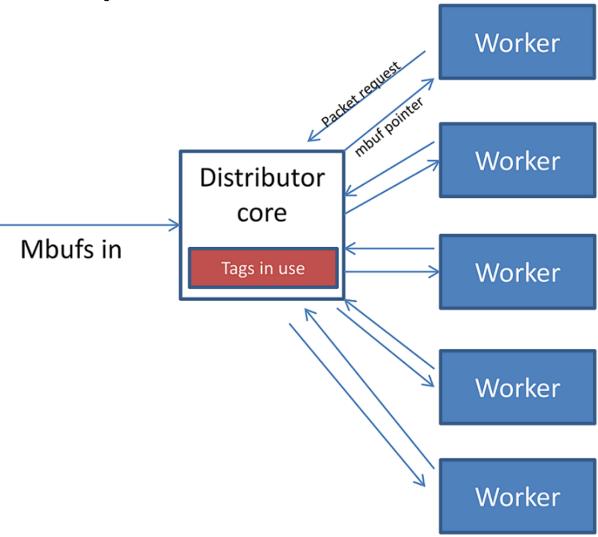
There are different things that limit the number of rules that can be added. The first one is the maximum number of rules, which is a parameter passed through the API. Once this number is reached, it is not possible to add any more rules to the routing table unless one or more are removed.

The second limitation is in the number of tbl8s available. If we exhaust tbl8s, we won't be able to add any more rules. How to know how many of them are necessary for a specific routing table is hard to determine in advance.

In this algorithm, the maximum number of tbl8s a single rule can consume is 13, which is the number of levels minus one, since the first three bytes are resolved in the tbl24. However:

• Typically, on IPv6, routes are not longer than 48 bits, which means rules usually take up to 3 tbl8s.

As explained in the LPM for IPv4 algorithm, it is possible and very likely that several rules will share one or more tbl8s, depending on what their first bytes are. If they share the same first 24 bits, for instance, the tbl8 at the second level will be shared. This might happen again in deeper levels, so, effectively, two 48 bit-long rules may use the same three tbl8s if the only difference is in their last byte.


The number of tbl8s is a parameter exposed to the user through the API in this version of the algorithm, due to its impact in memory consumption and the number or rules that can be added to the LPM table. One tbl8 consumes 1 kilobyte of memory.

4.14.2 Use Case: IPv6 Forwarding

The LPM algorithm is used to implement the Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IP forwarding.

4.15 Packet Distributor Library

The DPDK Packet Distributor library is a library designed to be used for dynamic load balancing of traffic while supporting single packet at a time operation. When using this library, the logical cores in use are to be considered in two roles: firstly a distributor lcore, which is responsible for load balancing or distributing packets, and a set of worker lcores which are responsible for receiving the packets from the distributor and operating on them. The model of operation is shown in the diagram below.

4.15.1 Distributor Core Operation

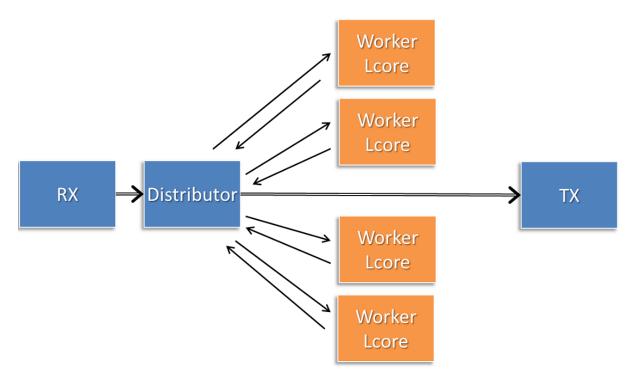
The distributor core does the majority of the processing for ensuring that packets are fairly shared among workers. The operation of the distributor is as follows:

- 1. Packets are passed to the distributor component by having the distributor lcore thread call the "rte_distributor_process()" API
- 2. The worker lcores all share a single cache line with the distributor core in order to pass messages and packets to and from the worker. The process API call will poll all the worker cache lines to see what workers are requesting packets.
- 3. As workers request packets, the distributor takes packets from the set of packets passed

in and distributes them to the workers. As it does so, it examines the "tag" – stored in the RSS hash field in the mbuf – for each packet and records what tags are being processed by each worker.

- 4. If the next packet in the input set has a tag which is already being processed by a worker, then that packet will be queued up for processing by that worker and given to it in preference to other packets when that work next makes a request for work. This ensures that no two packets with the same tag are processed in parallel, and that all packets with the same tag are processed in input order.
- 5. Once all input packets passed to the process API have either been distributed to workers or been queued up for a worker which is processing a given tag, then the process API returns to the caller.

Other functions which are available to the distributor lcore are:


- rte_distributor_returned_pkts()
- rte_distributor_flush()
- rte_distributor_clear_returns()

Of these the most important API call is "rte_distributor_returned_pkts()" which should only be called on the lcore which also calls the process API. It returns to the caller all packets which have finished processing by all worker cores. Within this set of returned packets, all packets sharing the same tag will be returned in their original order.

NOTE: If worker lcores buffer up packets internally for transmission in bulk afterwards, the packets sharing a tag will likely get out of order. Once a worker lcore requests a new packet, the distributor assumes that it has completely finished with the previous packet and therefore that additional packets with the same tag can safely be distributed to other workers – who may then flush their buffered packets sooner and cause packets to get out of order.

NOTE: No packet ordering guarantees are made about packets which do not share a common packet tag.

Using the process and returned_pkts API, the following application workflow can be used, while allowing packet order within a packet flow – identified by a tag – to be maintained.

The flush and clear_returns API calls, mentioned previously, are likely of less use that the process and returned_pkts APIS, and are principally provided to aid in unit testing of the library. Descriptions of these functions and their use can be found in the DPDK API Reference document.

4.15.2 Worker Operation

Worker cores are the cores which do the actual manipulation of the packets distributed by the packet distributor. Each worker calls "rte_distributor_get_pkt()" API to request a new packet when it has finished processing the previous one. [The previous packet should be returned to the distributor component by passing it as the final parameter to this API call.]

Since it may be desirable to vary the number of worker cores, depending on the traffic load i.e. to save power at times of lighter load, it is possible to have a worker stop processing packets by calling "rte_distributor_return_pkt()" to indicate that it has finished the current packet and does not want a new one.

4.16 Reorder Library

The Reorder Library provides a mechanism for reordering mbufs based on their sequence number.

4.16.1 Operation

The reorder library is essentially a buffer that reorders mbufs. The user inserts out of order mbufs into the reorder buffer and pulls in-order mbufs from it.

At a given time, the reorder buffer contains mbufs whose sequence number are inside the sequence window. The sequence window is determined by the minimum sequence number and the number of entries that the buffer was configured to hold. For example, given a reorder

buffer with 200 entries and a minimum sequence number of 350, the sequence window has low and high limits of 350 and 550 respectively.

When inserting mbufs, the reorder library differentiates between valid, early and late mbufs depending on the sequence number of the inserted mbuf:

- valid: the sequence number is inside the window.
- late: the sequence number is outside the window and less than the low limit.
- early: the sequence number is outside the window and greater than the high limit.

The reorder buffer directly returns late mbufs and tries to accommodate early mbufs.

4.16.2 Implementation Details

The reorder library is implemented as a pair of buffers, which referred to as the *Order* buffer and the *Ready* buffer.

On an insert call, valid mbufs are inserted directly into the Order buffer and late mbufs are returned to the user with an error.

In the case of early mbufs, the reorder buffer will try to move the window (incrementing the minimum sequence number) so that the mbuf becomes a valid one. To that end, mbufs in the Order buffer are moved into the Ready buffer. Any mbufs that have not arrived yet are ignored and therefore will become late mbufs. This means that as long as there is room in the Ready buffer, the window will be moved to accommodate early mbufs that would otherwise be outside the reordering window.

For example, assuming that we have a buffer of 200 entries with a 350 minimum sequence number, and we need to insert an early mbuf with 565 sequence number. That means that we would need to move the windows at least 15 positions to accommodate the mbuf. The reorder buffer would try to move mbufs from at least the next 15 slots in the Order buffer to the Ready buffer, as long as there is room in the Ready buffer. Any gaps in the Order buffer at that point are skipped, and those packet will be reported as late packets when they arrive. The process of moving packets to the Ready buffer continues beyond the minimum required until a gap, i.e. missing mbuf, in the Order buffer is encountered.

When draining mbufs, the reorder buffer would return mbufs in the Ready buffer first and then from the Order buffer until a gap is found (mbufs that have not arrived yet).

4.16.3 Use Case: Packet Distributor

An application using the DPDK packet distributor could make use of the reorder library to transmit packets in the same order they were received.

A basic packet distributor use case would consist of a distributor with multiple workers cores. The processing of packets by the workers is not guaranteed to be in order, hence a reorder buffer can be used to order as many packets as possible.

In such a scenario, the distributor assigns a sequence number to mbufs before delivering them to the workers. As the workers finish processing the packets, the distributor inserts those mbufs into the reorder buffer and finally transmit drained mbufs.

NOTE: Currently the reorder buffer is not thread safe so the same thread is responsible for inserting and draining mbufs.

4.17 IP Fragmentation and Reassembly Library

The IP Fragmentation and Reassembly Library implements IPv4 and IPv6 packet fragmentation and reassembly.

4.17.1 Packet fragmentation

Packet fragmentation routines devide input packet into number of fragments. Both rte_ipv4_fragment_packet() and rte_ipv6_fragment_packet() functions assume that input mbuf data points to the start of the IP header of the packet (i.e. L2 header is already stripped out). To avoid copying fo the actual packet's data zero-copy technique is used (rte_pktmbuf_attach). For each fragment two new mbufs are created:

- Direct mbuf mbuf that will contain L3 header of the new fragment.
- Indirect mbuf mbuf that is attached to the mbuf with the original packet. It's data field points to the start of the original packets data plus fragment offset.

Then L3 header is copied from the original mbuf into the 'direct' mbuf and updated to reflect new fragmented status. Note that for IPv4, header checksum is not recalculated and is set to zero.

Finally 'direct' and 'indirect' mbufs for each fragnemt are linked together via mbuf's next filed to compose a packet for the new fragment.

The caller has an ability to explicitly specify which mempools should be used to allocate 'direct' and 'indirect' mbufs from.

For more information about direct and indirect mbufs, refer to the *DPDK Programmers guide* 7.7 Direct and Indirect Buffers.

4.17.2 Packet reassembly

IP Fragment Table

Fragment table maintains information about already received fragments of the packet.

Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.

Note that all update/lookup operations on Fragmen Table are not thread safe. So if different execution contexts (threads/processes) will access the same table simultaneously, then some exernal syncing mechanism have to be provided.

Each table entry can hold information about packets consisting of up to RTE LIBRTE IP FRAG MAX (by default: 4) fragments.

Code example, that demonstrates creation of a new Fragment table:

```
frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag_table_create(max_flow_num, bucket_entries, max_flow_num, frag_cycles, set
```

Internally Fragmen table is a simple hash table. The basic idea is to use two hash functions and <bucket_entries> * associativity. This provides 2 * <bucket_entries> possible locations in the hash table for each key. When the collision occurs and all 2 * <bucket_entries> are occupied,

instead of resinserting existing keys into alternative locations, ip_frag_tbl_add() just returns a faiure.

Also, entries that resides in the table longer then <max_cycles> are considered as invalid, and could be removed/replaced by the new ones.

Note that reassembly demands a lot of mbuf's to be allocated. At any given time up to (2 * bucket_entries * RTE_LIBRTE_IP_FRAG_MAX * <maximum number of mbufs per packet>) can be stored inside Fragment Table waiting for remaining fragments.

Packet Reassembly

Fragmented packets processing and reassembly is done by the rte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet. Functions. They either return a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet can't be reassembled for some reason).

These functions are responsible for:

- 1. Search the Fragment Table for entry with packet's <IPv4 Source Address, IPv4 Destination Address, Packet ID>.
- 2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously received fragments, and remove information about them from the entry.
- 3. If no entry with such key is found, then try to create a new one by one of two ways:
 - (a) Use as empty entry.
 - (b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.
- 4. Update the entry with new fragment information and check if a packet can be reassembled (the packet's entry contains all fragments).
 - (a) If yes, then, reassemble the packet, mark table's entry as empty and return the reassembled mbuf to the caller.
 - (b) If no, then return a NULL to the caller.

If at any stage of packet processing an error is envountered (e.g. can't insert new entry into the Fragment Table, or invalid/timed-out fragment), then the function will free all associated with the packet fragments, mark the table entry as invalid and return NULL to the caller.

Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT config macro controls statistics collection for the Fragment Table. This macro is not enabled by default.

The RTE_LIBRTE_IP_FRAG_DEBUG controls debug logging of IP fragments processing and reassembling. This macro is disabled by default. Note that while logging contains a lot of detailed information, it slows down packet processing and might cause the loss of a lot of packets.

4.18 Multi-process Support

In the DPDK, multi-process support is designed to allow a group of DPDK processes to work together in a simple transparent manner to perform packet processing, or other workloads, on Intel® architecture hardware. To support this functionality, a number of additions have been made to the core DPDK Environment Abstraction Layer (EAL).

The EAL has been modified to allow different types of DPDK processes to be spawned, each with different permissions on the hugepage memory used by the applications. For now, there are two types of process specified:

- primary processes, which can initialize and which have full permissions on shared memory
- secondary processes, which cannot initialize shared memory, but can attach to pre-initialized shared memory and create objects in it.

Standalone DPDK processes are primary processes, while secondary processes can only run alongside a primary process or after a primary process has already configured the hugepage shared memory for them.

To support these two process types, and other multi-process setups described later, two additional command-line parameters are available to the EAL:

- –proc-type: for specifying a given process instance as the primary or secondary DPDK instance
- –file-prefix: to allow processes that do not want to co-operate to have different memory regions

A number of example applications are provided that demonstrate how multiple DPDK processes can be used together. These are more fully documented in the "Multi- process Sample Application" chapter in the *DPDK Sample Application's User Guide*.

4.18.1 Memory Sharing

The key element in getting a multi-process application working using the DPDK is to ensure that memory resources are properly shared among the processes making up the multi-process application. Once there are blocks of shared memory available that can be accessed by multiple processes, then issues such as inter-process communication (IPC) becomes much simpler.

On application start-up in a primary or standalone process, the DPDK records to memory-mapped files the details of the memory configuration it is using - hugepages in use, the virtual addresses they are mapped at, the number of memory channels present, etc. When a secondary process is started, these files are read and the EAL recreates the same memory configuration in the secondary process so that all memory zones are shared between processes and all pointers to that memory are valid, and point to the same objects, in both processes.

Note: Refer to Section 23.3 "Multi-process Limitations" for details of how Linux kernel Address-Space Layout Randomization (ASLR) can affect memory sharing.

Figure 16. Memory Sharing in the DPDK Multi-process Sample Application

The EAL also supports an auto-detection mode (set by EAL –proc-type=auto flag), whereby an DPDK process is started as a secondary instance if a primary instance is already running.

4.18.2 Deployment Models

Symmetric/Peer Processes

DPDK multi-process support can be used to create a set of peer processes where each process performs the same workload. This model is equivalent to having multiple threads each running the same main-loop function, as is done in most of the supplied DPDK sample applications. In this model, the first of the processes spawned should be spawned using the —proc-type=primary EAL flag, while all subsequent instances should be spawned using the —proc-type=secondary flag.

The simple_mp and symmetric_mp sample applications demonstrate this usage model. They are described in the "Multi-process Sample Application" chapter in the *DPDK Sample Application's User Guide*.

Asymmetric/Non-Peer Processes

An alternative deployment model that can be used for multi-process applications is to have a single primary process instance that acts as a load-balancer or server distributing received packets among worker or client threads, which are run as secondary processes. In this case, extensive use of rte_ring objects is made, which are located in shared hugepage memory.

The client_server_mp sample application shows this usage model. It is described in the "Multi-process Sample Application" chapter in the *DPDK Sample Application's User Guide*.

Running Multiple Independent DPDK Applications

In addition to the above scenarios involving multiple DPDK processes working together, it is possible to run multiple DPDK processes side-by-side, where those processes are all working independently. Support for this usage scenario is provided using the –file-prefix parameter to the EAL.

By default, the EAL creates hugepage files on each hugetlbfs filesystem using the rtemap_X filename, where X is in the range 0 to the maximum number of hugepages -1. Similarly, it creates shared configuration files, memory mapped in each process, using the /var/run/.rte_config filename, when run as root (or \$HOME/.rte_config when run as a non-root user; if filesystem and device permissions are set up to allow this). The rte part of the filenames of each of the above is configurable using the file-prefix parameter.

In addition to specifying the file-prefix parameter, any DPDK applications that are to be run side-by-side must explicitly limit their memory use. This is done by passing the -m flag to each process to specify how much hugepage memory, in megabytes, each process can use (or passing –socket-mem to specify how much hugepage memory on each socket each process can use).

Note: Independent DPDK instances running side-by-side on a single machine cannot share any network ports. Any network ports being used by one process should be blacklisted in every

other process.

Running Multiple Independent Groups of DPDK Applications

In the same way that it is possible to run independent DPDK applications side- by-side on a single system, this can be trivially extended to multi-process groups of DPDK applications running side-by-side. In this case, the secondary processes must use the same –file-prefix parameter as the primary process whose shared memory they are connecting to.

Note: All restrictions and issues with multiple independent DPDK processes running side-by-side apply in this usage scenario also.

4.18.3 Multi-process Limitations

There are a number of limitations to what can be done when running DPDK multi-process applications. Some of these are documented below:

• The multi-process feature requires that the exact same hugepage memory mappings be present in all applications. The Linux security feature - Address-Space Layout Randomization (ASLR) can interfere with this mapping, so it may be necessary to disable this feature in order to reliably run multi-process applications.

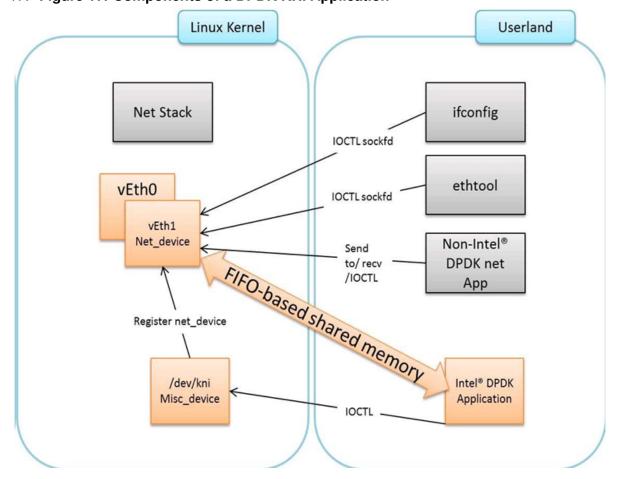
Warning: Disabling Address-Space Layout Randomization (ASLR) may have security implications, so it is recommended that it be disabled only when absolutely necessary, and only when the implications of this change have been understood.

- All DPDK processes running as a single application and using shared memory must have distinct coremask arguments. It is not possible to have a primary and secondary instance, or two secondary instances, using any of the same logical cores. Attempting to do so can cause corruption of memory pool caches, among other issues.
- The delivery of interrupts, such as Ethernet* device link status interrupts, do not work
 in secondary processes. All interrupts are triggered inside the primary process only.
 Any application needing interrupt notification in multiple processes should provide its
 own mechanism to transfer the interrupt information from the primary process to any
 secondary process that needs the information.
- The use of function pointers between multiple processes running based of different compiled binaries is not supported, since the location of a given function in one process may be different to its location in a second. This prevents the librte_hash library from behaving properly as in a multi-threaded instance, since it uses a pointer to the hash function internally.

To work around this issue, it is recommended that multi-process applications perform the hash calculations by directly calling the hashing function from the code and then using the rte_hash_add_with_hash()/rte_hash_lookup_with_hash() functions instead of the functions which do the hashing internally, such as rte_hash_add()/rte_hash_lookup().

• Depending upon the hardware in use, and the number of DPDK processes used, it may not be possible to have HPET timers available in each DPDK instance. The minimum

number of HPET comparators available to Linux* userspace can be just a single comparator, which means that only the first, primary DPDK process instance can open and mmap /dev/hpet. If the number of required DPDK processes exceeds that of the number of available HPET comparators, the TSC (which is the default timer in this release) must be used as a time source across all processes instead of the HPET.


4.19 Kernel NIC Interface

The DPDK Kernel NIC Interface (KNI) allows userspace applications access to the Linux* control plane.

The benefits of using the DPDK KNI are:

- Faster than existing Linux TUN/TAP interfaces (by eliminating system calls and copy_to_user()/copy_from_user() operations.
- Allows management of DPDK ports using standard Linux net tools such as ethtool, ifconfig and tcpdump.
- · Allows an interface with the kernel network stack.

The components of an application using the DPDK Kernel NIC Interface are shown in Figure 17. **Figure 17. Components of a DPDK KNI Application**

4.19.1 The DPDK KNI Kernel Module

The KNI kernel loadable module provides support for two types of devices:

- A Miscellaneous device (/dev/kni) that:
 - Creates net devices (via ioctl calls).
 - Maintains a kernel thread context shared by all KNI instances (simulating the RX side of the net driver).
 - For single kernel thread mode, maintains a kernel thread context shared by all KNI instances (simulating the RX side of the net driver).
 - For multiple kernel thread mode, maintains a kernel thread context for each KNI instance (simulating the RX side of the new driver).

Net device:

- Net functionality provided by implementing several operations such as netdev_ops, header_ops, ethtool_ops that are defined by struct net_device, including support for DPDK mbufs and FIFOs.
- The interface name is provided from userspace.
- The MAC address can be the real NIC MAC address or random.

4.19.2 KNI Creation and Deletion

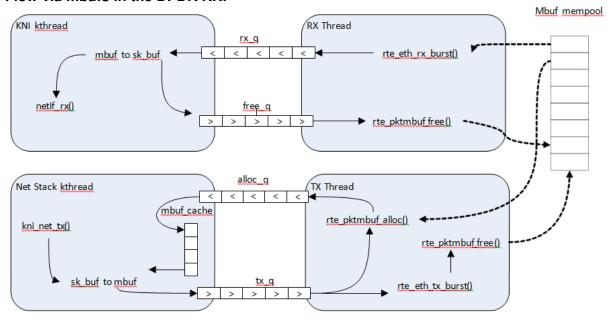
The KNI interfaces are created by a DPDK application dynamically. The interface name and FIFO details are provided by the application through an ioctl call using the rte_kni_device_info struct which contains:

- The interface name.
- Physical addresses of the corresponding memzones for the relevant FIFOs.
- Mbuf mempool details, both physical and virtual (to calculate the offset for mbuf pointers).
- PCI information.
- · Core affinity.

Refer to rte_kni_common.h in the DPDK source code for more details.

The physical addresses will be re-mapped into the kernel address space and stored in separate KNI contexts.

Once KNI interfaces are created, the KNI context information can be queried by calling the rte_kni_info_get() function.


The KNI interfaces can be deleted by a DPDK application dynamically after being created. Furthermore, all those KNI interfaces not deleted will be deleted on the release operation of the miscellaneous device (when the DPDK application is closed).

4.19.3 DPDK mbuf Flow

To minimize the amount of DPDK code running in kernel space, the mbuf mempool is managed in userspace only. The kernel module will be aware of mbufs, but all mbuf allocation and free

operations will be handled by the DPDK application only.

Figure 18 shows a typical scenario with packets sent in both directions. Figure 18. Packet Flow via mbufs in the DPDK KNI

4.19.4 Use Case: Ingress

On the DPDK RX side, the mbuf is allocated by the PMD in the RX thread context. This thread will enqueue the mbuf in the rx_q FIFO. The KNI thread will poll all KNI active devices for the rx_q. If an mbuf is dequeued, it will be converted to a sk_buff and sent to the net stack via netif_rx(). The dequeued mbuf must be freed, so the same pointer is sent back in the free_q FIFO.

The RX thread, in the same main loop, polls this FIFO and frees the mbuf after dequeuing it.

4.19.5 Use Case: Egress

For packet egress the DPDK application must first enqueue several mbufs to create an mbuf cache on the kernel side.

The packet is received from the Linux net stack, by calling the kni_net_tx() callback. The mbuf is dequeued (without waiting due the cache) and filled with data from sk_buff. The sk_buff is then freed and the mbuf sent in the tx q FIFO.

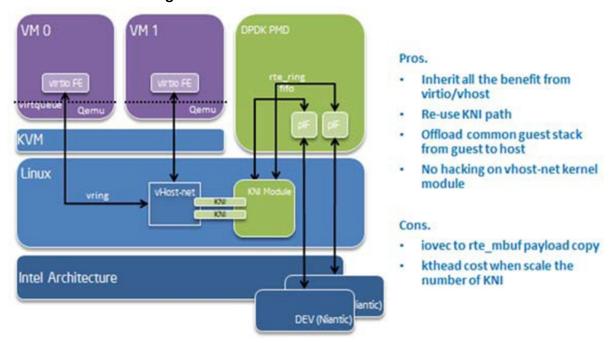
The DPDK TX thread dequeues the mbuf and sends it to the PMD (via rte_eth_tx_burst()). It then puts the mbuf back in the cache.

4.19.6 Ethtool

Ethtool is a Linux-specific tool with corresponding support in the kernel where each net device must register its own callbacks for the supported operations. The current implementation uses the igb/ixgbe modified Linux drivers for ethtool support. Ethtool is not supported in i40e and VMs (VF or EM devices).

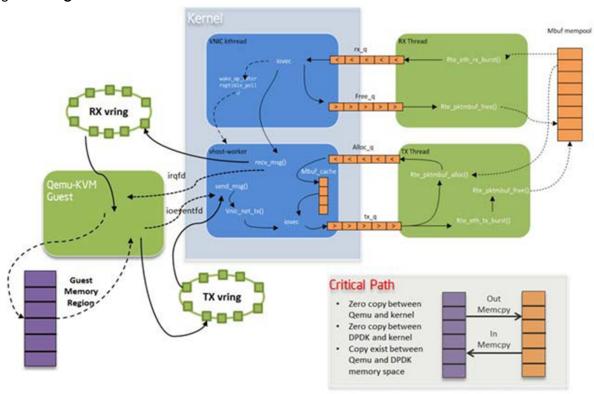
4.19.7 Link state and MTU change

Link state and MTU change are network interface specific operations usually done via ifconfig. The request is initiated from the kernel side (in the context of the ifconfig process) and handled by the user space DPDK application. The application polls the request, calls the application handler and returns the response back into the kernel space.


The application handlers can be registered upon interface creation or explicitly registered/unregistered in runtime. This provides flexibility in multiprocess scenarios (where the KNI is created in the primary process but the callbacks are handled in the secondary one). The constraint is that a single process can register and handle the requests.

4.19.8 KNI Working as a Kernel vHost Backend

vHost is a kernel module usually working as the backend of virtio (a para- virtualization driver framework) to accelerate the traffic from the guest to the host. The DPDK Kernel NIC interface provides the ability to hookup vHost traffic into userspace DPDK application. Together with the DPDK PMD virtio, it significantly improves the throughput between guest and host. In the scenario where DPDK is running as fast path in the host, kni-vhost is an efficient path for the traffic.


Overview

vHost-net has three kinds of real backend implementations. They are: 1) tap, 2) macvtap and 3) RAW socket. The main idea behind kni-vhost is making the KNI work as a RAW socket, attaching it as the backend instance of vHost-net. It is using the existing interface with vHost-net, so it does not require any kernel hacking, and is fully-compatible with the kernel vhost module. As vHost is still taking responsibility for communicating with the front-end virtio, it naturally supports both legacy virtio -net and the DPDK PMD virtio. There is a little penalty that comes from the non-polling mode of vhost. However, it scales throughput well when using KNI in multi-thread mode. **Figure 19. vHost-net Architecture Overview**

Packet Flow

There is only a minor difference from the original KNI traffic flows. On transmit side, vhost kthread calls the RAW socket's ops sendmsg and it puts the packets into the KNI transmit FIFO. On the receive side, the kni kthread gets packets from the KNI receive FIFO, puts them into the queue of the raw socket, and wakes up the task in vhost kthread to begin receiving. All the packet copying, irrespective of whether it is on the transmit or receive side, happens in the context of vhost kthread. Every vhost-net device is exposed to a front end virtio device in the guest. **Figure 20. KNI Traffic Flow**

Sample Usage

Before starting to use KNI as the backend of vhost, the CONFIG_RTE_KNI_VHOST configuration option must be turned on. Otherwise, by default, KNI will not enable its backend support capability.

Of course, as a prerequisite, the vhost/vhost-net kernel CONFIG should be chosen before compiling the kernel.

- 1. Compile the DPDK and insert uio_pci_generic/igb_uio kernel modules as normal.
- 2. Insert the KNI kernel module:

```
insmod ./rte_kni.ko
```

If using KNI in multi-thread mode, use the following command line:

```
insmod ./rte kni.ko kthread mode=multiple
```

3. Running the KNI sample application:

```
./kni -c -0xf0 -n 4 -- -p 0x3 -P -config="(0,4,6),(1,5,7)"
```

This command runs the kni sample application with two physical ports. Each port pins two forwarding cores (ingress/egress) in user space.

4. Assign a raw socket to vhost-net during qemu-kvm startup. The DPDK does not provide a script to do this since it is easy for the user to customize. The following shows the key steps to launch qemu-kvm with kni-vhost:

```
#!/bin/bash
echo 1 > /sys/class/net/vEth0/sock_en
fd=cat /sys/class/net/vEth0/sock_fd
qemu-kvm \
-name vml -cpu host -m 2048 -smp 1 -hda /opt/vm-fc16.img \
-netdev tap,fd=$fd,id=hostnet1,vhost=on \
-device virti-net-pci,netdev=hostnet1,id=net1,bus=pci.0,addr=0x4
```

It is simple to enable raw socket using sysfs sock_en and get raw socket fd using sock_fd under the KNI device node.

Then, using the qemu-kvm command with the -netdev option to assign such raw socket fd as vhost's backend.

Note: The key word tap must exist as qemu-kvm now only supports vhost with a tap beckend, so here we cheat qemu-kvm by an existing fd.

Compatibility Configure Option

There is a CONFIG_RTE_KNI_VHOST_VNET_HDR_EN configuration option in DPDK configuration file. By default, it set to n, which means do not turn on the virtio net header, which is used to support additional features (such as, csum offload, vlan offload, generic-segmentation and so on), since the kni-vhost does not yet support those features.

Even if the option is turned on, kni-vhost will ignore the information that the header contains. When working with legacy virtio on the guest, it is better to turn off unsupported offload features using ethtool -K. Otherwise, there may be problems such as an incorrect L4 checksum error.

4.20 Thread Safety of DPDK Functions

The DPDK is comprised of several libraries. Some of the functions in these libraries can be safely called from multiple threads simultaneously, while others cannot. This section allows the developer to take these issues into account when building their own application.

The run-time environment of the DPDK is typically a single thread per logical core. In some cases, it is not only multi-threaded, but multi-process. Typically, it is best to avoid sharing data structures between threads and/or processes where possible. Where this is not possible, then the execution blocks must access the data in a thread- safe manner. Mechanisms such as atomics or locking can be used that will allow execution blocks to operate serially. However, this can have an effect on the performance of the application.

4.20.1 Fast-Path APIs

Applications operating in the data plane are performance sensitive but certain functions within those libraries may not be safe to call from multiple threads simultaneously. The hash, LPM

and mempool libraries and RX/TX in the PMD are examples of this.

The hash and LPM libraries are, by design, thread unsafe in order to maintain performance. However, if required the developer can add layers on top of these libraries to provide thread safety. Locking is not needed in all situations, and in both the hash and LPM libraries, lookups of values can be performed in parallel in multiple threads. Adding, removing or modifying values, however, cannot be done in multiple threads without using locking when a single hash or LPM table is accessed. Another alternative to locking would be to create multiple instances of these tables allowing each thread its own copy.

The RX and TX of the PMD are the most critical aspects of a DPDK application and it is recommended that no locking be used as it will impact performance. Note, however, that these functions can safely be used from multiple threads when each thread is performing I/O on a different NIC queue. If multiple threads are to use the same hardware queue on the same NIC port, then locking, or some other form of mutual exclusion, is necessary.

The ring library is based on a lockless ring-buffer algorithm that maintains its original design for thread safety. Moreover, it provides high performance for either multi- or single-consumer/producer enqueue/dequeue operations. The mempool library is based on the DPDK lockless ring library and therefore is also multi-thread safe.

4.20.2 Performance Insensitive API

Outside of the performance sensitive areas described in Section 25.1, the DPDK provides a thread-safe API for most other libraries. For example, malloc(librte_malloc) and memzone functions are safe for use in multi-threaded and multi-process environments.

The setup and configuration of the PMD is not performance sensitive, but is not thread safe either. It is possible that the multiple read/writes during PMD setup and configuration could be corrupted in a multi-thread environment. Since this is not performance sensitive, the developer can choose to add their own layer to provide thread-safe setup and configuration. It is expected that, in most applications, the initial configuration of the network ports would be done by a single thread at startup.

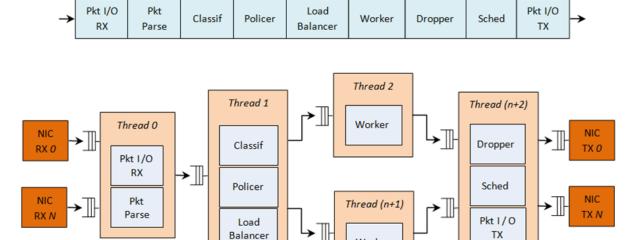
4.20.3 Library Initialization

It is recommended that DPDK libraries are initialized in the main thread at application startup rather than subsequently in the forwarding threads. However, the DPDK performs checks to ensure that libraries are only initialized once. If initialization is attempted more than once, an error is returned.

In the multi-process case, the configuration information of shared memory will only be initialized by the master process. Thereafter, both master and secondary processes can allocate/release any objects of memory that finally rely on rte_malloc or memzones.

4.20.4 Interrupt Thread

The DPDK works almost entirely in Linux user space in polling mode. For certain infrequent operations, such as receiving a PMD link status change notification, callbacks may be called in an additional thread outside the main DPDK processing threads. These function callbacks should avoid manipulating DPDK objects that are also managed by the normal DPDK threads,


and if they need to do so, it is up to the application to provide the appropriate locking or mutual exclusion restrictions around those objects.

4.21 Quality of Service (QoS) Framework

This chapter describes the DPDK Quality of Service (QoS) framework.

4.21.1 Packet Pipeline with QoS Support

An example of a complex packet processing pipeline with QoS support is shown in the following figure. Figure 21. Complex Packet Processing Pipeline with QoS Support

This pipeline can be built using reusable DPDK software libraries. The main blocks implementing QoS in this pipeline are: the policer, the dropper and the scheduler. A functional description of each block is provided in the following table. **Table 1. Packet Processing Pipeline Implementing QoS**

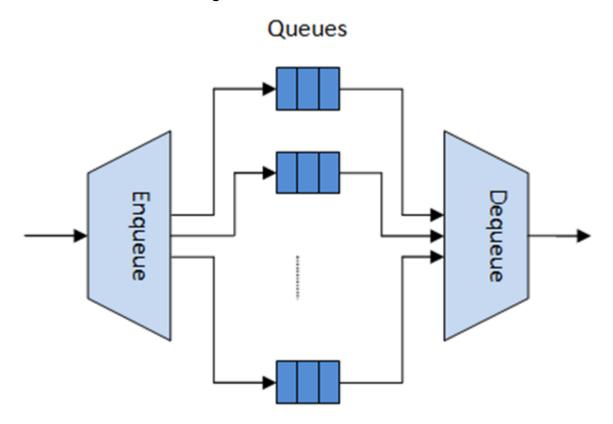
Worker

#	Block	Functional Description
1	Packet I/O	Packet reception/ transmission from/to multiple NIC ports. Poll mode
	RX & TX	drivers (PMDs) for Intel 1 GbE/10 GbE NICs.
2	Packet	Identify the protocol stack of the input packet. Check the integrity of the
	parser	packet headers.
3	Flow clas-	Map the input packet to one of the known traffic flows. Exact match table
	sification	lookup using configurable hash function (jhash, CRC and so on) and
		bucket logic to handle collisions.
4	Policer	Packet metering using srTCM (RFC 2697) or trTCM (RFC2698)
		algorithms.
5	Load	Distribute the input packets to the application workers. Provide uniform
	Balancer	load to each worker. Preserve the affinity of traffic flows to workers and
		the packet order within each flow.
6	Worker	Placeholders for the customer specific application workload (for
	threads	example, IP stack and so on).
7	Dropper	Congestion management using the Random Early Detection (RED)
		algorithm (specified by the Sally Floyd - Van Jacobson paper) or
		Weighted RED (WRED). Drop packets based on the current scheduler
		queue load level and packet priority. When congestion is experienced,
		lower priority packets are dropped first.
8	Hierarchi-	5-level hierarchical scheduler (levels are: output port, subport, pipe,
	cal	traffic class and queue) with thousands (typically 64K) leaf nodes
	Scheduler	(queues). Implements traffic shaping (for subport and pipe levels), strict
		priority (for traffic class level) and Weighted Round Robin (WRR) (for
		queues within each pipe traffic class).

The infrastructure blocks used throughout the packet processing pipeline are listed in the following table. Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline

#	Block	Functional Description
1	Buffer manager	Support for global buffer pools and private per-thread buffer caches.
2	Queue manager	Support for message passing between pipeline blocks.
3	Power saving	Support for power saving during low activity periods.

The mapping of pipeline blocks to CPU cores is configurable based on the performance level required by each specific application and the set of features enabled for each block. Some blocks might consume more than one CPU core (with each CPU core running a different instance of the same block on different input packets), while several other blocks could be mapped to the same CPU core.

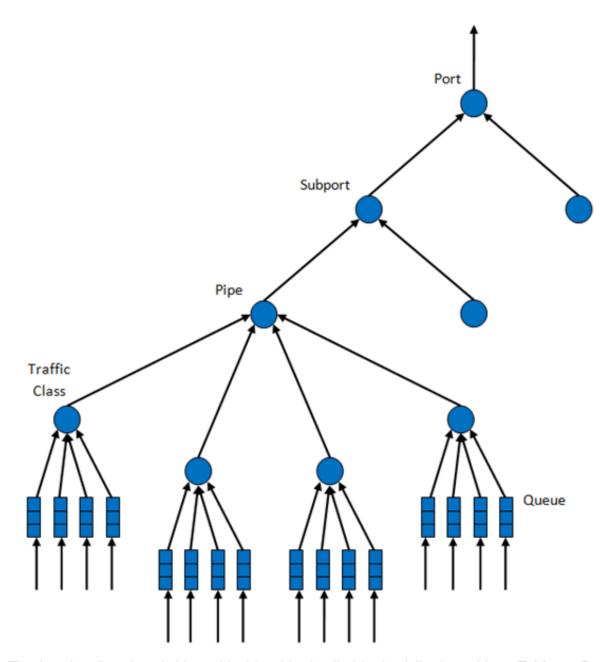

4.21.2 Hierarchical Scheduler

The hierarchical scheduler block, when present, usually sits on the TX side just before the transmission stage. Its purpose is to prioritize the transmission of packets from different users and different traffic classes according to the policy specified by the Service Level Agreements (SLAs) of each network node.

Overview

The hierarchical scheduler block is similar to the traffic manager block used by network processors that typically implement per flow (or per group of flows) packet queuing and scheduling. It

typically acts like a buffer that is able to temporarily store a large number of packets just before their transmission (enqueue operation); as the NIC TX is requesting more packets for transmission, these packets are later on removed and handed over to the NIC TX with the packet selection logic observing the predefined SLAs (dequeue operation). **Figure 22. Hierarchical Scheduler Block Internal Diagram**



The hierarchical scheduler is optimized for a large number of packet queues. When only a small number of queues are needed, message passing queues should be used instead of this block. See Section 26.2.5 "Worst Case Scenarios for Performance" for a more detailed discussion.

Scheduling Hierarchy

The scheduling hierarchy is shown in Figure 23. The first level of the hierarchy is the Ethernet TX port 1/10/40 GbE, with subsequent hierarchy levels defined as subport, pipe, traffic class and queue.

Typically, each subport represents a predefined group of users, while each pipe represents an individual user/subscriber. Each traffic class is the representation of a different traffic type with specific loss rate, delay and jitter requirements, such as voice, video or data transfers. Each queue hosts packets from one or multiple connections of the same type belonging to the same user. **Figure 23. Scheduling Hierarchy per Port**

The functionality of each hierarchical level is detailed in the following table. **Table 3. Port Scheduling Hierarchy**

#	Level	Siblings per Parent	Functional Description
1	Port	•	 Output Ethernet port 1/10/40 GbE. Multiple ports are scheduled in round robin order with all ports having equal priority.
2	Subport	Configurable (default: 8)	 Traffic shaping using token bucket algorithm (one token bucket per subport). Upper limit enforced per Traffic Class (TC) at the subport level. Lower priority TCs able to reuse subport bandwidth currently unused by higher priority TCs.
3	Pipe	Configurable (default: 4K)	Traffic shaping using the token bucket algorithm (one token bucket per pipe.
4	Traffic Class (TC)	4	 TCs of the same pipe handled in strict priority order. Upper limit enforced per TC at the pipe level. Lower priority TCs able to reuse pipe bandwidth currently unused by higher priority
4.21. Quality of Service	e (QoS) Framework		TCs. 113 4. When subport TC is over- subscribed

Application Programming Interface (API)

Port Scheduler Configuration API

The rte_sched.h file contains configuration functions for port, subport and pipe.

Port Scheduler Enqueue API

The port scheduler enqueue API is very similar to the API of the DPDK PMD TX function.

```
int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkt
```

Port Scheduler Dequeue API

The port scheduler dequeue API is very similar to the API of the DPDK PMD RX function.

```
int rte sched port dequeue(struct rte sched port *port, struct rte mbuf **pkts, uint32_t n pkt
```

Usage Example

```
/* File "application.c" */
#define N PKTS RX
#define N PKTS TX
#define NIC RX PORT 0
#define NIC RX QUEUE 0
#define NIC TX PORT 1
#define NIC TX QUEUE 0
struct rte sched port *port = NULL;
struct rte_mbuf *pkts_rx[N_PKTS_RX], *pkts_tx[N_PKTS_TX];
uint32_t n pkts rx, n pkts tx;
/* Initialization */
<initialization code>
/* Runtime */
while (1) {
   /* Read packets from NIC RX queue */
    n_pkts_rx = rte_eth_rx_burst(NIC_RX_PORT, NIC_RX_QUEUE, pkts_rx, N_PKTS RX);
   /* Hierarchical scheduler enqueue */
    rte sched port enqueue(port, pkts rx, n pkts rx);
   /* Hierarchical scheduler dequeue */
    n pkts tx = rte sched port dequeue(port, pkts tx, N PKTS TX);
    /* Write packets to NIC TX queue */
    rte_eth_tx_burst(NIC_TX_PORT, NIC_TX_QUEUE, pkts_tx, n_pkts_tx);
}
```

Implementation

Internal Data Structures per Port

A schematic of the internal data structures in shown in with details in. Figure 24. Internal Data Structures per Port

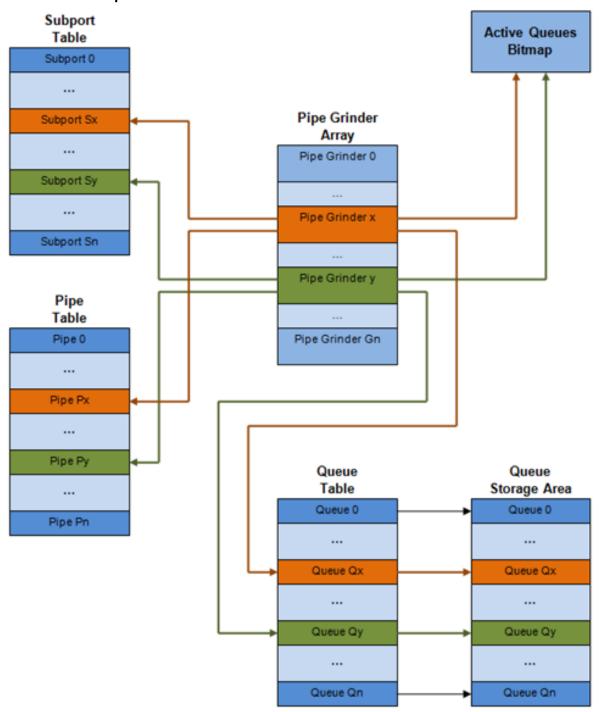


Table 4. Scheduler Internal Data Structures per Port

#	Data structure	Size (bytes)	# per port	Access type	_	Description
		, , ,		Enq	Deq	Danai
1	Subport ta- ble entry	64	# subports per port	•	Rd, Wr	Persistent subport data (credits, etc).
2	Pipe table entry	64	# pipes per port	•	Rd, Wr	Persistent data for pipe, its TCs and its queues (credits, etc) that is up- dated during run-time. The pipe configura- tion param- eters do not change dur- ing run-time. The same pipe con- figuration parameters are shared by multiple pipes, there- fore they are not part of pipe table entry.
4.21. Quality	Queue table entry of Service (Qos	4 S) Framework	#queues per port	Rd, Wr	Rd, Wr	Persistent queue data (read and write point- ers). The queue size is the same per TC for all queues, allowing the queue base ad- dress to be computed using a fast formula, so these two parameters are not part of queue table entry. 6The queue
						table entries for any given pipe are

Multicore Scaling Strategy

The multicore scaling strategy is:

- 1. Running different physical ports on different threads. The enqueue and dequeue of the same port are run by the same thread.
- 2. Splitting the same physical port to different threads by running different sets of subports of the same physical port (virtual ports) on different threads. Similarly, a subport can be split into multiple subports that are each run by a different thread. The enqueue and dequeue of the same port are run by the same thread. This is only required if, for performance reasons, it is not possible to handle a full port with a single core.

Enqueue and Dequeue for the Same Output Port Running enqueue and dequeue operations for the same output port from different cores is likely to cause significant impact on scheduler's performance and it is therefore not recommended.

The port enqueue and dequeue operations share access to the following data structures:

- 1. Packet descriptors
- 2. Queue table
- 3. Queue storage area
- 4. Bitmap of active queues

The expected drop in performance is due to:

- 1. Need to make the queue and bitmap operations thread safe, which requires either using locking primitives for access serialization (for example, spinlocks/ semaphores) or using atomic primitives for lockless access (for example, Test and Set, Compare And Swap, an so on). The impact is much higher in the former case.
- 2. Ping-pong of cache lines storing the shared data structures between the cache hierarchies of the two cores (done transparently by the MESI protocol cache coherency CPU hardware).

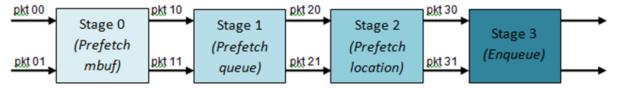
Therefore, the scheduler enqueue and dequeue operations have to be run from the same thread, which allows the queues and the bitmap operations to be non-thread safe and keeps the scheduler data structures internal to the same core.

Performance Scaling Scaling up the number of NIC ports simply requires a proportional increase in the number of CPU cores to be used for traffic scheduling.

Enqueue Pipeline

The sequence of steps per packet:

- Access the mbuf to read the data fields required to identify the destination queue for the packet. These fields are: port, subport, traffic class and queue within traffic class, and are typically set by the classification stage.
- 2. *Access* the queue structure to identify the write location in the queue array. If the queue is full, then the packet is discarded.


3. Access the queue array location to store the packet (i.e. write the mbuf pointer).

It should be noted the strong data dependency between these steps, as steps 2 and 3 cannot start before the result from steps 1 and 2 becomes available, which prevents the processor out of order execution engine to provide any significant performance optimizations.

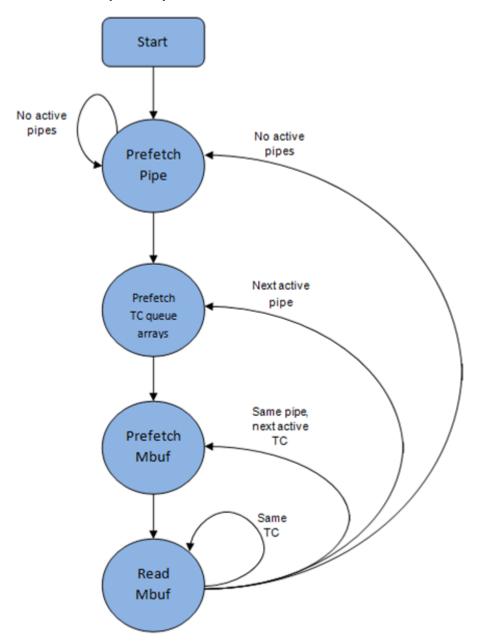
Given the high rate of input packets and the large amount of queues, it is expected that the data structures accessed to enqueue the current packet are not present in the L1 or L2 data cache of the current core, thus the above 3 memory accesses would result (on average) in L1 and L2 data cache misses. A number of 3 L1/L2 cache misses per packet is not acceptable for performance reasons.

The workaround is to prefetch the required data structures in advance. The prefetch operation has an execution latency during which the processor should not attempt to access the data structure currently under prefetch, so the processor should execute other work. The only other work available is to execute different stages of the enqueue sequence of operations on other input packets, thus resulting in a pipelined implementation for the enqueue operation.

Figure 25 illustrates a pipelined implementation for the enqueue operation with 4 pipeline stages and each stage executing 2 different input packets. No input packet can be part of more than one pipeline stage at a given time. **Figure 25. Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation**

The congestion management scheme implemented by the enqueue pipeline described above is very basic: packets are enqueued until a specific queue becomes full, then all the packets destined to the same queue are dropped until packets are consumed (by the dequeue operation). This can be improved by enabling RED/WRED as part of the enqueue pipeline which looks at the queue occupancy and packet priority in order to yield the enqueue/drop decision for a specific packet (as opposed to enqueuing all packets / dropping all packets indiscriminately).

Dequeue State Machine


The sequence of steps to schedule the next packet from the current pipe is:

- 1. Identify the next active pipe using the bitmap scan operation, *prefetch* pipe.
- 2. *Read* pipe data structure. Update the credits for the current pipe and its subport. Identify the first active traffic class within the current pipe, select the next queue using WRR, *prefetch* queue pointers for all the 16 queues of the current pipe.
- 3. Read next element from the current WRR queue and prefetch its packet descriptor.
- 4. Read the packet length from the packet descriptor (mbuf structure). Based on the packet length and the available credits (of current pipe, pipe traffic class, subport and subport traffic class), take the go/no go scheduling decision for the current packet.

To avoid the cache misses, the above data structures (pipe, queue, queue array, mbufs) are prefetched in advance of being accessed. The strategy of hiding the latency of the prefetch operations is to switch from the current pipe (in grinder A) to another pipe (in grinder B) imme-

diately after a prefetch is issued for the current pipe. This gives enough time to the prefetch operation to complete before the execution switches back to this pipe (in grinder A).

The dequeue pipe state machine exploits the data presence into the processor cache, therefore it tries to send as many packets from the same pipe TC and pipe as possible (up to the available packets and credits) before moving to the next active TC from the same pipe (if any) or to another active pipe. **Figure 26. Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation**

Timing and Synchronization

The output port is modeled as a conveyor belt of byte slots that need to be filled by the scheduler with data for transmission. For 10 GbE, there are 1.25 billion byte slots that need to be filled by the port scheduler every second. If the scheduler is not fast enough to fill the slots, provided that enough packets and credits exist, then some slots will be left unused and bandwidth

will be wasted.

In principle, the hierarchical scheduler dequeue operation should be triggered by NIC TX. Usually, once the occupancy of the NIC TX input queue drops below a predefined threshold, the port scheduler is woken up (interrupt based or polling based, by continuously monitoring the queue occupancy) to push more packets into the queue.

Internal Time Reference The scheduler needs to keep track of time advancement for the credit logic, which requires credit updates based on time (for example, subport and pipe traffic shaping, traffic class upper limit enforcement, and so on).

Every time the scheduler decides to send a packet out to the NIC TX for transmission, the scheduler will increment its internal time reference accordingly. Therefore, it is convenient to keep the internal time reference in units of bytes, where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium. This way, as a packet is scheduled for transmission, the time is incremented with (n + h), where n is the packet length in bytes and h is the number of framing overhead bytes per packet.

Internal Time Reference Re-synchronization The scheduler needs to align its internal time reference to the pace of the port conveyor belt. The reason is to make sure that the scheduler does not feed the NIC TX with more bytes than the line rate of the physical medium in order to prevent packet drop (by the scheduler, due to the NIC TX input queue being full, or later on, internally by the NIC TX).

The scheduler reads the current time on every dequeue invocation. The CPU time stamp can be obtained by reading either the Time Stamp Counter (TSC) register or the High Precision Event Timer (HPET) register. The current CPU time stamp is converted from number of CPU clocks to number of bytes: $time_bytes = time_cycles / cycles_per_byte$, where $cycles_per_byte$ is the amount of CPU cycles that is equivalent to the transmission time for one byte on the wire (e.g. for a CPU frequency of 2 GHz and a 10GbE port,*cycles_per_byte = 1.6*).

The scheduler maintains an internal time reference of the NIC time. Whenever a packet is scheduled, the NIC time is incremented with the packet length (including framing overhead). On every dequeue invocation, the scheduler checks its internal reference of the NIC time against the current time:

- 1. If NIC time is in the future (NIC time >= current time), no adjustment of NIC time is needed. This means that scheduler is able to schedule NIC packets before the NIC actually needs those packets, so the NIC TX is well supplied with packets;
- If NIC time is in the past (NIC time < current time), then NIC time should be adjusted by setting it to the current time. This means that the scheduler is not able to keep up with the speed of the NIC byte conveyor belt, so NIC bandwidth is wasted due to poor packet supply to the NIC TX.

Scheduler Accuracy and Granularity The scheduler round trip delay (SRTD) is the time (number of CPU cycles) between two consecutive examinations of the same pipe by the scheduler.

To keep up with the output port (that is, avoid bandwidth loss), the scheduler should be able to schedule n packets faster than the same n packets are transmitted by NIC TX.

The scheduler needs to keep up with the rate of each individual pipe, as configured for the pipe token bucket, assuming that no port oversubscription is taking place. This means that the size

of the pipe token bucket should be set high enough to prevent it from overflowing due to big SRTD, as this would result in credit loss (and therefore bandwidth loss) for the pipe.

Credit Logic

Scheduling Decision The scheduling decision to send next packet from (subport S, pipe P, traffic class TC, queue Q) is favorable (packet is sent) when all the conditions below are met:

- Pipe P of subport S is currently selected by one of the port grinders;
- Traffic class TC is the highest priority active traffic class of pipe P;
- Queue Q is the next queue selected by WRR within traffic class TC of pipe P;
- Subport S has enough credits to send the packet;
- Subport S has enough credits for traffic class TC to send the packet;
- Pipe P has enough credits to send the packet;
- Pipe P has enough credits for traffic class TC to send the packet.

If all the above conditions are met, then the packet is selected for transmission and the necessary credits are subtracted from subport S, subport S traffic class TC, pipe P, pipe P traffic class TC.

Framing Overhead As the greatest common divisor for all packet lengths is one byte, the unit of credit is selected as one byte. The number of credits required for the transmission of a packet of n bytes is equal to (n+h), where h is equal to the number of framing overhead bytes per packet. **Table 5. Ethernet Frame Overhead Fields**

#	Packet field	Length	Comments
		(bytes)	
1	Preamble	7	
2	Start of Frame	1	
	Delimiter (SFD)		
3	Frame Check	4	Considered overhead only if not included in the
	Sequence (FCS)		mbuf packet length field.
4	Inter Frame Gap	12	
	(IFG)		
5	Total	24	

Traffic Shaping The traffic shaping for subport and pipe is implemented using a token bucket per subport/per pipe. Each token bucket is implemented using one saturated counter that keeps track of the number of available credits.

The token bucket generic parameters and operations are presented in Table 6 and Table 7. **Table 6. Token Bucket Generic Operations**

#	Token Bucket	Unit	Description
	Parameter		
1	bucket_rate	Credits per second	Rate of adding credits to the bucket.
2	bucket_size	Credits	Max number of credits that can be stored in the bucket.

Table 7. Token Bucket Generic Parameters

#	Token	Description
	Bucket	
	Operation	
1	Initialization	Bucket set to a predefined value, e.g. zero or half of the bucket size.
2	Credit	Credits are added to the bucket on top of existing ones, either
	update	periodically or on demand, based on the bucket_rate. Credits cannot
		exceed the upper limit defined by the bucket_size, so any credits to be
		added to the bucket while the bucket is full are dropped.
3	Credit con-	As result of packet scheduling, the necessary number of credits is
	sumption	removed from the bucket. The packet can only be sent if enough credits
		are in the bucket to send the full packet (packet bytes and framing
		overhead for the packet).

To implement the token bucket generic operations described above, the current design uses the persistent data structure presented in, while the implementation of the token bucket operations is described in Table 9. **Table 8. Token Bucket Persistent Data Structure**

#	Token bucket field	Unit	Description
1	tb_time	Bytes	Time of the last credit update. Measured in bytes instead of seconds or CPU cycles for ease of credit consumption operation (as the current time is also maintained in bytes). See Section 26.2.4.5.1 "Internal Time Reference" for an explanation of why the time is maintained in byte units.
2	tb_period	Bytes	Time period that should elapse since the last credit update in order for the bucket to be awarded tb_credits_per_period worth or credits.
3	tb_credits_per_period	Bytes	Credit allowance per tb_period.
4	tb_size	Bytes	Bucket size, i.e. upper limit for the tb_credits.
5	tb_credits	Bytes	Number of credits currently in the bucket.

The bucket rate (in bytes per second) can be computed with the following formula:

bucket_rate = (tb_credits_per_period / tb_period) * r

where, r = port line rate (in bytes per second). Table 9. Token Bucket Operations

As result of nacket schedul-

#	Token bucket operation	Description
1	Initialization	tb_credits = 0; or tb_credits =
		tb_size / 2;
2	Credit update	
		min(tb_credits, tb_size);
4.21. Quality of Service (QoS) Framework	• tb_time += n_peri 624 * tb_period;

Traffic Classes

Implementation of Strict Priority Scheduling Strict priority scheduling of traffic classes within the same pipe is implemented by the pipe dequeue state machine, which selects the queues in ascending order. Therefore, queues 0..3 (associated with TC 0, highest priority TC) are handled before queues 4..7 (TC 1, lower priority than TC 0), which are handled before queues 8..11 (TC 2), which are handled before queues 12..15 (TC 3, lowest priority TC).

Upper Limit Enforcement The traffic classes at the pipe and subport levels are not traffic shaped, so there is no token bucket maintained in this context. The upper limit for the traffic classes at the subport and pipe levels is enforced by periodically refilling the subport / pipe traffic class credit counter, out of which credits are consumed every time a packet is scheduled for that subport / pipe, as described in Table 10 and Table 11. **Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure**

#	Subport or pipe field	Unit	Description
1	tc_time	Bytes	Time of the next update (upper limit refill) for the 4 TCs of the current subport / pipe. See Section 26.2.4.5.1, "Internal Time Reference" for the explanation of why the time is maintained in byte units.
2	tc_period	Bytes	Time between two consecutive updates for the 4 TCs of the current subport / pipe. This is expected to be many times bigger than the typical value of the token bucket tb_period.
3	tc_credits_per_period	Bytes	Upper limit for the number of credits allowed to be consumed by the current TC during each enforcement period tc_period.
4	tc_credits	Bytes	Current upper limit for the number of credits that can be consumed by the current traffic class for the remain- der of the current en- forcement period.

Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations

#	Traffic Class Operation	Description
1	Initialization	tc_credits =
		tc_credits_per_period;
		tc_time = tc_period;
2	Credit update	Update operations:
		if (time >= tc_time) {
		tc_credits =
		tc_credits_per_period;
		tc_time = time + tc_period;
		}
3	Credit consumption (on	As result of packet schedul-
	packet scheduling)	ing, the TC limit is decreased
		with the necessary number of
		credits. The packet can only
		be sent if enough credits are
		currently available in the TC
		limit to send the full packet
		(packet bytes and framing
		overhead for the packet).
		Scheduling operations:
		pkt_credits = pk_len +
		frame_overhead;
		if (tc_credits >= pkt_credits)
		{tc_credits -= pkt_credits;}

Weighted Round Robin (WRR) The evolution of the WRR design solution from simple to complex is shown in Table 12. **Table 12. Weighted Round Robin (WRR)**

#	All Queues Active?	Equal Weights for All Queues?	All Packets Equal?	Strategy
1	Yes	Yes	Yes	Byte level round robin Next queue queue #i, i = (i + 1) % n
2	Yes	Yes	No	Packet level round robin Consuming one byte from queue #i requires consuming exactly one token for queue #i. T(i) = Accumulated number of tokens previously consumed from queue #i. Every time a packet is consumed from queue #i, T(i) is updated as: T(i) += pkt_len. Next queue : queue with the smallest T.
3	Yes	No	No	Packet level weighted round robin This case can be reduced to the previous case by introducing a cost per byte that is different for each queue. Queues with lower weights have a higher cost per byte. This way, it is still meaningful to compare the consumption amongst different queues in order to select the next queue. w(i) = Weight of queue #i t(i) = Tokens per
4.21. Quality of Se	rvice (QoS) Framev	vork		byte for as the inverse weight of

Subport Traffic Class Oversubscription

Problem Statement Oversubscription for subport traffic class X is a configuration-time event that occurs when more bandwidth is allocated for traffic class X at the level of subport member pipes than allocated for the same traffic class at the parent subport level.

The existence of the oversubscription for a specific subport and traffic class is solely the result of pipe and subport-level configuration as opposed to being created due to dynamic evolution of the traffic load at run-time (as congestion is).

When the overall demand for traffic class X for the current subport is low, the existence of the oversubscription condition does not represent a problem, as demand for traffic class X is completely satisfied for all member pipes. However, this can no longer be achieved when the aggregated demand for traffic class X for all subport member pipes exceeds the limit configured at the subport level.

Solution Space summarizes some of the possible approaches for handling this problem, with the third approach selected for implementation. **Table 13. Subport Traffic Class Oversubscription**

No.	Approach	Description
1	Don't care	First come, first served. This approach is not fair amongst subport member pipes, as pipes that are served first will use up as much bandwidth for TC X as they need, while pipes that are served later will receive poor service due to bandwidth for TC X at the subport level being scarce.
2	Scale down all pipes	All pipes within the subport have their bandwidth limit for TC X scaled down by the same factor. This approach is not fair among subport member pipes, as the low end pipes (that is, pipes configured with low bandwidth) can potentially experience severe service degradation that might render their service unusable (if available bandwidth for these pipes drops below the minimum requirements for a workable service), while the service degradation for high end pipes might not be noticeable at all.
3	Cap the high demand pipes	Each subport member pipe receives an equal share of the bandwidth available at runtime for TC X at the subport level. Any bandwidth left unused by the low-demand pipes is redistributed in equal portions to the high-demand pipes. This way, the high-demand pipes are truncated while the low-demand pipes are not impacted.

Typically, the subport TC oversubscription feature is enabled only for the lowest priority traffic class (TC 3), which is typically used for best effort traffic, with the management plane preventing this condition from occurring for the other (higher priority) traffic classes.

To ease implementation, it is also assumed that the upper limit for subport TC 3 is set to 100% of the subport rate, and that the upper limit for pipe TC 3 is set to 100% of pipe rate for all subport member pipes.

Implementation Overview The algorithm computes a watermark, which is periodically updated based on the current demand experienced by the subport member pipes, whose purpose is to limit the amount of traffic that each pipe is allowed to send for TC 3. The watermark is computed at the subport level at the beginning of each traffic class upper limit enforcement period and the same value is used by all the subport member pipes throughout the current enforcement period. illustrates how the watermark computed as subport level at the beginning of each period is propagated to all subport member pipes.

At the beginning of the current enforcement period (which coincides with the end of the previous enforcement period), the value of the watermark is adjusted based on the amount of bandwidth allocated to TC 3 at the beginning of the previous period that was not left unused by the subport member pipes at the end of the previous period.

If there was subport TC 3 bandwidth left unused, the value of the watermark for the current period is increased to encourage the subport member pipes to consume more bandwidth. Otherwise, the value of the watermark is decreased to enforce equality of bandwidth consumption among subport member pipes for TC 3.

The increase or decrease in the watermark value is done in small increments, so several enforcement periods might be required to reach the equilibrium state. This state can change at any moment due to variations in the demand experienced by the subport member pipes for TC 3, for example, as a result of demand increase (when the watermark needs to be lowered) or demand decrease (when the watermark needs to be increased).

When demand is low, the watermark is set high to prevent it from impeding the subport member pipes from consuming more bandwidth. The highest value for the watermark is picked as the highest rate configured for a subport member pipe. Table 15 illustrates the watermark operation. Table 14. Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period

No.	Subport Traffic Class Operation	Description
1	Initialization	Subport level: sub- port_period_id= 0 Pipe level: pipe_period_id = 0
2	Credit update	<pre>Subport Level: if (time>=subport_tc_time) { subport_wm = wa- ter_mark_update(); subport_tc_time = time + subport_tc_period; subport_period_id++; } Pipelevel: if(pipe_period_id != sub- port_period_id) { pipe_ov_credits = subport_wm * pipe_weight; pipe_period_id = sub- port_period_id; }</pre>
3	Credit consumption (on packet scheduling)	<pre>Pipe level: pkt_credits = pk_len + frame_overhead; if(pipe_ov_credits >= pkt_credits{ pipe_ov_credits - = pkt_credits; }</pre>

Table 15. Watermark Calculation

No.	Subport Traffic Class Operation	Description		
1	Initialization	Subport level: wm = WM_MAX		
2	Credit update	Subport level (wa-		
		ter_mark_update):		
		tc0_cons = sub-		
	!	port tc0 credits per period -		
		subport_tc0_credits;		
		tc1 cons = sub-		
		port_tc1_credits_per_period -		
		subport_tc1_credits;		
		tc2 cons = sub-		
		port_tc2_credits_per_period -		
		subport_tc2_credits;		
		tc3 cons = sub-		
		port_tc3_credits_per_period -		
		subport_tc3_credits;		
		tc3_cons_max = sub-		
		port_tc3_credits_per_period		
		- (tc0_cons + tc1_cons +		
		tc2_cons);		
		if(tc3_consumption >		
		(tc3_consumption_max - MTU)){		
		wm -= wm >> 7;		
		$if(wm < WM_MIN)$		
		$wm = WM_MIN;$		
		} else {		
		wm += (wm >> 7)		
		+ 1;		
		if(wm >		
		WM_MAX) wm =		
		WM_MAX;		
		}		

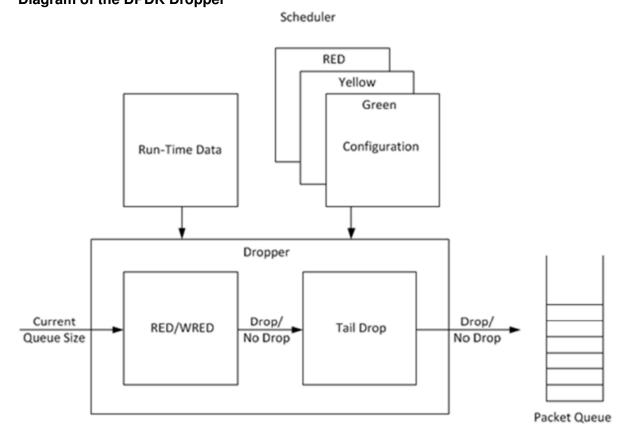
Worst Case Scenarios for Performance

Lots of Active Queues with Not Enough Credits

The more queues the scheduler has to examine for packets and credits in order to select one packet, the lower the performance of the scheduler is.

The scheduler maintains the bitmap of active queues, which skips the non-active queues, but in order to detect whether a specific pipe has enough credits, the pipe has to be drilled down using the pipe dequeue state machine, which consumes cycles regardless of the scheduling result (no packets are produced or at least one packet is produced).

This scenario stresses the importance of the policer for the scheduler performance: if the pipe does not have enough credits, its packets should be dropped as soon as possible (before they reach the hierarchical scheduler), thus rendering the pipe queues as not active, which allows

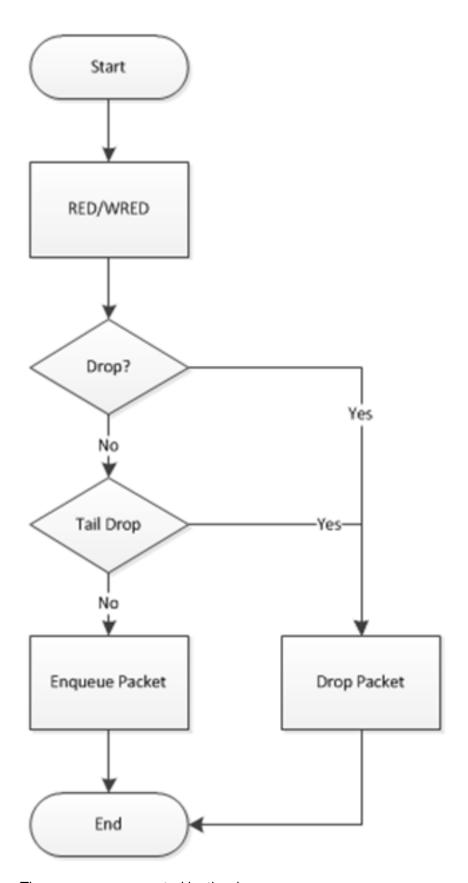

the dequeue side to skip that pipe with no cycles being spent on investigating the pipe credits that would result in a "not enough credits" status.

Single Queue with 100% Line Rate

The port scheduler performance is optimized for a large number of queues. If the number of queues is small, then the performance of the port scheduler for the same level of active traffic is expected to be worse than the performance of a small set of message passing queues.

4.21.3 Dropper

The purpose of the DPDK dropper is to drop packets arriving at a packet scheduler to avoid congestion. The dropper supports the Random Early Detection (RED), Weighted Random Early Detection (WRED) and tail drop algorithms. Figure 1 illustrates how the dropper integrates with the scheduler. The DPDK currently does not support congestion management so the dropper provides the only method for congestion avoidance. **Figure 27. High-level Block Diagram of the DPDK Dropper**


The dropper uses the Random Early Detection (RED) congestion avoidance algorithm as documented in the reference publication. The purpose of the RED algorithm is to monitor a packet queue, determine the current congestion level in the queue and decide whether an arriving packet should be enqueued or dropped. The RED algorithm uses an Exponential Weighted Moving Average (EWMA) filter to compute average queue size which gives an indication of the current congestion level in the queue.

For each enqueue operation, the RED algorithm compares the average queue size to minimum and maximum thresholds. Depending on whether the average queue size is below, above or in

between these thresholds, the RED algorithm calculates the probability that an arriving packet should be dropped and makes a random decision based on this probability.

The dropper also supports Weighted Random Early Detection (WRED) by allowing the scheduler to select different RED configurations for the same packet queue at run-time. In the case of severe congestion, the dropper resorts to tail drop. This occurs when a packet queue has reached maximum capacity and cannot store any more packets. In this situation, all arriving packets are dropped.

The flow through the dropper is illustrated in Figure 28. The RED/WRED algorithm is exercised first and tail drop second. **Figure 28. Flow Through the Dropper**

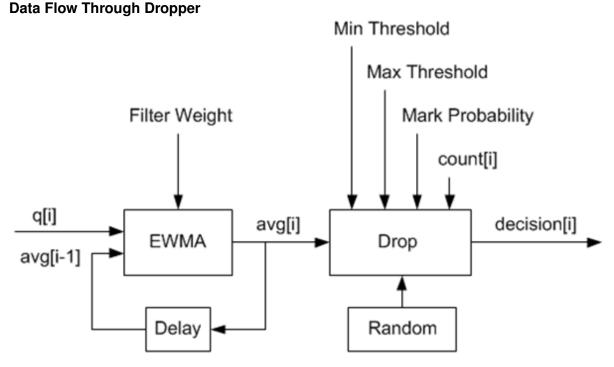
The use cases supported by the dropper are:

- Initialize configuration data
- Initialize run-time data

- Enqueue (make a decision to enqueue or drop an arriving packet)
- Mark empty (record the time at which a packet queue becomes empty)

The configuration use case is explained in *Section 2.23.3.1*, the enqueue operation is explained in *Section 2.23.3.2* and the mark empty operation is explained in *Section 2.23.3.3*.

Configuration


A RED configuration contains the parameters given in Table 16. **Table 16. RED Configuration Parameters**

Parameter	Minimum	Maximum	Typical
Minimum Threshold	0	1022	1/4 x queue size
Maximum Threshold	1	1023	1/2 x queue size
Inverse Mark Probability	1	255	10
EWMA Filter Weight	1	12	9

The meaning of these parameters is explained in more detail in the following sections. The format of these parameters as specified to the dropper module API corresponds to the format used by Cisco* in their RED implementation. The minimum and maximum threshold parameters are specified to the dropper module in terms of number of packets. The mark probability parameter is specified as an inverse value, for example, an inverse mark probability parameter value of 10 corresponds to a mark probability of 1/10 (that is, 1 in 10 packets will be dropped). The EWMA filter weight parameter is specified as an inverse log value, for example, a filter weight parameter value of 9 corresponds to a filter weight of 1/29.

Enqueue Operation

In the example shown in Figure 29, q (actual queue size) is the input value, avg (average queue size) and count (number of packets since the last drop) are run-time values, decision is the output value and the remaining values are configuration parameters. **Figure 29. Example**

EWMA Filter Microblock

The purpose of the EWMA Filter microblock is to filter queue size values to smooth out transient changes that result from "bursty" traffic. The output value is the average queue size which gives a more stable view of the current congestion level in the queue.

The EWMA filter has one configuration parameter, filter weight, which determines how quickly or slowly the average queue size output responds to changes in the actual queue size input. Higher values of filter weight mean that the average queue size responds more quickly to changes in actual queue size.

Average Queue Size Calculation when the Queue is not Empty The definition of the EWMA filter is given in the following equation.

Equation 1.

$$avg[i] = (1 - w_q) \times avg[i - 1] + w_q \times q[i]$$

Where:

- avg = average queue size
- wq = filter weight
- q = actual queue size

Note:

The filter weight, wq = 1/2^n, where n is the filter weight parameter value passed to the dropper modu on configuration (see Section 2.23.3.1).

Average Queue Size Calculation when the Queue is Empty

The EWMA filter does not read time stamps and instead assumes that enqueue operations will happen quite regularly. Special handling is required when the queue becomes empty as the queue could be empty for a short time or a long time. When the queue becomes empty, average queue size should decay gradually to zero instead of dropping suddenly to zero or remaining stagnant at the last computed value. When a packet is enqueued on an empty queue, the average queue size is computed using the following formula:

Equation 2.

$$avg[i] = avg[i-1] \times (1 - w_q)^m$$

Where:

• *m* = the number of enqueue operations that could have occurred on this queue while the queue was empty

In the dropper module, *m* is defined as:

$$m = \left(\frac{time - qtime}{s}\right)$$

Where:

- time = current time
- qtime = time the queue became empty
- s = typical time between successive enqueue operations on this queue

The time reference is in units of bytes, where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium (see Section 26.2.4.5.1 "Internal Time Reference"). The parameter s is defined in the dropper module as a constant with the value: s=2^22. This corresponds to the time required by every leaf node in a hierarchy with 64K leaf nodes to transmit one 64-byte packet onto the wire and represents the worst case scenario. For much smaller scheduler hierarchies, it may be necessary to reduce the parameter s, which is defined in the red header source file (rte red.h) as:

```
#define RTE RED S
```

Since the time reference is in bytes, the port speed is implied in the expression: *time-qtime*. The dropper does not have to be configured with the actual port speed. It adjusts automatically to low speed and high speed links.

Implementation A numerical method is used to compute the factor (1-wq)[^]m that appears in Equation 2.

This method is based on the following identity:

$$a \equiv 2^{(b \times \log_2(a))}$$

This allows us to express the following:

$$(1 - w_q)^m = 2^{(m \times \log_2(1 - w_q))}$$

In the dropper module, a look-up table is used to compute $\log 2(1-wq)$ for each value of wq supported by the dropper module. The factor $(1-wq)^m$ can then be obtained by multiplying the table value by m and applying shift operations. To avoid overflow in the multiplication, the value, m, and the look-up table values are limited to 16 bits. The total size of the look-up table is 56 bytes. Once the factor $(1-wq)^m$ is obtained using this method, the average queue size can be calculated from Equation 2.

Alternative Approaches Other methods for calculating the factor (1-wq)^m in the expression for computing average queue size when the queue is empty (Equation 2) were considered. These approaches include:

- Floating-point evaluation
- Fixed-point evaluation using a small look-up table (512B) and up to 16 multiplications (this is the approach used in the FreeBSD* ALTQ RED implementation)
- Fixed-point evaluation using a small look-up table (512B) and 16 SSE multiplications (SSE optimized version of the approach used in the FreeBSD* ALTQ RED implementation)
- Large look-up table (76 KB)

The method that was finally selected (described above in Section 26.3.2.2.1) out performs all of these approaches in terms of run-time performance and memory requirements and also achieves accuracy comparable to floating-point evaluation. Table 17 lists the performance of each of these alternative approaches relative to the method that is used in the dropper. As can be seen, the floating-point implementation achieved the worst performance. **Table 17. Relative Performance of Alternative Approaches**

Method	Relative Performance
Current dropper method (see Section 23.3.2.1.3)	100%
Fixed-point method with small (512B) look-up table	148%
SSE method with small (512B) look-up table	114%
Large (76KB) look-up table	118%
Floating-point	595%
All I I II ' ' ' ' ' I	

Note: In this case, since performance is expressed as time spent executing the operation in a specific cond

Drop Decision Block

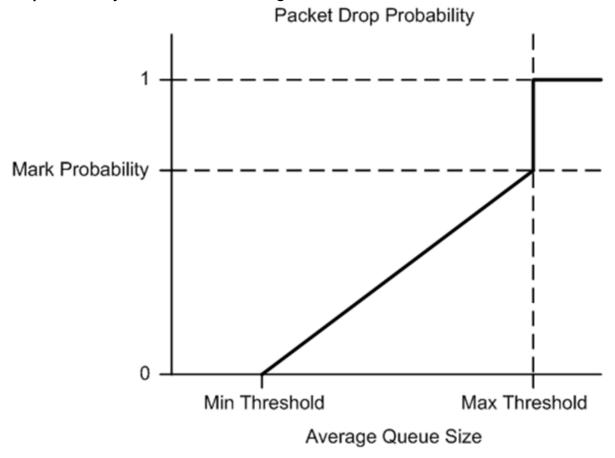
The Drop Decision block:

- Compares the average queue size with the minimum and maximum thresholds
- · Calculates a packet drop probability
- Makes a random decision to enqueue or drop an arriving packet

The calculation of the drop probability occurs in two stages. An initial drop probability is calculated based on the average queue size, the minimum and maximum thresholds and the mark probability. An actual drop probability is then computed from the initial drop probability. The actual drop probability takes the count run-time value into consideration so that the actual drop probability increases as more packets arrive to the packet queue since the last packet was dropped.

Initial Packet Drop Probability The initial drop probability is calculated using the following equation.

Equation 3.


$$p_b = \begin{cases} max_p \begin{pmatrix} avg - min_{th} \\ max_{th} - min_{th} \end{pmatrix}, & min_{th} \leq avg < max_{th} \\ 1, & avg \geq max_{th} \end{cases}$$

Where:

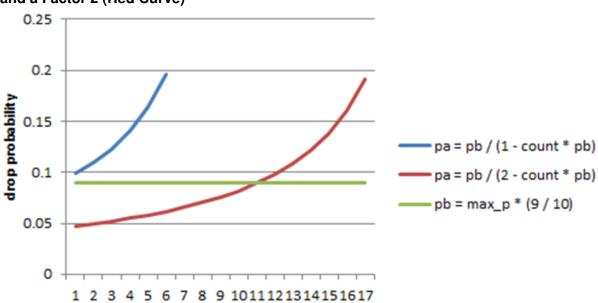
- maxp = mark probability
- avg = average queue size
- minth = minimum threshold
- maxth = maximum threshold

The calculation of the packet drop probability using Equation 3 is illustrated in Figure 30. If the average queue size is below the minimum threshold, an arriving packet is enqueued. If the average queue size is at or above the maximum threshold, an arriving packet is dropped. If the average queue size is between the minimum and maximum thresholds, a drop probability

is calculated to determine if the packet should be enqueued or dropped. Figure 30. Packet Drop Probability for a Given RED Configuration

Actual Drop Probability If the average queue size is between the minimum and maximum thresholds, then the actual drop probability is calculated from the following equation.

Equation 4.


$$p_a = \frac{p_b}{(2 - count \times p_b)}$$

Where:

- *Pb* = initial drop probability (from Equation 3)
- count = number of packets that have arrived since the last drop

The constant 2, in Equation 4 is the only deviation from the drop probability formulae given in the reference document where a value of 1 is used instead. It should be noted that the value pa computed from can be negative or greater than 1. If this is the case, then a value of 1 should be used instead.

The initial and actual drop probabilities are shown in Figure 31. The actual drop probability is shown for the case where the formula given in the reference document1 is used (blue curve) and also for the case where the formula implemented in the dropper module, is used (red curve). The formula in the reference document results in a significantly higher drop rate compared to the mark probability configuration parameter specified by the user. The choice to deviate from the reference document is simply a design decision and one that has been taken by other RED implementations, for example, FreeBSD* ALTQ RED. **Figure 31. Initial Drop**

Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a Factor 2 (Red Curve)

Queue Empty Operation

The time at which a packet queue becomes empty must be recorded and saved with the RED run-time data so that the EWMA filter block can calculate the average queue size on the next enqueue operation. It is the responsibility of the calling application to inform the dropper module through the API that a queue has become empty.

Source Files Location

The source files for the DPDK dropper are located at:

count

- DPDK/lib/librte sched/rte red.h
- DPDK/lib/librte_sched/rte_red.c

Integration with the DPDK QoS Scheduler

RED functionality in the DPDK QoS scheduler is disabled by default. To enable it, use the DPDK configuration parameter:

This parameter must be set to y. The parameter is found in the build configuration files in the DPDK/config directory, for example, DPDK/config/common_linuxapp. RED configuration parameters are specified in the rte_red_params structure within the rte_sched_port_params structure that is passed to the scheduler on initialization. RED parameters are specified separately for four traffic classes and three packet colors (green, yellow and red) allowing the scheduler to implement Weighted Random Early Detection (WRED).

Integration with the DPDK QoS Scheduler Sample Application

The DPDK QoS Scheduler Application reads a configuration file on start-up. The configuration file includes a section containing RED parameters. The format of these parameters is described in *Section2.23.3.1*. A sample RED configuration is shown below. In this example, the queue size is 64 packets.

Note: For correct operation, the same EWMA filter weight parameter (wred weight) should be used for each packet color (green, yellow, red) in the same traffic class (tc).

```
; RED params per traffic class and color (Green / Yellow / Red)
[red]
tc 0 wred min = 28 22 16
tc 0 wred max = 32 32 32
tc 0 wred inv prob = 10 \ 10 \ 10
tc 0 wred weight = 999
tc 1 wred min = 28 22 16
tc 1 wred max = 32 32 32
tc 1 wred inv prob = 10 \ 10 \ 10
tc 1 wred weight = 999
tc 2 wred min = 28 22 16
tc 2 wred max = 32 32 32
tc 2 wred inv prob = 10 \ 10 \ 10
tc 2 wred weight = 999
tc 3 wred min = 28 22 16
tc 3 wred max = 32 32 32
tc 3 wred inv prob = 10 \ 10 \ 10
tc 3 wred weight = 999
```

With this configuration file, the RED configuration that applies to green, yellow and red packets in traffic class 0 is shown in Table 18. **Table 18. RED Configuration Corresponding to RED Configuration File**

RED Parameter	Configuration Name	Green	Yellow	Red
Minimum Threshold	tc 0 wred min	28	22	16
Maximum Threshold	tc 0 wred max	32	32	32
Mark Probability	tc 0 wred inv prob	10	10	10
EWMA Filter Weight	tc 0 wred weight	9	9	9

Application Programming Interface (API)

Enqueue API

The syntax of the enqueue API is as follows:

```
int rte_red_enqueue(const struct rte_red_config *red_cfg, struct rte_red *red, const unsigned enqueue)
```

The arguments passed to the enqueue API are configuration data, run-time data, the current size of the packet queue (in packets) and a value representing the current time. The time reference is in units of bytes, where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium (see Section 26.2.4.5.1 "Internal Time Reference"). The dropper reuses the scheduler time stamps for performance reasons.

Empty API

The syntax of the empty API is as follows:

```
void rte red mark queue empty(struct rte red *red, const uint64_t time)
```

The arguments passed to the empty API are run-time data and the current time in bytes.

4.21.4 Traffic Metering

The traffic metering component implements the Single Rate Three Color Marker (srTCM) and Two Rate Three Color Marker (trTCM) algorithms, as defined by IETF RFC 2697 and 2698 respectively. These algorithms meter the stream of incoming packets based on the allowance defined in advance for each traffic flow. As result, each incoming packet is tagged as green, yellow or red based on the monitored consumption of the flow the packet belongs to.

Functional Overview

The srTCM algorithm defines two token buckets for each traffic flow, with the two buckets sharing the same token update rate:

- Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate (CIR) parameter (measured in IP packet bytes per second). The size of the C bucket is defined by the Committed Burst Size (CBS) parameter (measured in bytes);
- Excess (E) bucket: fed with tokens at the same rate as the C bucket. The size of the E bucket is defined by the Excess Burst Size (EBS) parameter (measured in bytes).

The trTCM algorithm defines two token buckets for each traffic flow, with the two buckets being updated with tokens at independent rates:

- Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate (CIR) parameter (measured in bytes of IP packet per second). The size of the C bucket is defined by the Committed Burst Size (CBS) parameter (measured in bytes);
- Peak (P) bucket: fed with tokens at the rate defined by the Peak Information Rate (PIR) parameter (measured in IP packet bytes per second). The size of the P bucket is defined by the Peak Burst Size (PBS) parameter (measured in bytes).

Please refer to RFC 2697 (for srTCM) and RFC 2698 (for trTCM) for details on how tokens are consumed from the buckets and how the packet color is determined.

Color Blind and Color Aware Modes

For both algorithms, the color blind mode is functionally equivalent to the color aware mode with input color set as green. For color aware mode, a packet with red input color can only get the red output color, while a packet with yellow input color can only get the yellow or red output colors.

The reason why the color blind mode is still implemented distinctly than the color aware mode is that color blind mode can be implemented with fewer operations than the color aware mode.

Implementation Overview

For each input packet, the steps for the srTCM / trTCM algorithms are:

- Update the C and E / P token buckets. This is done by reading the current time (from the CPU timestamp counter), identifying the amount of time since the last bucket update and computing the associated number of tokens (according to the pre-configured bucket rate). The number of tokens in the bucket is limited by the pre-configured bucket size;
- Identify the output color for the current packet based on the size of the IP packet and the amount of tokens currently available in the C and E / P buckets; for color aware mode only, the input color of the packet is also considered. When the output color is not red, a number of tokens equal to the length of the IP packet are subtracted from the C or E /P or both buckets, depending on the algorithm and the output color of the packet.

4.22 Power Management

The DPDK Power Management feature allows users space applications to save power by dynamically adjusting CPU frequency or entering into different C-States.

- Adjusting the CPU frequency dynamically according to the utilization of RX queue.
- Entering into different deeper C-States according to the adaptive algorithms to speculate brief periods of time suspending the application if no packets are received.

The interfaces for adjusting the operating CPU frequency are in the power management library. C-State control is implemented in applications according to the different use cases.

4.22.1 CPU Frequency Scaling

The Linux kernel provides a cpufreq module for CPU frequency scaling for each lcore. For example, for cpuX, /sys/devices/system/cpu/cpuX/cpufreq/ has the following sys files for frequency scaling:

- · affected_cpus
- bios limit
- cpuinfo cur freq
- cpuinfo max freq
- · cpuinfo_min_freq
- cpuinfo_transition_latency
- related_cpus
- scaling available frequencies
- · scaling_available_governors
- scaling_cur_freq
- · scaling driver
- scaling_governor

- · scaling_max_freq
- scaling_min_freq
- · scaling_setspeed

In the DPDK, scaling_governor is configured in user space. Then, a user space application can prompt the kernel by writing scaling_setspeed to adjust the CPU frequency according to the strategies defined by the user space application.

4.22.2 Core-load Throttling through C-States

Core state can be altered by speculative sleeps whenever the specified lcore has nothing to do. In the DPDK, if no packet is received after polling, speculative sleeps can be triggered according the strategies defined by the user space application.

4.22.3 API Overview of the Power Library

The main methods exported by power library are for CPU frequency scaling and include the following:

- Freq up: Prompt the kernel to scale up the frequency of the specific lcore.
- Freq down: Prompt the kernel to scale down the frequency of the specific lcore.
- **Freq max**: Prompt the kernel to scale up the frequency of the specific lcore to the maximum.
- Freq min: Prompt the kernel to scale down the frequency of the specific lcore to the minimum.
- Get available freqs: Read the available frequencies of the specific lcore from the sys file.
- Freq get: Get the current frequency of the specific lcore.
- Freq set: Prompt the kernel to set the frequency for the specific lcore.

4.22.4 User Cases

The power management mechanism is used to save power when performing L3 forwarding.

4.22.5 References

- I3fwd-power: The sample application in DPDK that performs L3 forwarding with power management.
- The "L3 Forwarding with Power Management Sample Application" chapter in the *DPDK Sample Application's User Guide*.

4.23 Packet Classification and Access Control

The DPDK provides an Access Control library that gives the ability to classify an input packet based on a set of classification rules.

The ACL library is used to perform an N-tuple search over a set of rules with multiple categories and find the best match (highest priority) for each category. The library API provides the following basic operations:

- · Create a new Access Control (AC) context.
- · Add rules into the context.
- For all rules in the context, build the runtime structures necessary to perform packet classification.
- · Perform input packet classifications.
- Destroy an AC context and its runtime structures and free the associated memory.

4.23.1 Overview

Rule definition

The current implementation allows the user for each AC context to specify its own rule (set of fields) over which packet classification will be performed. Though there are few restrictions on the rule fields layout:

- First field in the rule definition has to be one byte long.
- All subsequent fields has to be grouped into sets of 4 consecutive bytes.

This is done mainly for performance reasons - search function processes the first input byte as part of the flow setup and then the inner loop of the search function is unrolled to process four input bytes at a time.

To define each field inside an AC rule, the following structure is used:

- type The field type is one of three choices:
 - MASK for fields such as IP addresses that have a value and a mask defining the number of relevant bits.
 - RANGE for fields such as ports that have a lower and upper value for the field.
 - BITMASK for fields such as protocol identifiers that have a value and a bit mask.
- size The size parameter defines the length of the field in bytes. Allowable values are 1, 2, 4, or 8 bytes. Note that due to the grouping of input bytes, 1 or 2 byte fields must be defined as consecutive fields that make up 4 consecutive input bytes. Also, it is best to

define fields of 8 or more bytes as 4 byte fields so that the build processes can eliminate fields that are all wild.

- field_index A zero-based value that represents the position of the field inside the rule; 0
 to N-1 for N fields.
- input_index As mentioned above, all input fields, except the very first one, must be in groups of 4 consecutive bytes. The input index specifies to which input group that field belongs to.
- offset The offset field defines the offset for the field. This is the offset from the beginning of the buffer parameter for the search.

For example, to define classification for the following IPv4 5-tuple structure:

```
struct ipv4_5tuple {
    uint8_t proto;
    uint32_t ip_src;
    uint32_t ip_dst;
    uint16_t port_src;
    uint16_t port_dst;
};
```

The following array of field definitions can be used:

```
struct rte_acl_field_def ipv4_defs[5] = {
    /* first input field - always one byte long. */
    {
        .type = RTE ACL FIELD TYPE BITMASK,
        .size = sizeof (uint8 t),
        .field index = 0,
        .input index = 0,
        .offset = offsetof (struct ipv4 5tuple, proto),
    },
    /* next input field (IPv4 source address) - 4 consecutive bytes. */
    {
        .type = RTE_ACL_FIELD_TYPE_MASK,
        .size = sizeof (uint32_t),
        .field_index = 1,
        .input_index = 1,
       .offset = offsetof (struct ipv4_5tuple, ip_src),
    },
    /* next input field (IPv4 destination address) - 4 consecutive bytes. */
        .type = RTE_ACL_FIELD_TYPE_MASK,
        .size = sizeof (uint32_t),
        .field index = 2,
        .input_index = 2,
       .offset = offsetof (struct ipv4 5tuple, ip dst),
    },
     * Next 2 fields (src & dst ports) form 4 consecutive bytes.
     * They share the same input index.
     */
    {
        .type = RTE_ACL_FIELD_TYPE_RANGE,
        .size = sizeof (uint16_t),
        .field_index = 3,
        .input index = 3,
        .offset = offsetof (struct ipv4 5tuple, port src),
```

```
},

{
    .type = RTE_ACL_FIELD_TYPE_RANGE,
    .size = sizeof (uint16_t),
    .field_index = 4,
    .input_index = 3,
    .offset = offsetof (struct ipv4_5tuple, port_dst),
},
};
```

A typical example of such an IPv4 5-tuple rule is a follows:

```
source addr/mask destination addr/mask source ports dest ports protocol/mask 192.168.1.0/24 192.168.2.31/32 0:65535 1234:1234 17/0xff
```

Any IPv4 packets with protocol ID 17 (UDP), source address 192.168.1.[0-255], destination address 192.168.2.31, source port [0-65535] and destination port 1234 matches the above rule.

The following array of field definitions can be used:

```
struct struct rte acl field def ipv6 2tuple defs[5] = {
    {
        .type = RTE ACL FIELD TYPE BITMASK,
        .size = sizeof (uint8_t),
        .field_index = 0,
        .input index = 0,
        .offset = offsetof (struct ipv6_hdr, proto),
    },
    {
        .type = RTE ACL FIELD TYPE MASK,
        .size = sizeof (uint32_t),
        .field index = 1,
        .input index = 1,
        .offset = offsetof (struct ipv6_hdr, src_addr[0]),
    },
    {
        .type = RTE ACL FIELD TYPE MASK,
        .size = sizeof (uint32_t),
        .field index = 2,
        .input index = 2,
        .offset = offsetof (struct ipv6 hdr, src addr[4]),
    },
        .type = RTE ACL FIELD TYPE MASK,
        .size = sizeof (uint32 t),
        .field index = 3,
        .input index = 3,
```

```
.offset = offsetof (struct ipv6_hdr, src_addr[8]),
},

{
    .type = RTE_ACL_FIELD_TYPE_MASK,
    .size = sizeof (uint32_t),
    .field_index = 4,
    .input_index = 4,
    .offset = offsetof (struct ipv6_hdr, src_addr[12]),
},
};
```

A typical example of such an IPv6 2-tuple rule is a follows:

```
source addr/mask
2001:db8:1234:0000:0000:0000:0000:0000/48
6/0xff
```

Any IPv6 packets with protocol ID 6 (TCP), and source address inside the range [2001:db8:1234:0000:0000:0000:0000 - 2001:db8:1234:ffff:ffff:ffff:ffff] matches the above rule.

When creating a set of rules, for each rule, additional information must be supplied also:

- **priority**: A weight to measure the priority of the rules (higher is better). If the input tuple matches more than one rule, then the rule with the higher priority is returned. Note that if the input tuple matches more than one rule and these rules have equal priority, it is undefined which rule is returned as a match. It is recommended to assign a unique priority for each rule.
- category_mask: Each rule uses a bit mask value to select the relevant category(s) for the rule. When a lookup is performed, the result for each category is returned. This effectively provides a "parallel lookup" by enabling a single search to return multiple results if, for example, there were four different sets of ACL rules, one for access control, one for routing, and so on. Each set could be assigned its own category and by combining them into a single database, one lookup returns a result for each of the four sets.
- **userdata**: A user-defined field that could be any value except zero. For each category, a successful match returns the userdata field of the highest priority matched rule.

Note: When adding new rules into an ACL context, all fields must be in host byte order (LSB). When the search is performed for an input tuple, all fields in that tuple must be in network byte order (MSB).

RT memory size limit

Build phase (rte_acl_build()) creates for a given set of rules internal structure for further runtime traversal. With current implementation it is a set of multi-bit tries (with stride == 8). Depending on the rules set, that could consume significant amount of memory. In attempt to conserve some space ACL build process tries to split the given rule-set into several non-intersecting subsets and construct a separate trie for each of them. Depending on the rule-set, it might reduce RT memory requirements but might increase classification time. There is a possibility at build-time to specify maximum memory limit for internal RT structures for given AC context. It could be done via **max_size** field of the **rte_acl_config** strucure. Setting it to the value greater than zero, instructs rte acl build() to:

- attempt to minimise number of tries in the RT table, but
- make sure that size of RT table wouldn't exceed given value.

Setting it to zero makes rte_acl_build() to use the default behaviour: try to minimise size of the RT structures, but doesn't expose any hard limit on it.

That gives the user the ability to decisions about performance/space trade-off. For example:

```
struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/*
    * assuming that acx points to already created and
    * populated with rules AC context and cfg filled properly.
    */

    /* try to build AC context, with RT strcutures less then 8MB. */
    cfg.max_size = 0x800000;
    ret = rte_acl_build(acx, &cfg);

/*
    * RT strcutures can't fit into 8MB for given context.
    * Try to build without exposing any hard limit.
    */
    if (ret == -ERANGE) {
        cfg.max_size = 0;
        ret = rte_acl_build(acx, &cfg);
}
```

Classification methods

After rte_acl_build() over given AC context has finished successfully, it can be used to perform classification - search for a rule with highest priority over the input data. There are several implementations of classify algorithm:

- RTE_ACL_CLASSIFY_SCALAR: generic implementation, doesn't require any specific HW support.
- RTE_ACL_CLASSIFY_SSE: vector implementation, can process up to 8 flows in parallel. Requires SSE 4.1 support.
- RTE_ACL_CLASSIFY_AVX2: vector implementation, can process up to 16 flows in parallel. Requires AVX2 support.

It is purely a runtime decision which method to choose, there is no build-time difference. All implementations operates over the same internal RT structures and use similar principles. The main difference is that vector implementations can manually exploit IA SIMD instructions and process several input data flows in parallel. At startup ACL library determines the highest available classify method for the given platform and sets it as default one. Though the user has an ability to override the default classifier function for a given ACL context or perform particular search using non-default classify method. In that case it is user responsibility to make sure that given platform supports selected classify implementation.

4.23.2 Application Programming Interface (API) Usage

Note: For more details about the Access Control API, please refer to the *DPDK API Reference*.

The following example demonstrates IPv4, 5-tuple classification for rules defined above with multiple categories in more detail.

Classify with Multiple Categories

```
struct rte acl ctx * acx;
struct rte_acl_config cfg;
int ret;
/* define a structure for the rule with up to 5 fields. */
RTE ACL RULE DEF(acl ipv4 rule, RTE DIM(ipv4 defs));
/* AC context creation parameters. */
struct rte_acl_param prm = {
    .name = "ACL_example"
    .socket id = SOCKET ID ANY,
    .rule size = RTE ACL RULE SZ(RTE DIM(ipv4 defs)),
   /* number of fields per rule. */
    .max rule num = 8, /* maximum number of rules in the AC context. */
};
struct acl ipv4 rule acl rules[] = {
    /* matches all packets traveling to 192.168.0.0/16, applies for categories: 0,1 */
        .data = \{.userdata = 1, .category mask = 3, .priority = 1\},
        /* destination IPv4 */
        .field[2] = {.value.u32} = IPv4(192,168,0,0),. mask range.u32 = 16,},
        /* source port */
        .field[3] = \{.value.u16 = 0, .mask range.u16 = 0xfffff,\},
        /* destination port */
       .field[4] = \{.value.u16 = 0, .mask range.u16 = 0xffff,\},
    },
    /* matches all packets traveling to 192.168.1.0/24, applies for categories: 0 */
        .data = {.userdata = 2, .category mask = 1, .priority = 2},
        /* destination IPv4 */
        .field[2] = {.value.u32 = IPv4(192,168,1,0),. mask range.u32 = 24,},
        /* source port */
        .field[3] = {.value.u16 = 0, .mask range.u16 = 0xfffff,},
        /* destination port */
        .field[4] = {.value.u16 = 0, .mask range.u16 = 0xffff,},
    },
    /* matches all packets traveling from 10.1.1.1, applies for categories: 1 */
```

```
{
        .data = \{.userdata = 3, .category mask = 2, .priority = 3\},
        /* source IPv4 */
        .field[1] = \{.value.u32 = IPv4(10,1,1,1),. mask_range.u32 = 32,\},
        /* source port */
        .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
        /* destination port */
        .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
    },
};
/* create an empty AC context */
if ((acx = rte_acl_create(&prm)) == NULL) {
   /* handle context create failure. */
}
/* add rules to the context */
ret = rte acl add rules(acx, acl rules, RTE DIM(acl rules));
if (ret != 0) {
   /* handle error at adding ACL rules. */
/* prepare AC build config. */
cfg.num categories = 2;
cfg.num fields = RTE DIM(ipv4 defs);
memcpy(cfg.defs, ipv4 defs, sizeof (ipv4 defs));
/* build the runtime structures for added rules, with 2 categories. */
ret = rte_acl_build(acx, &cfg);
if (ret != 0) {
   /* handle error at build runtime structures for ACL context. */
```

For a tuple with source IP address: 10.1.1.1 and destination IP address: 192.168.1.15, once the following lines are executed:

```
uint32_t results[4]; /* make classify for 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);
then the results[] array contains:
    results[4] = {2, 3, 0, 0};
```

- For category 0, both rules 1 and 2 match, but rule 2 has higher priority, therefore results[0] contains the userdata for rule 2.
- For category 1, both rules 1 and 3 match, but rule 3 has higher priority, therefore results[1] contains the userdata for rule 3.
- For categories 2 and 3, there are no matches, so results[2] and results[3] contain zero, which indicates that no matches were found for those categories.

For a tuple with source IP address: 192.168.1.1 and destination IP address: 192.168.2.11, once the following lines are executed:

```
uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);
the results[] array contains:
    results[4] = {1, 1, 0, 0};
```

- For categories 0 and 1, only rule 1 matches.
- For categories 2 and 3, there are no matches.

For a tuple with source IP address: 10.1.1.1 and destination IP address: 201.212.111.12, once the following lines are executed:

```
uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);
```

the results[] array contains:

```
results[4] = \{0, 3, 0, 0\};
```

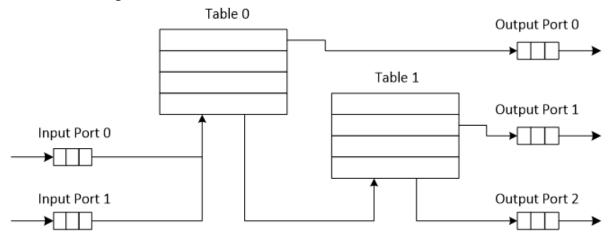
- For category 1, only rule 3 matches.
- For categories 0, 2 and 3, there are no matches.

4.24 Packet Framework

4.24.1 Design Objectives

The main design objectives for the DPDK Packet Framework are:

- Provide standard methodology to build complex packet processing pipelines. Provide reusable and extensible templates for the commonly used pipeline functional blocks;
- Provide capability to switch between pure software and hardware-accelerated implementations for the same pipeline functional block;
- Provide the best trade-off between flexibility and performance. Hardcoded pipelines usually provide the best performance, but are not flexible, while developing flexible frameworks is never a problem, but performance is usually low;
- Provide a framework that is logically similar to Open Flow.


4.24.2 Overview

Packet processing applications are frequently structured as pipelines of multiple stages, with the logic of each stage glued around a lookup table. For each incoming packet, the table defines the set of actions to be applied to the packet, as well as the next stage to send the packet to.

The DPDK Packet Framework minimizes the development effort required to build packet processing pipelines by defining a standard methodology for pipeline development, as well as providing libraries of reusable templates for the commonly used pipeline blocks.

The pipeline is constructed by connecting the set of input ports with the set of output ports through the set of tables in a tree-like topology. As result of lookup operation for the current packet in the current table, one of the table entries (on lookup hit) or the default table entry (on lookup miss) provides the set of actions to be applied on the current packet, as well as the next hop for the packet, which can be either another table, an output port or packet drop.

An example of packet processing pipeline is presented in Figure 32: Figure 32 Example of Packet Processing Pipeline where Input Ports 0 and 1 are Connected with Output Ports 0, 1 and 2 through Tables 0 and 1

4.24.3 Port Library Design

Port Types

Table 19 is a non-exhaustive list of ports that can be implemented with the Packet Framework. **Table 19 Port Types**

#	Port	Description
	type	
1	SW ring	SW circular buffer used for message passing between the application
		threads. Uses the DPDK rte_ring primitive. Expected to be the most
		commonly used type of port.
2	HW ring	Queue of buffer descriptors used to interact with NIC, switch or accelerator
		ports. For NIC ports, it uses the DPDK rte_eth_rx_queue or
		rte_eth_tx_queue primitives.
3	IP re-	Input packets are either IP fragments or complete IP datagrams. Output
	assem-	packets are complete IP datagrams.
	bly	
4	IP frag-	Input packets are jumbo (IP datagrams with length bigger than MTU) or
	menta-	non-jumbo packets. Output packets are non-jumbo packets.
	tion	
5	Traffic	Traffic manager attached to a specific NIC output port, performing
	man-	congestion management and hierarchical scheduling according to
	ager	pre-defined SLAs.
6	KNI	Send/receive packets to/from Linux kernel space.
7	Source	Input port used as packet generator. Similar to Linux kernel /dev/zero
		character device.
8	Sink	Output port used to drop all input packets. Similar to Linux kernel /dev/null
		character device.

Port Interface

Each port is unidirectional, i.e. either input port or output port. Each input/output port is required to implement an abstract interface that defines the initialization and run-time operation of the port. The port abstract interface is described in. **Table 20 Port Abstract Interface**

#	Port	Description
	Operation	
1	Create	Create the low-level port object (e.g. queue). Can internally allocate
		memory.
2	Free	Free the resources (e.g. memory) used by the low-level port object.
3	RX	Read a burst of input packets. Non-blocking operation. Only defined for
		input ports.
4	TX	Write a burst of input packets. Non-blocking operation. Only defined for
		output ports.
5	Flush	Flush the output buffer. Only defined for output ports.

4.24.4 Table Library Design

Table Types

Table 21 is a non-exhaustive list of types of tables that can be implemented with the Packet Framework.

Table 21 Table Types

#	Table Type	Description
#	Table Type Hash table	Description Lookup key is n-tuple based. Typically, the lookup key is hashed to produce a signature that is used to identify a bucket of entries where the lookup key is searched next. The signature associated with the lookup key of each input packet is either read from the packet descriptor (precomputed signature) or computed at table lookup time. The table lookup, add entry and delete entry operations, as well as any other pipeline block that pre-computes the signature all have to use the same hashing algorithm to generate the signature. Typically used to implement flow classification tables, ARP caches, routing table for tunnelling protocols, etc.
2	Longest Prefix Match (LPM)	Lookup key is the IP address. Each table entries has an associated IP prefix (IP and depth). The table lookup operation selects the IP prefix that is matched by the lookup key; in case of multiple matches, the entry with the longest prefix depth wins. Typically used to implement IP routing tables.
3	Access Control List (ACLs)	Lookup key is 7-tuple of two VLAN/MPLS labels, IP destination address, IP source addresses, L4 protocol, L4 destination port, L4 source port. Each table entry has an associated ACL and priority. The ACL contains bit masks for the VLAN/MPLS labels, IP prefix for IP destination address, IP prefix for IP source addresses, L4 protocol and bitmask, L4 destination port and bit mask, L4 source port and bit mask. The table lookup operation selects the ACL that is
4.24. Packet Framework		matched by the lookup klayonin case of multiple matches, the entry with the highest priority wins

Table Interface

Each table is required to implement an abstract interface that defines the initialization and runtime operation of the table. The table abstract interface is described in Table 29. **Table 29 Table Abstract Interface**

#	Table operation	Description
1	Create	Create the low-level data structures of the lookup table. Can internally allocate memory.
2	Free	Free up all the resources used by the lookup table.
3	Add entry	Add new entry to the lookup table.
4	Delete entry	Delete specific entry from the lookup table.
5	Lookup	Look up a burst of input packets and return a bit mask specifying the result of the lookup operation for each packet: a set bit signifies lookup hit for the corresponding packet, while a cleared bit a lookup miss. For each lookup hit packet, the lookup operation also returns a pointer to the table entry that was hit, which contains the actions to be applied on the packet and any associated metadata. For each lookup miss packet, the actions to be applied on the packet and any associated metadata are specified by the default table entry preconfigured for lookup miss.

Hash Table Design

Hash Table Overview

Hash tables are important because the key lookup operation is optimized for speed: instead of having to linearly search the lookup key through all the keys in the table, the search is limited to only the keys stored in a single table bucket.

Associative Arrays

An associative array is a function that can be specified as a set of (key, value) pairs, with each key from the possible set of input keys present at most once. For a given associative array, the possible operations are:

- 1. add (key, value): When no value is currently associated with key, then the (key, value) association is created. When key is already associated value value0, then the association (key, value0) is removed and association (key, value) is created;
- 2. *delete key*: When no value is currently associated with *key*, this operation has no effect. When *key* is already associated *value*, then association *(key, value)* is removed;
- 3. *lookup key*: When no value is currently associated with *key*, then this operation returns void value (lookup miss). When *key* is associated with *value*, then this operation returns *value*. The *(key, value)* association is not changed.

The matching criterion used to compare the input key against the keys in the associative array is *exact match*, as the key size (number of bytes) and the key value (array of bytes) have to match exactly for the two keys under comparison.

Hash Function

A hash function deterministically maps data of variable length (key) to data of fixed size (hash value or key signature). Typically, the size of the key is bigger than the size of the key signature. The hash function basically compresses a long key into a short signature. Several keys can share the same signature (collisions).

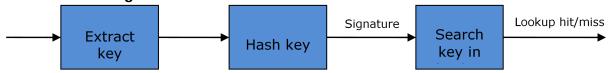
High quality hash functions have uniform distribution. For large number of keys, when dividing the space of signature values into a fixed number of equal intervals (buckets), it is desirable to have the key signatures evenly distributed across these intervals (uniform distribution), as opposed to most of the signatures going into only a few of the intervals and the rest of the intervals being largely unused (non-uniform distribution).

Hash Table

A hash table is an associative array that uses a hash function for its operation. The reason for using a hash function is to optimize the performance of the lookup operation by minimizing the number of table keys that have to be compared against the input key.

Instead of storing the (key, value) pairs in a single list, the hash table maintains multiple lists (buckets). For any given key, there is a single bucket where that key might exist, and this bucket is uniquely identified based on the key signature. Once the key signature is computed and the hash table bucket identified, the key is either located in this bucket or it is not present in the hash table at all, so the key search can be narrowed down from the full set of keys currently in the table to just the set of keys currently in the identified table bucket.

The performance of the hash table lookup operation is greatly improved, provided that the table keys are evenly distributed amongst the hash table buckets, which can be achieved by using a hash function with uniform distribution. The rule to map a key to its bucket can simply be to use the key signature (modulo the number of table buckets) as the table bucket ID:


```
bucket_id = f_hash(key) % n_buckets;
```

By selecting the number of buckets to be a power of two, the modulo operator can be replaced by a bitwise AND logical operation:

```
bucket id = f hash(key) & (n buckets - 1);
```

considering n_bits as the number of bits set in $bucket_mask = n_buckets - 1$, this means that all the keys that end up in the same hash table bucket have the lower n_bits of their signature identical. In order to reduce the number of keys in the same bucket (collisions), the number of hash table buckets needs to be increased.

In packet processing context, the sequence of operations involved in hash table operations is described in Figure 33: Figure 33 Sequence of Steps for Hash Table Operations in a Packet Processing Context

Hash Table Use Cases

Flow Classification

Description: The flow classification is executed at least once for each input packet. This operation maps each incoming packet against one of the known traffic flows in the flow database that typically contains millions of flows.

Hash table name: Flow classification table

Number of keys: Millions

Key format: n-tuple of packet fields that uniquely identify a traffic flow/connection. Example: DiffServ 5-tuple of (Source IP address, Destination IP address, L4 protocol, L4 protocol source port, L4 protocol destination port). For IPv4 protocol and L4 protocols like TCP, UDP or SCTP, the size of the DiffServ 5-tuple is 13 bytes, while for IPv6 it is 37 bytes.

Key value (key data): actions and action meta-data describing what processing to be applied for the packets of the current flow. The size of the data associated with each traffic flow can vary from 8 bytes to kilobytes.

Address Resolution Protocol (ARP)

Description: Once a route has been identified for an IP packet (so the output interface and the IP address of the next hop station are known), the MAC address of the next hop station is needed in order to send this packet onto the next leg of the journey towards its destination (as identified by its destination IP address). The MAC address of the next hop station becomes the destination MAC address of the outgoing Ethernet frame.

Hash table name: ARP table Number of keys: Thousands

Key format: The pair of (Output interface, Next Hop IP address), which is typically 5 bytes for IPv4 and 17 bytes for IPv6.

Key value (key data): MAC address of the next hop station (6 bytes).

Hash Table Types

Table 22 lists the hash table configuration parameters shared by all different hash table types.

Table 22 Configuration Parameters Common for All Hash Table Types

#	Parameter	Details		
1	Key size	Measured as number of bytes. All keys have the same size.		
2	Key value (key	Measured as number of bytes.		
	data) size			
3	Number of	Needs to be a power of two.		
	buckets			
4	Maximum number	Needs to be a power of two.		
	of keys			
5	Hash function	Examples: jhash, CRC hash, etc.		
6	Hash function	Parameter to be passed to the hash function.		
	seed			
7	Key offset	Offset of the lookup key byte array within the packet meta-data		
		stored in the packet buffer.		

Bucket Full Problem On initialization, each hash table bucket is allocated space for exactly 4 keys. As keys are added to the table, it can happen that a given bucket already has 4 keys when a new key has to be added to this bucket. The possible options are:

- 1. Least Recently Used (LRU) Hash Table. One of the existing keys in the bucket is deleted and the new key is added in its place. The number of keys in each bucket never grows bigger than 4. The logic to pick the key to be dropped from the bucket is LRU. The hash table lookup operation maintains the order in which the keys in the same bucket are hit, so every time a key is hit, it becomes the new Most Recently Used (MRU) key, i.e. the last candidate for drop. When a key is added to the bucket, it also becomes the new MRU key. When a key needs to be picked and dropped, the first candidate for drop, i.e. the current LRU key, is always picked. The LRU logic requires maintaining specific data structures per each bucket.
- 2. **Extendible Bucket Hash Table.** The bucket is extended with space for 4 more keys. This is done by allocating additional memory at table initialization time, which is used to create a pool of free keys (the size of this pool is configurable and always a multiple of 4). On key add operation, the allocation of a group of 4 keys only happens successfully within the limit of free keys, otherwise the key add operation fails. On key delete operation, a group of 4 keys is freed back to the pool of free keys when the key to be deleted is the only key that was used within its group of 4 keys at that time. On key lookup operation, if the current bucket is in extended state and a match is not found in the first group of 4 keys, the search continues beyond the first group of 4 keys, potentially until all keys in this bucket are examined. The extendible bucket logic requires maintaining specific data structures per table and per each bucket.

Table 23 Configuration Parameters Specific to Extendible Bucket Hash Table

#	Parameter	Details
1	Number of additional keys	Needs to be a power of two, at least equal to 4.

Signature Computation The possible options for key signature computation are:

Pre-computed key signature. The key lookup operation is split between two CPU cores.
 The first CPU core (typically the CPU core that performs packet RX) extracts the key from the input packet, computes the key signature and saves both the key and the key signature in the packet buffer as packet meta-data. The second CPU core reads both

- the key and the key signature from the packet meta-data and performs the bucket search step of the key lookup operation.
- 2. **Key signature computed on lookup ("do-sig" version).** The same CPU core reads the key from the packet meta-data, uses it to compute the key signature and also performs the bucket search step of the key lookup operation.

Table 24 Configuration Parameters Specific to Pre-computed Key Signature Hash Table

#	Parameter	Details
1	Signature	Offset of the pre-computed key signature within the packet
	offset	meta-data.

Key Size Optimized Hash Tables For specific key sizes, the data structures and algorithm of key lookup operation can be specially handcrafted for further performance improvements, so following options are possible:

- 1. Implementation supporting configurable key size.
- 2. **Implementation supporting a single key size.** Typical key sizes are 8 bytes and 16 bytes.

Bucket Search Logic for Configurable Key Size Hash Tables

The performance of the bucket search logic is one of the main factors influencing the performance of the key lookup operation. The data structures and algorithm are designed to make the best use of Intel CPU architecture resources like: cache memory space, cache memory bandwidth, external memory bandwidth, multiple execution units working in parallel, out of order instruction execution, special CPU instructions, etc.

The bucket search logic handles multiple input packets in parallel. It is built as a pipeline of several stages (3 or 4), with each pipeline stage handling two different packets from the burst of input packets. On each pipeline iteration, the packets are pushed to the next pipeline stage: for the 4-stage pipeline, two packets (that just completed stage 3) exit the pipeline, two packets (that just completed stage 2) are now executing stage 3, two packets (that just completed stage 1) are now executing stage 2, two packets (that just completed stage 0) are now executing stage 1 and two packets (next two packets to read from the burst of input packets) are entering the pipeline to execute stage 0. The pipeline iterations continue until all packets from the burst of input packets execute the last stage of the pipeline.

The bucket search logic is broken into pipeline stages at the boundary of the next memory access. Each pipeline stage uses data structures that are stored (with high probability) into the L1 or L2 cache memory of the current CPU core and breaks just before the next memory access required by the algorithm. The current pipeline stage finalizes by prefetching the data structures required by the next pipeline stage, so given enough time for the prefetch to complete, when the next pipeline stage eventually gets executed for the same packets, it will read the data structures it needs from L1 or L2 cache memory and thus avoid the significant penalty incurred by L2 or L3 cache memory miss.

By prefetching the data structures required by the next pipeline stage in advance (before they are used) and switching to executing another pipeline stage for different packets, the number of L2 or L3 cache memory misses is greatly reduced, hence one of the main reasons for improved performance. This is because the cost of L2/L3 cache memory miss on memory read accesses is high, as usually due to data dependency between instructions, the CPU execution units have

to stall until the read operation is completed from L3 cache memory or external DRAM memory. By using prefetch instructions, the latency of memory read accesses is hidden, provided that it is preformed early enough before the respective data structure is actually used.

By splitting the processing into several stages that are executed on different packets (the packets from the input burst are interlaced), enough work is created to allow the prefetch instructions to complete successfully (before the prefetched data structures are actually accessed) and also the data dependency between instructions is loosened. For example, for the 4-stage pipeline, stage 0 is executed on packets 0 and 1 and then, before same packets 0 and 1 are used (i.e. before stage 1 is executed on packets 0 and 1), different packets are used: packets 2 and 3 (executing stage 1), packets 4 and 5 (executing stage 2) and packets 6 and 7 (executing stage 3). By executing useful work while the data structures are brought into the L1 or L2 cache memory, the latency of the read memory accesses is hidden. By increasing the gap between two consecutive accesses to the same data structure, the data dependency between instructions is loosened; this allows making the best use of the super-scalar and out-of-order execution CPU architecture, as the number of CPU core execution units that are active (rather than idle or stalled due to data dependency constraints between instructions) is maximized.

The bucket search logic is also implemented without using any branch instructions. This avoids the important cost associated with flushing the CPU core execution pipeline on every instance of branch misprediction.

Configurable Key Size Hash Table Figure 34, Table 25 and Table 26 detail the main data structures used to implement configurable key size hash tables (either LRU or extendable bucket, either with pre-computed signature or "do-sig"). Figure 34 Data Structures for Configurable Key Size Hash Tables

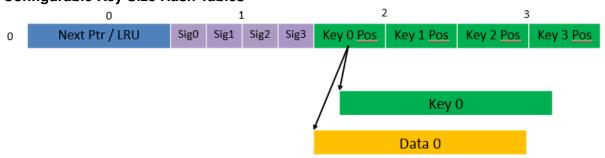


Table 25 Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

#	Array name	Number of	Entry size	Description
		entries	(bytes)	
1	Bucket array	n_buckets (configurable)	32	Buckets of the hash table.
2	Bucket extensions array	n_buckets_ext (configurable)	32	This array is only created for extendible bucket tables.
3	Key array	n_keys	key_size (configurable)	Keys added to the hash table.
4	Data array	n_keys	entry_size (configurable)	Key values (key data) associated with the hash table keys.

Table 26 Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

#	Field name	Field size (bytes)	Description
1	Next Ptr/LRU	8	For LRU tables, this fields represents the LRU list for the current bucket stored as array of 4 entries of 2 bytes each. Entry 0 stores the index (0 3) of the MRU key, while entry 3 stores the index of the LRU key. For extendible bucket tables, this field represents the next pointer (i.e. the pointer to the next group of 4 keys linked to the current bucket). The next pointer is not NULL if the bucket is currently extended or NULL otherwise. To help the branchless implementation, bit 0 (least significant bit) of this field is set to 1 if the next pointer is not NULL and to 0 otherwise.
2	Sig[0 3]	4 x 2	If key X (X = 0 3) is valid, then sig X bits 15 1 store the most significant 15 bits of key X signature and sig X bit 0 is set to 1. If key X is not valid, then sig X is set to zero.
3	Key Pos [0 3]	4 x 4	If key X is valid (X = 0 3), then Key Pos X represents the index into the key array where key X is stored, as well as the index into the data array where the value associated with key X is stored. If key X is not valid, then the value of Key Pos X is undefined.

Figure 35 and Table 27 detail the bucket search pipeline stages (either LRU or extendable bucket, either with pre-computed signature or "do-sig"). For each pipeline stage, the described operations are applied to each of the two packets handled by that stage. **Figure 35 Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash Tables)**

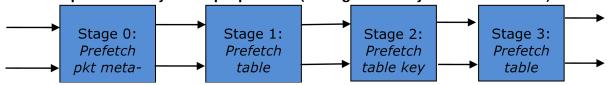


Table 27 Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash Tables)

#	Stage name	Description
0	Prefetch packet meta-data	Select next two packets from the burst of input packets. Prefetch packet meta-data containing the key and key signature.
1	Prefetch table bucket	Read the key signature from the packet meta-data (for extendable bucket hash tables) or read the key from the packet meta-data and compute key signature (for LRU tables). Identify the bucket ID using the key signature. Set bit 0 of the signature to 1 (to match only signatures of valid keys from the table). Prefetch the bucket.
2	Prefetch table key	Read the key signatures from the bucket. Compare the signature of the input key against the 4 key signatures from the packet. As result, the following is obtained: match = equal to TRUE if there was at least one signature match and to FALSE in the case of no signature match; match_many = equal to TRUE is there were more than one signature matches (can be up to 4 signature matches in the worst case scenario) and to FALSE otherwise; match_pos = the index of the first key that produced signature match (only valid if match is true). For extendable bucket hash tables only, set match_many to TRUE if next pointer is valid. Prefetch the bucket key indicated by match_pos (even if match_pos does not point to valid key valid).
3	Prefetch table data	Read the bucket key indicated by <i>match_pos</i> . Compare the bucket key
4.24. Packet Framework		against the input key. Asse- sult, the following is obtained: match_key = equal to TRUE

Additional notes:

- 1. The pipelined version of the bucket search algorithm is executed only if there are at least 7 packets in the burst of input packets. If there are less than 7 packets in the burst of input packets, a non-optimized implementation of the bucket search algorithm is executed.
- 2. Once the pipelined version of the bucket search algorithm has been executed for all the packets in the burst of input packets, the non-optimized implementation of the bucket search algorithm is also executed for any packets that did not produce a lookup hit, but have the *match_many* flag set. As result of executing the non-optimized version, some of these packets may produce a lookup hit or lookup miss. This does not impact the performance of the key lookup operation, as the probability of matching more than one signature in the same group of 4 keys or of having the bucket in extended state (for extendable bucket hash tables only) is relatively small.

Key Signature Comparison Logic

The key signature comparison logic is described in Table 28. **Table 28 Lookup Tables for Match_Many and Match_Pos**

#	mask	match (1 bit)	match_many (1 bit)	match_pos (2 bits)
0	0000	0	0	00
1	0001	1	0	00
2	0010	1	0	01
3	0011	1	1	00
4	0100	1	0	10
5	0101	1	1	00
6	0110	1	1	01
7	0111	1	1	00
8	1000	1	0	11
9	1001	1	1	00
10	1010	1	1	01
11	1011	1	1	00
12	1100	1	1	10
13	1101	1	1	00
14	1110	1	1	01
15	1111	1	1	00

The input mask hash bit X (X = 0 .. 3) set to 1 if input signature is equal to bucket signature X and set to 0 otherwise. The outputs match, $match_many$ and $match_pos$ are 1 bit, 1 bit and 2 bits in size respectively and their meaning has been explained above.

As displayed in Table 29, the lookup tables for *match* and *match_many* can be collapsed into a single 32-bit value and the lookup table for *match_pos* can be collapsed into a 64-bit value. Given the input *mask*, the values for *match, match_many* and *match_pos* can be obtained by indexing their respective bit array to extract 1 bit, 1 bit and 2 bits respectively with branchless logic. **Table 29 Collapsed Lookup Tables for Match, Match Many and Match Pos**

	Bit array	Hexadecimal value
match	1111_1111_11110	0xFFFELLU
match_many	1111_1110_1110_1000	0xFEE8LLU
match_pos	0001_0010_0001_00110001_0010_0001_0000	0x12131210LLU

The pseudo-code is displayed in Figure 36. Figure 36 Pseudo-code for match, match_many and match_pos

```
match = (0xFFFELLU >> mask) & 1;

match_many = (0xFEE8LLU >> mask) & 1;

match_pos = (0x12131210LLU >> (mask << 1)) & 3;
```

Single Key Size Hash Tables Figure 37, Figure 38, Table 30 and 31 detail the main data structures used to implement 8-byte and 16-byte key hash tables (either LRU or extendable bucket, either with pre-computed signature or "do-sig"). **Figure 37 Data Structures for 8-byte Key Hash Tables**

Figure 38 Data Structures for 16-byte Key Hash Tables

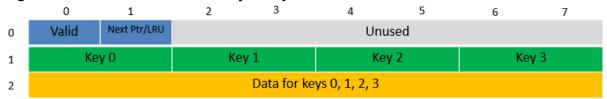


Table 30 Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash Tables

#	Array name	Number of entries	Entry size (bytes)	Description
1	Bucket array	n_buckets (con- figurable)	8-byte key size: 64 + 4 x en- try_size 16-byte key size: 128 + 4 x en-	Buckets of the hash table.
2	Bucket extensions array	n_buckets_ext (configurable)	try_size 8-byte key size: 64 + 4 x entry_size 16-byte key size: 128 + 4 x entry_size	This array is only created for extendible bucket tables.

Table 31 Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

#	Field name	Field size (bytes)	Description
1	Valid	8	Bit X (X = 0 3) is set to 1 if key X is valid or to 0 otherwise. Bit 4 is only used for extendible bucket tables to help with the implementation of the branchless logic. In this case, bit 4 is set to 1 if next pointer is valid (not NULL) or to 0 otherwise.
2	Next Ptr/LRU	8	For LRU tables, this fields represents the LRU list for the current bucket stored as array of 4 entries of 2 bytes each. Entry 0 stores the index (03) of the MRU key, while entry 3 stores the index of the LRU key. For extendible bucket tables, this field represents the next pointer (i.e. the pointer to the next group of 4 keys linked to the current bucket). The next pointer is not NULL if the bucket is currently extended or NULL otherwise.
3	Key [0 3]	4 x key_size	Full keys.
4	Data [0 3]	4 x entry_size	Full key values (key data) associated with keys 0 3.

and detail the bucket search pipeline used to implement 8-byte and 16-byte key hash tables (either LRU or extendable bucket, either with pre-computed signature or "do-sig"). For each pipeline stage, the described operations are applied to each of the two packets handled by that stage. Figure 39 Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash Tables)

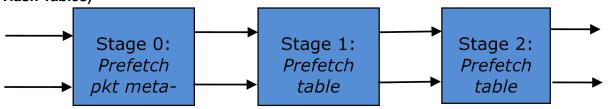


Table 32 Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash

Tables)

#	Stage name	Description
0	Prefetch packet meta-data	 Select next two packets from the burst of input packets. Prefetch packet meta- data containing the key and key signature.
1	Prefetch table bucket	1. Read the key signature from the packet meta-data (for extendable bucket hash tables) or read the key from the packet meta-data and compute key signature (for LRU tables). 2. Identify the bucket ID using the key signature. 3. Prefetch the bucket.
2	Prefetch table data	 Read the bucket. Compare all 4 bucket keys against the input key. Report input key as lookup hit only when a match is identified (more than one key match is not possible) For LRU tables only, use branchless logic to update the bucket LRU list (the current key becomes the new MRU) only on lookup hit. Prefetch the key value (key data) associated with the matched key (to avoid branches, this is done on both lookup hit and miss).

Additional notes:

1. The pipelined version of the bucket search algorithm is executed only if there are at least 5 packets in the burst of input packets. If there are less than 5 packets in the burst of input packets, a non-optimized implementation of the bucket search algorithm is executed.

2. For extendible bucket hash tables only, once the pipelined version of the bucket search algorithm has been executed for all the packets in the burst of input packets, the non-optimized implementation of the bucket search algorithm is also executed for any packets that did not produce a lookup hit, but have the bucket in extended state. As result of executing the non-optimized version, some of these packets may produce a lookup hit or lookup miss. This does not impact the performance of the key lookup operation, as the probability of having the bucket in extended state is relatively small.

4.24.5 Pipeline Library Design

A pipeline is defined by:

- 1. The set of input ports;
- 2. The set of output ports;
- 3. The set of tables;
- 4. The set of actions.

The input ports are connected with the output ports through tree-like topologies of interconnected tables. The table entries contain the actions defining the operations to be executed on the input packets and the packet flow within the pipeline.

Connectivity of Ports and Tables

To avoid any dependencies on the order in which pipeline elements are created, the connectivity of pipeline elements is defined after all the pipeline input ports, output ports and tables have been created.

General connectivity rules:

- 1. Each input port is connected to a single table. No input port should be left unconnected;
- 2. The table connectivity to other tables or to output ports is regulated by the next hop actions of each table entry and the default table entry. The table connectivity is fluid, as the table entries and the default table entry can be updated during run-time.
 - A table can have multiple entries (including the default entry) connected to the same output port. A table can have different entries connected to different output ports.
 Different tables can have entries (including default table entry) connected to the same output port.
 - A table can have multiple entries (including the default entry) connected to another table, in which case all these entries have to point to the same table. This constraint is enforced by the API and prevents tree-like topologies from being created (allowing table chaining only), with the purpose of simplifying the implementation of the pipeline run-time execution engine.

Port Actions

Port Action Handler

An action handler can be assigned to each input/output port to define actions to be executed on each input packet that is received by the port. Defining the action handler for a specific input/output port is optional (i.e. the action handler can be disabled).

For input ports, the action handler is executed after RX function. For output ports, the action handler is executed before the TX function.

The action handler can decide to drop packets.

Table Actions

Table Action Handler

An action handler to be executed on each input packet can be assigned to each table. Defining the action handler for a specific table is optional (i.e. the action handler can be disabled).

The action handler is executed after the table lookup operation is performed and the table entry associated with each input packet is identified. The action handler can only handle the user-defined actions, while the reserved actions (e.g. the next hop actions) are handled by the Packet Framework. The action handler can decide to drop the input packet.

Reserved Actions

The reserved actions are handled directly by the Packet Framework without the user being able to change their meaning through the table action handler configuration. A special category of the reserved actions is represented by the next hop actions, which regulate the packet flow between input ports, tables and output ports through the pipeline. Table 33 lists the next hop actions. **Table 33 Next Hop Actions (Reserved)**

#	Next hop	Description
	action	
1	Drop	Drop the current packet.
2	Send to	Send the current packet to specified output port. The output port ID is
	output port	metadata stored in the same table entry.
3	Send to	Send the current packet to specified table. The table ID is metadata
	table	stored in the same table entry.

User Actions

For each table, the meaning of user actions is defined through the configuration of the table action handler. Different tables can be configured with different action handlers, therefore the meaning of the user actions and their associated meta-data is private to each table. Within the same table, all the table entries (including the table default entry) share the same definition for the user actions and their associated meta-data, with each table entry having its own set of enabled user actions and its own copy of the action meta-data. Table 34 contains a non-exhaustive list of user action examples. **Table 34 User Action Examples**

#	User action	Description
1	Metering	Per flow traffic metering using the srTCM and trTCM algorithms.
2	Statistics	Update the statistics counters maintained per flow.
3	App ID	Per flow state machine fed by variable length sequence of packets at the flow initialization with the purpose of identifying the traffic type and application.
4	Push/pop labels	Push/pop VLAN/MPLS labels to/from the current packet.
5	Network	Translate between the internal (LAN) and external (WAN) IP
	Address	destination/source address and/or L4 protocol destination/source
	Translation (NAT)	port.
6	TTL update	Decrement IP TTL and, in case of IPv4 packets, update the IP
		checksum.

4.24.6 Multicore Scaling

A complex application is typically split across multiple cores, with cores communicating through SW queues. There is usually a performance limit on the number of table lookups and actions that can be fitted on the same CPU core due to HW constraints like: available CPU cycles, cache memory size, cache transfer BW, memory transfer BW, etc.

As the application is split across multiple CPU cores, the Packet Framework facilitates the creation of several pipelines, the assignment of each such pipeline to a different CPU core and the interconnection of all CPU core-level pipelines into a single application-level complex pipeline. For example, if CPU core A is assigned to run pipeline P1 and CPU core B pipeline P2, then the interconnection of P1 with P2 could be achieved by having the same set of SW queues act like output ports for P1 and input ports for P2.

This approach enables the application development using the pipeline, run-to-completion (clustered) or hybrid (mixed) models.

It is allowed for the same core to run several pipelines, but it is not allowed for several cores to run the same pipeline.

Shared Data Structures

The threads performing table lookup are actually table writers rather than just readers. Even if the specific table lookup algorithm is thread-safe for multiple readers (e. g. read-only access of the search algorithm data structures is enough to conduct the lookup operation), once the table entry for the current packet is identified, the thread is typically expected to update the action meta-data stored in the table entry (e.g. increment the counter tracking the number of packets that hit this table entry), and thus modify the table entry. During the time this thread is accessing this table entry (either writing or reading; duration is application specific), for data consistency reasons, no other threads (threads performing table lookup or entry add/delete operations) are allowed to modify this table entry.

Mechanisms to share the same table between multiple threads:

1. **Multiple writer threads.** Threads need to use synchronization primitives like semaphores (distinct semaphore per table entry) or atomic instructions. The cost of semaphores is usually high, even when the semaphore is free. The cost of atomic instructions is normally higher than the cost of regular instructions.

- 2. Multiple writer threads, with single thread performing table lookup operations and multiple threads performing table entry add/delete operations. The threads performing table entry add/delete operations send table update requests to the reader (typically through message passing queues), which does the actual table updates and then sends the response back to the request initiator.
- 3. Single writer thread performing table entry add/delete operations and multiple reader threads that performtable lookup operations with read-only access to the table entries. The reader threads use the main table copy while the writer is updating the mirror copy. Once the writer update is done, the writer can signal to the readers and busy wait until all readers swaps between the mirror copy (which now becomes the main copy) and the mirror copy (which now becomes the main copy).

4.24.7 Interfacing with Accelerators

The presence of accelerators is usually detected during the initialization phase by inspecting the HW devices that are part of the system (e.g. by PCI bus enumeration). Typical devices with acceleration capabilities are:

- Inline accelerators: NICs, switches, FPGAs, etc;
- · Look-aside accelerators: chipsets, FPGAs, etc.

Usually, to support a specific functional block, specific implementation of Packet Framework tables and/or ports and/or actions has to be provided for each accelerator, with all the implementations sharing the same API: pure SW implementation (no acceleration), implementation using accelerator A, implementation using accelerator B, etc. The selection between these implementations could be done at build time or at run-time (recommended), based on which accelerators are present in the system, with no application changes required.

4.25 Vhost Library

The vhost library implements a user space vhost driver. It supports both vhost-cuse (cuse: user space character device) and vhost-user(user space socket server). It also creates, manages and destroys vhost devices for corresponding virtio devices in the guest. Vhost supported vSwitch could register callbacks to this library, which will be called when a vhost device is activated or deactivated by guest virtual machine.

4.25.1 Vhost API Overview

· Vhost driver registration

rte_vhost_driver_register registers the vhost driver into the system. For vhost-cuse, character device file will be created under the /dev directory. Character device name is specified as the parameter. For vhost-user, a unix domain socket server will be created with the parameter as the local socket path.

Vhost session start

rte_vhost_driver_session_start starts the vhost session loop. Vhost session is an infinite blocking loop. Put the session in a dedicate DPDK thread.

Callback register

Vhost supported vSwitch could call rte_vhost_driver_callback_register to register two callbacks, new_destory and destroy_device. When virtio device is activated or deactivated by guest virtual machine, the callback will be called, then vSwitch could put the device onto data core or remove the device from data core by setting or unsetting VIRTIO_DEV_RUNNING on the device flags.

· Read/write packets from/to guest virtual machine

rte_vhost_enqueue_burst transmit host packets to guest. rte vhost dequeue burst receives packets from guest.

• Feature enable/disable

Now one negotiate-able feature in vhost is merge-able. vSwitch could enable/disable this feature for performance consideration.

4.25.2 Vhost Implementation

Vhost cuse implementation

When vSwitch registers the vhost driver, it will register a cuse device driver into the system and creates a character device file. This cuse driver will receive vhost open/release/IOCTL message from QEMU simulator.

When the open call is received, vhost driver will create a vhost device for the virtio device in the guest.

When VHOST_SET_MEM_TABLE IOCTL is received, vhost searches the memory region to find the starting user space virtual address that maps the memory of guest virtual machine. Through this virtual address and the QEMU pid, vhost could find the file QEMU uses to map the guest memory. Vhost maps this file into its address space, in this way vhost could fully access the guest physical memory, which means vhost could access the shared virtio ring and the guest physical address specified in the entry of the ring.

The guest virtual machine tells the vhost whether the virtio device is ready for processing or is de-activated through VHOST_NET_SET_BACKEND message. The registered callback from vSwitch will be called.

When the release call is released, vhost will destroy the device.

Vhost user implementation

When vSwitch registers a vhost driver, it will create a unix domain socket server into the system. This server will listen for a connection and process the vhost message from QEMU simulator.

When there is a new socket connection, it means a new virtio device has been created in the guest virtual machine, and the vhost driver will create a vhost device for this virtio device.

For messages with a file descriptor, the file descriptor could be directly used in the vhost process as it is already installed by unix domain socket.

- VHOST_SET_MEM_TABLE
- · VHOST SET VRING KICK

- VHOST_SET_VRING_CALL
- VHOST_SET_LOG_FD
- VHOST_SET_VRING_ERR

For VHOST_SET_MEM_TABLE message, QEMU will send us information for each memory region and its file descriptor in the ancillary data of the message. The fd is used to map that region.

There is no VHOST_NET_SET_BACKEND message as in vhost cuse to signal us whether virtio device is ready or should be stopped. VHOST_SET_VRING_KICK is used as the signal to put the vhost device onto data plane. VHOST_GET_VRING_BASE is used as the signal to remove vhost device from data plane.

When the socket connection is closed, vhost will destroy the device.

4.25.3 Vhost supported vSwitch reference

For more vhost details and how to support vhost in vSwitch, please refer to vhost example in the DPDK Sample Applications Guide.

4.26 Port Hotplug Framework

The Port Hotplug Framework provides DPDK applications with the ability to attach and detach ports at runtime. Because the framework depends on PMD implementation, the ports that PMDs cannot handle are out of scope of this framework. Furthermore, after detaching a port from a DPDK application, the framework doesn't provide a way for removing the devices from the system. For the ports backed by a physical NIC, the kernel will need to support PCI Hotplug feature.

4.26.1 Overview

The basic requirements of the Port Hotplug Framework are:

- DPDK applications that use the Port Hotplug Framework must manage their own ports.
 - The Port Hotplug Framework is implemented to allow DPDK applications to manage ports. For example, when DPDK applications call the port attach function, the attached port number is returned. DPDK applications can also detach the port by port number.
- Kernel support is needed for attaching or detaching physical device ports.
 - To attach new physical device ports, the device will be recognized by userspace driver I/O framework in kernel at first. Then DPDK applications can call the Port Hotplug functions to attach the ports. For detaching, steps are vice versa.
- Before detaching, they must be stopped and closed.
 - DPDK applications must call "rte_eth_dev_stop()" and "rte_eth_dev_close()" APIs before detaching ports. These functions will start finalization sequence of the PMDs.
- The framework doesn't affect legacy DPDK applications behavior.

If the Port Hotplug functions aren't called, all legacy DPDK apps can still work without modifications.

4.26.2 Port Hotplug API overview

Attaching a port

"rte_eth_dev_attach()" API attaches a port to DPDK application, and returns the attached port number. Before calling the API, the device should be recognized by an userspace driver I/O framework. The API receives a pci address like "0000:01:00.0" or a virtual device name like "eth_pcap0,iface=eth0". In the case of virtual device name, the format is the same as the general "-vdev" option of DPDK.

Detaching a port

"rte_eth_dev_detach()" API detaches a port from DPDK application, and returns a pci address of the detached device or a virtual device name of the device.

4.26.3 Reference

"testpmd" supports the Port Hotplug Framework.

4.26.4 Limitations

- · The Port Hotplug APIs are not thread safe.
- The framework can only be enabled with Linux. BSD is not supported.
- To detach a port, the port should be backed by a device that igb_uio manages. VFIO is not supported.
- Not all PMDs support detaching feature. To know whether a PMD can support detaching, search for the "RTE_PCI_DRV_DETACHABLE" flag in PMD implementation. If the flag is defined in the PMD, detaching is supported.

Part 2: Development Environment

4.27 Source Organization

This section describes the organization of sources in the DPDK framework.

4.27.1 Makefiles and Config

Note: In the following descriptions, RTE_SDK is the environment variable that points to the base directory into which the tarball was extracted. See *Useful Variables Provided by the Build System* for descriptions of other variables.

Makefiles that are provided by the DPDK libraries and applications are located in \$(RTE_SDK)/mk.

Config templates are located in \$(RTE_SDK)/config. The templates describe the options that are enabled for each target. The config file also contains items that can be enabled and disabled for many of the DPDK libraries, including debug options. The user should look at the config file and become familiar with the options. The config file is also used to create a header file, which will be located in the new build directory.

4.27.2 Libraries

Libraries are located in subdirectories of \$(RTE_SDK)/lib. By convention, we call a library any code that provides an API to an application. Typically, it generates an archive file (.a), but a kernel module should also go in the same directory.

The lib directory contains:

```
+-- librte_cmdline  # command line interface helper
+-- librte_distributor  # packet distributor
+-- librte_eal  # environment abstraction layer
+-- librte_ether  # generic interface to poll mode driver
+-- librte_hash  # hash library
+-- librte_ip_frag  # IP fragmentation library
+-- librte_ivshmem  # QEMU IVSHMEM library
+-- librte_kvargs  # argument parsing library
+-- librte_lpm  # longest prefix match library
+-- librte_malloc  # malloc-like functions
+-- librte_mempool  # memory pool manager (fixedsized objects)
+-- librte_meter  # QoS metering library
+-- librte_meter  # various IP-related headers
+-- librte_pmd_bond  # bonding poll mode driver
+-- librte_pmd_fm10k  # Host interface PMD driver for FM10000 Series
+-- librte_pmd_ixgbe  # 10GbE poll mode driver
+-- librte_pmd_id0e  # 49GbE poll mode driver
+-- librte_pmd_pcap  # PCAP poll mode driver
+-- librte_pmd_ring  # ring poll mode driver
+-- librte_pmd_ring  # ring poll mode driver
+-- librte_pmd_virtio  # virtio poll mode driver
+-- librte_pmd_virtio  # vortio poll mode driver
+-- librte_pmd_virtio  # virtio poll mode driver
+-- librte_pmd_virtio  # virtio poll mode driver
+-- librte_pmd_xenvirt  # Xen virtio poll mode driver
+-- librte_sched  # QoS scheduler and dropper library
+-- librte_timer  # timer library
```

4.27.3 Applications

Applications are sources that contain a main() function. They are located in the \$(RTE SDK)/app and \$(RTE SDK)/examples directories.

The app directory contains sample applications that are used to test the DPDK (autotests). The examples directory contains sample applications that show how libraries can be used.

```
app
+-- chkincs  # test prog to check include depends
+-- test  # autotests, to validate DPDK features
-- test-pmd  # test and bench poll mode driver examples
```

Note: The actual examples directory may contain additional sample applications to those shown above. Check the latest DPDK source files for details.

4.28 Development Kit Build System

The DPDK requires a build system for compilation activities and so on. This section describes the constraints and the mechanisms used in the DPDK framework.

There are two use-cases for the framework:

- Compilation of the DPDK libraries and sample applications; the framework generates specific binary libraries, include files and sample applications
- Compilation of an external application or library, using an installed binary DPDK

4.28.1 Building the Development Kit Binary

The following provides details on how to build the DPDK binary.

Build Directory Concept

After installation, a build directory structure is created. Each build directory contains include files, libraries, and applications:

```
i686-native-linuxapp-icc
~/DEV/DPDK$ ls i686-native-linuxapp-gcc
app build hostapp include kmod lib Makefile
~/DEV/DPDK$ ls i686-native-linuxapp-gcc/app/
cmdline test dump cfg
                        test
                                     testpmd
cmdline_test.map
                     dump cfg.map
                                     test.map
        testpmd.map
~/DEV/DPDK$ ls i686-native-linuxapp-gcc/lib/
libethdev.a librte_hash.a librte_mbuf.a librte_pmd_ixgbe.a
librte cmdline.a librte lpm.a librte mempool.a librte ring.a
librte eal.a librte malloc.a librte pmd e1000.a librte timer.a
~/DEV/DPDK$ ls i686-native-linuxapp-gcc/include/
arch
                           rte cpuflags.h
                                                rte memcpy.h
cmdline cirbuf.h
                           rte cycles.h
                                                rte memory.h
cmdline.h
                                              rte mempool.h
                         rte debug.h
cmdline_parse_etheraddr.h rte_eal.h
                                               rte_memzone.h
                         rte_errno.h
cmdline_parse.h
                                               rte_pci_dev_ids.h
                       rte_ethdev.h
cmdline_parse_ipaddr.h
                                                rte_pci.h
cmdline_parse_num.h
cmdline_parse_portlist.h
rte_ether.h
rte_fbk_hash.h
                                                rte_per_lcore.h
                                                rte prefetch.h
cmdline parse_string.h
                          rte hash crc.h
                                                rte random.h
cmdline rdline.h
                          rte hash.h
                                                rte ring.h
cmdline socket.h
                           rte interrupts.h
                                                rte rwlock.h
                           rte ip.h
cmdline_vt100.h
                                                rte_sctp.h
exec-env
                          rte jhash.h
                                                rte spinlock.h
                          rte_launch.h
rte_alarm.h
                                               rte_string_fns.h
                          rte lcore.h
rte atomic.h
                                               rte tailq.h
rte branch prediction.h
                          rte log.h
                                               rte tcp.h
rte byteorder.h
                           rte lpm.h
                                                rte timer.h
rte common.h
                           rte malloc.h
                                                rte udp.h
rte config.h
                           rte mbuf.h
```

A build directory is specific to a configuration that includes architecture + execution environment + toolchain. It is possible to have several build directories sharing the same sources with different configurations.

For instance, to create a new build directory called my_sdk_build_dir using the default configuration template config/defconfig x86 64-linuxapp, we use:

```
cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc 0=my_sdk_build_dir
```

This creates a new my_sdk_build_dir directory. After that, we can compile by doing:

```
cd my_sdk_build_dir
make
```

which is equivalent to:

```
make 0=my sdk build dir
```

The content of the my_sdk_build_dir is then:

```
# used configuration
-- .config
-- Makefile
                                  # wrapper that calls head Makefile
                                  # with $PWD as build directory
                                         #All temporary files used during build
    -- build
                                         # process, including . o, .d, and .cmd files.
   +--app
                                         # For libraries, we have the .a file.
          +-- test
          +-- test.o
                                         # For applications, we have the elf file.
          -- ...
        +-- lib
           +-- librte_eal
               -- ...
           +-- librte mempool
            | +-- mempool-file1.o
              +-- .mempool-file1.o.cmd
              +-- .mempool-file1.o.d
              +--
                  mempool-file2.o
              +-- .mempool-file2.o.cmd
              +-- .mempool-file2.o.d
              -- mempool.a
           1
-- include
                         # All include files installed by libraries
   +-- librte mempool.h # and applications are located in this
   +-- rte eal.h # directory. The installed files can depend
   +-- rte_spinlock.h # on configuration if needed (environment,
   +-- rte_atomic.h # architecture, ..)
   -- \*.h ...
                         # all compiled libraries are copied in this
-- lib
   +-- librte eal.a
                         # directory
   +-- librte_mempool.a
   -- \*.a ...
                         # All compiled applications are installed
-- app
+ --test
                         # here. It includes the binary in elf format
```

Refer to *Development Kit Root Makefile Help* for details about make commands that can be used from the root of DPDK.

4.28.2 Building External Applications

Since DPDK is in essence a development kit, the first objective of end users will be to create an application using this SDK. To compile an application, the user must set the RTE_SDK and RTE_TARGET environment variables.

```
export RTE_SDK=/opt/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc
cd /path/to/my_app
```

For a new application, the user must create their own Makefile that includes some .mk files, such as \${RTE_SDK}/mk/rte.vars.mk, and \${RTE_SDK}/mk/ rte.app.mk. This is described in *Building Your Own Application*.

Depending on the chosen target (architecture, machine, executive environment, toolchain) defined in the Makefile or as an environment variable, the applications and libraries will compile using the appropriate .h files and will link with the appropriate .a files. These files are located in \${RTE_SDK}/arch-machine-execenv-toolchain, which is referenced internally by

```
${RTE_BIN_SDK}.
```

To compile their application, the user just has to call make. The compilation result will be located in /path/to/my_app/build directory.

Sample applications are provided in the examples directory.

4.28.3 Makefile Description

General Rules For DPDK Makefiles

In the DPDK, Makefiles always follow the same scheme:

- 1. Include \$(RTE_SDK)/mk/rte.vars.mk at the beginning.
- 2. Define specific variables for RTE build system.
- Include a specific \$(RTE_SDK)/mk/rte.XYZ.mk, where XYZ can be app, lib, extapp, extlib, obj, gnuconfigure, and so on, depending on what kind of object you want to build. See Makefile Types below.
- 4. Include user-defined rules and variables.

The following is a very simple example of an external application Makefile:

```
include $(RTE_SDK)/mk/rte.vars.mk

# binary name
APP = helloworld

# all source are stored in SRCS-y
SRCS-y := main.c

CFLAGS += -03
CFLAGS += $(WERROR_FLAGS)

include $(RTE_SDK)/mk/rte.extapp.mk
```

Makefile Types

Depending on the .mk file which is included at the end of the user Makefile, the Makefile will have a different role. Note that it is not possible to build a library and an application in the same Makefile. For that, the user must create two separate Makefiles, possibly in two different directories.

In any case, the rte.vars.mk file must be included in the user Makefile as soon as possible.

Application

These Makefiles generate a binary application.

- rte.app.mk: Application in the development kit framework
- rte.extapp.mk: External application
- rte.hostapp.mk: Host application in the development kit framework

Library

Generate a .a library.

- rte.lib.mk: Library in the development kit framework
- · rte.extlib.mk: external library
- rte.hostlib.mk: host library in the development kit framework

Install

 rte.install.mk: Does not build anything, it is only used to create links or copy files to the installation directory. This is useful for including files in the development kit framework.

Kernel Module

• rte.module.mk: Build a kernel module in the development kit framework.

Objects

- rte.obj.mk: Object aggregation (merge several .o in one) in the development kit framework.
- rte.extobj.mk: Object aggregation (merge several .o in one) outside the development kit framework.

Misc

- rte.doc.mk: Documentation in the development kit framework
- rte.gnuconfigure.mk: Build an application that is configure-based.
- rte.subdir.mk: Build several directories in the development kit framework.

Useful Variables Provided by the Build System

- RTE_SDK: The absolute path to the DPDK sources. When compiling the development kit, this variable is automatically set by the framework. It has to be defined by the user as an environment variable if compiling an external application.
- RTE_SRCDIR: The path to the root of the sources. When compiling the development kit, RTE_SRCDIR = RTE_SDK. When compiling an external application, the variable points to the root of external application sources.
- RTE_OUTPUT: The path to which output files are written. Typically, it is \$(RTE_SRCDIR)/build, but it can be overriden by the O= option in the make command line.

- RTE_TARGET: A string identifying the target for which we are building. The format is arch-machine-execenv-toolchain. When compiling the SDK, the target is deduced by the build system from the configuration (.config). When building an external application, it must be specified by the user in the Makefile or as an environment variable.
- RTE_SDK_BIN: References \$(RTE_SDK)/\$(RTE_TARGET).
- RTE_ARCH: Defines the architecture (i686, x86_64). It is the same value as CON-FIG_RTE_ARCH but without the double-quotes around the string.
- RTE_MACHINE: Defines the machine. It is the same value as CONFIG_RTE_MACHINE but without the double-quotes around the string.
- RTE_TOOLCHAIN: Defines the toolchain (gcc , icc). It is the same value as CON-FIG_RTE_TOOLCHAIN but without the double-quotes around the string.
- RTE_EXEC_ENV: Defines the executive environment (linuxapp). It is the same value as CONFIG_RTE_EXEC_ENV but without the double-quotes around the string.
- RTE_KERNELDIR: This variable contains the absolute path to the kernel sources that will be used to compile the kernel modules. The kernel headers must be the same as the ones that will be used on the target machine (the machine that will run the application). By default, the variable is set to /lib/modules/\$(shell uname -r)/build, which is correct when the target machine is also the build machine.

Variables that Can be Set/Overridden in a Makefile Only

- VPATH: The path list that the build system will search for sources. By default, RTE SRCDIR will be included in VPATH.
- CFLAGS: Flags to use for C compilation. The user should use += to append data in this variable.
- LDFLAGS: Flags to use for linking. The user should use += to append data in this variable.
- ASFLAGS: Flags to use for assembly. The user should use += to append data in this variable.
- CPPFLAGS: Flags to use to give flags to C preprocessor (only useful when assembling .S files). The user should use += to append data in this variable.
- LDLIBS: In an application, the list of libraries to link with (for example, -L /path/to/libfoo -lfoo). The user should use += to append data in this variable.
- SRC-y: A list of source files (.c, .S, or .o if the source is a binary) in case of application, library or object Makefiles. The sources must be available from VPATH.
- INSTALL-y-\$(INSTPATH): A list of files to be installed in \$(INSTPATH). The files must be available from VPATH and will be copied in \$(RTE_OUTPUT)/\$(INSTPATH). Can be used in almost any RTE Makefile.
- SYMLINK-y-\$(INSTPATH): A list of files to be installed in \$(INSTPATH). The files must be available from VPATH and will be linked (symbolically) in \$(RTE_OUTPUT)/\$(INSTPATH). This variable can be used in almost any DPDK Makefile.
- PREBUILD: A list of prerequisite actions to be taken before building. The user should use += to append data in this variable.

- POSTBUILD: A list of actions to be taken after the main build. The user should use += to append data in this variable.
- PREINSTALL: A list of prerequisite actions to be taken before installing. The user should use += to append data in this variable.
- POSTINSTALL: A list of actions to be taken after installing. The user should use += to append data in this variable.
- PRECLEAN: A list of prerequisite actions to be taken before cleaning. The user should use += to append data in this variable.
- POSTCLEAN: A list of actions to be taken after cleaning. The user should use += to append data in this variable.
- DEPDIR-y: Only used in the development kit framework to specify if the build of the current directory depends on build of another one. This is needed to support parallel builds correctly.

Variables that can be Set/Overridden by the User on the Command Line Only

Some variables can be used to configure the build system behavior. They are documented in Development Kit Root Makefile Help and External Application/Library Makefile Help

• WERROR_CFLAGS: By default, this is set to a specific value that depends on the compiler. Users are encouraged to use this variable as follows:

This avoids the use of different cases depending on the compiler (icc or gcc). Also, this variable can be overridden from the command line, which allows bypassing of the flags for testing purposes.

Variables that Can be Set/Overridden by the User in a Makefile or Command Line

- CFLAGS my file.o: Specific flags to add for C compilation of my file.c.
- LDFLAGS my app: Specific flags to add when linking my app.
- NO_AUTOLIBS: If set, the libraries provided by the framework will not be included in the LDLIBS variable automatically.
- EXTRA_CFLAGS: The content of this variable is appended after CFLAGS when compiling.
- EXTRA_LDFLAGS: The content of this variable is appended after LDFLAGS when linking.
- EXTRA_ASFLAGS: The content of this variable is appended after ASFLAGS when assembling.
- EXTRA_CPPFLAGS: The content of this variable is appended after CPPFLAGS when using a C preprocessor on assembly files.

4.29 Development Kit Root Makefile Help

The DPDK provides a root level Makefile with targets for configuration, building, cleaning, testing, installation and others. These targets are explained in the following sections.

4.29.1 Configuration Targets

The configuration target requires the name of the target, which is specified using T=mytarget and it is mandatory. The list of available targets are in \$(RTE_SDK)/config (remove the defconfig _ prefix).

Configuration targets also support the specification of the name of the output directory, using O=mybuilddir. This is an optional parameter, the default output directory is build.

Config

This will create a build directory, and generates a configuration from a template. A Makefile is also created in the new build directory.

Example:

```
make config 0=mybuild T=x86_64-native-linuxapp-gcc
```

4.29.2 Build Targets

Build targets support the optional specification of the name of the output directory, using O=mybuilddir. The default output directory is build.

all, build or just make

Build the DPDK in the output directory previously created by a make config.

Example:

```
make 0=mybuild
```

• clean

Clean all objects created using make build.

Example:

```
make clean 0=mybuild
```

• % sub

Build a subdirectory only, without managing dependencies on other directories.

Example:

```
make lib/librte eal sub O=mybuild
```

%_clean

Clean a subdirectory only.

Example:

```
make lib/librte_eal_clean O=mybuild
```

4.29.3 Install Targets

Install

Build the DPDK binary. Actually, this builds each supported target in a separate directory. The name of each directory is the name of the target. The name of the targets to install can be optionally specified using T=mytarget. The target name can contain wildcard * characters. The list of available targets are in \$(RTE_SDK)/config (remove the defconfig_prefix).

Example:

```
make install T=x86 64-*
```

Uninstall

Remove installed target directories.

4.29.4 Test Targets

test

Launch automatic tests for a build directory specified using O=mybuilddir. It is optional, the default output directory is build.

Example:

```
make test 0=mybuild
```

testall

Launch automatic tests for all installed target directories (after a make install). The name of the targets to test can be optionally specified using T=mytarget. The target name can contain wildcard (*) characters. The list of available targets are in \$(RTE_SDK)/config (remove the defconfig_prefix).

Examples:

```
make testall, make testall T=x86_64-*
```

4.29.5 Documentation Targets

doxydoc

Generate the Doxygen documentation (pdf only).

4.29.6 Deps Targets

· depdirs

This target is implicitly called by make config. Typically, there is no need for a user to call it, except if DEPDIRS-y variables have been updated in Makefiles. It will generate the file \$(RTE_OUTPUT)/.depdirs.

Example:

```
make depdirs O=mybuild
```

depgraph

This command generates a dot graph of dependencies. It can be displayed to debug circular dependency issues, or just to understand the dependencies.

Example:

```
make depgraph O=mybuild > /tmp/graph.dot && dotty /tmp/ graph.dot
```

4.29.7 Misc Targets

help

Show this help.

4.29.8 Other Useful Command-line Variables

The following variables can be specified on the command line:

• V=

Enable verbose build (show full compilation command line, and some intermediate commands).

• D=

Enable dependency debugging. This provides some useful information about why a target is built or not.

- EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=
 Append specific compilation, link or asm flags.
- CROSS=

Specify a cross toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

4.29.9 Make in a Build Directory

All targets described above are called from the SDK root \$(RTE_SDK). It is possible to run the same Makefile targets inside the build directory. For instance, the following command:

```
cd $(RTE_SDK)
  make config 0=mybuild T=x86_64-native-linuxapp-gcc
  make 0=mybuild

is equivalent to:
  cd $(RTE_SDK)
  make config 0=mybuild T=x86_64-native-linuxapp-gcc
  cd mybuild

# no need to specify 0= now
  make
```

4.29.10 Compiling for Debug

To compile the DPDK and sample applications with debugging information included and the optimization level set to 0, the EXTRA_CFLAGS environment variable should be set before compiling as follows:

```
export EXTRA CFLAGS='-00 -g'
```

The DPDK and any user or sample applications can then be compiled in the usual way. For example:

```
make install T=x86 64-native-linuxapp-gcc make -C examples/<theapp>
```

4.30 Extending the DPDK

This chapter describes how a developer can extend the DPDK to provide a new library, a new target, or support a new target.

4.30.1 Example: Adding a New Library libfoo

To add a new library to the DPDK, proceed as follows:

1. Add a new configuration option:

```
for f in config/\*; do \
    echo CONFIG_RTE_LIBF00=y >> $f; done
```

1. Create a new directory with sources:

```
mkdir ${RTE_SDK}/lib/libfoo
touch ${RTE_SDK}/lib/libfoo/foo.c
touch ${RTE_SDK}/lib/libfoo/foo.h
```

1. Add a foo() function in libfoo.

```
Definition is in foo.c:
```

```
void foo(void)
{
}
```

Declaration is in foo.h:

```
extern void foo(void);
```

2. Update lib/Makefile:

```
vi ${RTE_SDK}/lib/Makefile
# add:
# DIRS-$(CONFIG_RTE_LIBF00) += libfoo
```

3. Create a new Makefile for this library, for example, derived from mempool Makefile:

```
cp ${RTE_SDK}/lib/librte_mempool/Makefile ${RTE_SDK}/lib/libfoo/
vi ${RTE_SDK}/lib/libfoo/Makefile
# replace:
# librte_mempool -> libfoo
# rte_mempool -> foo
```

4. Update mk/DPDK.app.mk, and add -lfoo in LDLIBS variable when the option is enabled. This will automatically add this flag when linking a DPDK application.

5. Build the DPDK with the new library (we only show a specific target here):

```
cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make
```

6. Check that the library is installed:

```
ls build/lib
ls build/include
```

Example: Using libfoo in the Test Application

The test application is used to validate all functionality of the DPDK. Once you have added a library, a new test case should be added in the test application.

- A new test_foo.c file should be added, that includes foo.h and calls the foo() function from test_foo(). When the test passes, the test_foo() function should return 0.
- Makefile, test.h and commands.c must be updated also, to handle the new test case.
- Test report generation: autotest.py is a script that is used to generate the test report that is available in the \${RTE_SDK}/doc/rst/test_report/autotests directory. This script must be updated also. If libfoo is in a new test family, the links in \${RTE_SDK}/doc/rst/test_report/test_report.rst must be updated.
- Build the DPDK with the updated test application (we only show a specific target here):

```
cd ${RTE_SDK}
make config T=x86_64-native-linuxapp-gcc
make
```

4.31 Building Your Own Application

4.31.1 Compiling a Sample Application in the Development Kit Directory

When compiling a sample application (for example, hello world), the following variables must be exported: RTE SDK and RTE TARGET.

The binary is generated in the build directory by default:

```
~/DPDK/examples/helloworld$ ls build/app helloworld helloworld.map
```

4.31.2 Build Your Own Application Outside the Development Kit

The sample application (Hello World) can be duplicated in a new directory as a starting point for your development:

4.31.3 Customizing Makefiles

Application Makefile

The default makefile provided with the Hello World sample application is a good starting point. It includes:

- \$(RTE_SDK)/mk/rte.vars.mk at the beginning
- \$(RTE SDK)/mk/rte.extapp.mk at the end

The user must define several variables:

- APP: Contains the name of the application.
- SRCS-y: List of source files (*.c, *.S).

Library Makefile

It is also possible to build a library in the same way:

- Include \$(RTE_SDK)/mk/rte.vars.mk at the beginning.
- Include \$(RTE_SDK)/mk/rte.extlib.mk at the end.

The only difference is that APP should be replaced by LIB, which contains the name of the library. For example, libfoo.a.

Customize Makefile Actions

Some variables can be defined to customize Makefile actions. The most common are listed below. Refer to *Makefile Description* section in *Development Kit Build System*

chapter for details.

- VPATH: The path list where the build system will search for sources. By default, RTE SRCDIR will be included in VPATH.
- CFLAGS my file.o: The specific flags to add for C compilation of my file.c.
- CFLAGS: The flags to use for C compilation.
- · LDFLAGS: The flags to use for linking.
- CPPFLAGS: The flags to use to provide flags to the C preprocessor (only useful when assembling .S files)
- LDLIBS: A list of libraries to link with (for example, -L /path/to/libfoo Ifoo)

• NO_AUTOLIBS: If set, the libraries provided by the framework will not be included in the LDLIBS variable automatically.

4.32 External Application/Library Makefile help

External applications or libraries should include specific Makefiles from RTE_SDK, located in mk directory. These Makefiles are:

- \${RTE_SDK}/mk/rte.extapp.mk: Build an application
- \${RTE_SDK}/mk/rte.extlib.mk: Build a static library
- \${RTE_SDK}/mk/rte.extobj.mk: Build objects (.o)

4.32.1 Prerequisites

The following variables must be defined:

- \${RTE SDK}: Points to the root directory of the DPDK.
- \${RTE_TARGET}: Reference the target to be used for compilation (for example, x86_64-native-linuxapp-gcc).

4.32.2 Build Targets

Build targets support the specification of the name of the output directory, using O=mybuilddir. This is optional; the default output directory is build.

• all, "nothing" (meaning just make)

Build the application or the library in the specified output directory.

Example:

```
make O=mybuild
```

• clean

Clean all objects created using make build.

Example:

```
make clean O=mybuild
```

4.32.3 Help Targets

help

Show this help.

4.32.4 Other Useful Command-line Variables

The following variables can be specified at the command line:

• S=

Specify the directory in which the sources are located. By default, it is the current directory.

• M=

Specify the Makefile to call once the output directory is created. By default, it uses \$(S)/Makefile.

V=

Enable verbose build (show full compilation command line and some intermediate commands).

• D=

Enable dependency debugging. This provides some useful information about why a target must be rebuilt or not.

- EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=
 Append specific compilation, link or asm flags.
- CROSS=

Specify a cross-toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

4.32.5 Make from Another Directory

It is possible to run the Makefile from another directory, by specifying the output and the source dir. For example:

```
export RTE_SDK=/path/to/DPDK
export RTE_TARGET=x86_64-native-linuxapp-icc
make -f /path/to/my_app/Makefile S=/path/to/my_app 0=/path/to/build_dir
```

Part 3: Performance Optimization

4.33 Performance Optimization Guidelines

4.33.1 Introduction

The following sections describe optimizations used in the DPDK and optimizations that should be considered for a new applications.

They also highlight the performance-impacting coding techniques that should, and should not be, used when developing an application using the DPDK.

And finally, they give an introduction to application profiling using a Performance Analyzer from Intel to optimize the software.

4.34 Writing Efficient Code

This chapter provides some tips for developing efficient code using the DPDK. For additional and more general information, please refer to the *Intel® 64 and IA-32 Architectures Optimization Reference Manual* which is a valuable reference to writing efficient code.

4.34.1 **Memory**

This section describes some key memory considerations when developing applications in the DPDK environment.

Memory Copy: Do not Use libc in the Data Plane

Many libc functions are available in the DPDK, via the Linux* application environment. This can ease the porting of applications and the development of the configuration plane. However, many of these functions are not designed for performance. Functions such as memcpy() or strcpy() should not be used in the data plane. To copy small structures, the preference is for a simpler technique that can be optimized by the compiler. Refer to the $VTune^{TM}$ Performance Analyzer Essentials publication from Intel Press for recommendations.

For specific functions that are called often, it is also a good idea to provide a self-made optimized function, which should be declared as static inline.

The DPDK API provides an optimized rte_memcpy() function.

Memory Allocation

Other functions of libc, such as malloc(), provide a flexible way to allocate and free memory. In some cases, using dynamic allocation is necessary, but it is really not advised to use malloc-like functions in the data plane because managing a fragmented heap can be costly and the allocator may not be optimized for parallel allocation.

If you really need dynamic allocation in the data plane, it is better to use a memory pool of fixed-size objects. This API is provided by librte_mempool. This data structure provides several services that increase performance, such as memory alignment of objects, lockless access to objects, NUMA awareness, bulk get/put and per-lcore cache. The rte_malloc () function uses a similar concept to mempools.

Concurrent Access to the Same Memory Area

Read-Write (RW) access operations by several lcores to the same memory area can generate a lot of data cache misses, which are very costly. It is often possible to use per-lcore variables, for example, in the case of statistics. There are at least two solutions for this:

- Use RTE_PER_LCORE variables. Note that in this case, data on lcore X is not available to lcore Y.
- Use a table of structures (one per lcore). In this case, each structure must be cachealigned.

Read-mostly variables can be shared among lcores without performance losses if there are no RW variables in the same cache line.

NUMA

On a NUMA system, it is preferable to access local memory since remote memory access is slower. In the DPDK, the memzone, ring, rte_malloc and mempool APIs provide a way to create a pool on a specific socket.

Sometimes, it can be a good idea to duplicate data to optimize speed. For read-mostly variables that are often accessed, it should not be a problem to keep them in one socket only, since data will be present in cache.

Distribution Across Memory Channels

Modern memory controllers have several memory channels that can load or store data in parallel. Depending on the memory controller and its configuration, the number of channels and the way the memory is distributed across the channels varies. Each channel has a bandwidth limit, meaning that if all memory access operations are done on the first channel only, there is a potential bottleneck.

By default, the *Mempool Library* spreads the addresses of objects among memory channels.

4.34.2 Communication Between Icores

To provide a message-based communication between lcores, it is advised to use the DPDK ring API, which provides a lockless ring implementation.

The ring supports bulk and burst access, meaning that it is possible to read several elements from the ring with only one costly atomic operation (see Chapter 5 "Ring Library"). Performance is greatly improved when using bulk access operations.

The code algorithm that dequeues messages may be something similar to the following:

```
#define MAX_BULK 32
while (1) {
    /* Process as many elements as can be dequeued. */
    count = rte_ring_dequeue_burst(ring, obj_table, MAX_BULK);
    if (unlikely(count == 0))
        continue;

    my_process_bulk(obj_table, count);
}
```

4.34.3 PMD Driver

The DPDK Poll Mode Driver (PMD) is also able to work in bulk/burst mode, allowing the factorization of some code for each call in the send or receive function.

Avoid partial writes. When PCI devices write to system memory through DMA, it costs less if the write operation is on a full cache line as opposed to part of it. In the PMD code, actions have been taken to avoid partial writes as much as possible.

Lower Packet Latency

Traditionally, there is a trade-off between throughput and latency. An application can be tuned to achieve a high throughput, but the end-to-end latency of an average packet will typically increase as a result. Similarly, the application can be tuned to have, on average, a low end-to-end latency, at the cost of lower throughput.

In order to achieve higher throughput, the DPDK attempts to aggregate the cost of processing each packet individually by processing packets in bursts.

Using the testpmd application as an example, the burst size can be set on the command line to a value of 16 (also the default value). This allows the application to request 16 packets at a time from the PMD. The testpmd application then immediately attempts to transmit all the packets that were received, in this case, all 16 packets.

The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the network port. This behavior is desirable when tuning for high throughput because the cost of tail pointer updates to both the RX and TX queues can be spread across 16 packets, effectively hiding the relatively slow MMIO cost of writing to the PCIe* device. However, this is not very desirable when tuning for low latency because the first packet that was received must also wait for another 15 packets to be received. It cannot be transmitted until the other 15 packets have also been processed because the NIC will not know to transmit the packets until the TX tail pointer has been updated, which is not done until all 16 packets have been processed for transmission.

To consistently achieve low latency, even under heavy system load, the application developer should avoid processing packets in bunches. The testpmd application can be configured from the command line to use a burst value of 1. This will allow a single packet to be processed at a time, providing lower latency, but with the added cost of lower throughput.

4.34.4 Locks and Atomic Operations

Atomic operations imply a lock prefix before the instruction, causing the processor's LOCK# signal to be asserted during execution of the following instruction. This has a big impact on performance in a multicore environment.

Performance can be improved by avoiding lock mechanisms in the data plane. It can often be replaced by other solutions like per-lcore variables. Also, some locking techniques are more efficient than others. For instance, the Read-Copy-Update (RCU) algorithm can frequently replace simple rwlocks.

4.34.5 Coding Considerations

Inline Functions

Small functions can be declared as static inline in the header file. This avoids the cost of a call instruction (and the associated context saving). However, this technique is not always efficient; it depends on many factors including the compiler.

Branch Prediction

The Intel® C/C++ Compiler (icc)/gcc built-in helper functions likely() and unlikely() allow the developer to indicate if a code branch is likely to be taken or not. For instance:

```
if (likely(x > 1))
    do stuff();
```

4.34.6 Setting the Target CPU Type

The DPDK supports CPU microarchitecture-specific optimizations by means of CON-FIG_RTE_MACHINE option in the DPDK configuration file. The degree of optimization depends on the compiler's ability to optimize for a specific microarchitecture, therefore it is preferable to use the latest compiler versions whenever possible.

If the compiler version does not support the specific feature set (for example, the Intel® AVX instruction set), the build process gracefully degrades to whatever latest feature set is supported by the compiler.

Since the build and runtime targets may not be the same, the resulting binary also contains a platform check that runs before the main() function and checks if the current machine is suitable for running the binary.

Along with compiler optimizations, a set of preprocessor defines are automatically added to the build process (regardless of the compiler version). These defines correspond to the instruction sets that the target CPU should be able to support. For example, a binary compiled for any SSE4.2-capable processor will have RTE_MACHINE_CPUFLAG_SSE4_2 defined, thus enabling compile-time code path selection for different platforms.

4.35 Profile Your Application

Intel processors provide performance counters to monitor events. Some tools provided by Intel can be used to profile and benchmark an application. See the *VTune Performance Analyzer Essentials* publication from Intel Press for more information.

For a DPDK application, this can be done in a Linux* application environment only.

The main situations that should be monitored through event counters are:

- Cache misses
- · Branch mis-predicts
- DTLB misses
- Long latency instructions and exceptions

Refer to the Intel Performance Analysis Guide for details about application profiling.

Term	Definition
ACL	Access Control List
API	
ASLR	Application Programming Interface Linux* kernel Address-Space Layout Randomization
BSD	Berkeley Software Distribution
Clr	Clear Develop Develop Develop
CIDR	Classless Inter-Domain Routing
Control Plane	The control plane is concerned with the routing of packets and with providing a start or
Core	A core may include several lcores or threads if the processor supports hyperthreading.
Core Components	A set of libraries provided by the DPDK, including eal, ring, mempool, mbuf, timers, and
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
ctrlmbuf	An <i>mbuf</i> carrying control data.
Data Plane	In contrast to the control plane, the data plane in a network architecture are the layers
DIMM	Dual In-line Memory Module
Doxygen	A documentation generator used in the DPDK to generate the API reference.
DPDK	Data Plane Development Kit
DRAM	Dynamic Random Access Memory
EAL	The Environment Abstraction Layer (EAL) provides a generic interface that hides the e
FIFO	First In First Out
FPGA	Field Programmable Gate Array
GbE	Gigabit Ethernet
HW	Hardware
HPET	High Precision Event Timer; a hardware timer that provides a precise time reference or
ID	Identifier
IOCTL	Input/Output Control
I/O	Input/Output
IP	Internet Protocol
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
Icore	A logical execution unit of the processor, sometimes called a hardware thread.
KNI	Kernel Network Interface
L1	Layer 1
L2	Layer 2
L3	Layer 3
L4	Layer 4
LAN	Local Area Network
LPM	Longest Prefix Match
master lcore	The execution unit that executes the main() function and that launches other lcores.
mbuf	An mbuf is a data structure used internally to carry messages (mainly network packets
MESI	Modified Exclusive Shared Invalid (CPU cache coherency protocol)
MTU	Maximum Transfer Unit
NIC	Network Interface Card
000	Out Of Order (execution of instructions within the CPU pipeline)
NUMA	Non-uniform Memory Access
PCI	Peripheral Connect Interface
PHY	An abbreviation for the physical layer of the OSI model.
pktmbuf	An <i>mbuf</i> carrying a network packet.
prunoui	All Hibut Callying a lietwork packet.

Term	Definition
PMD	Poll Mode Driver
QoS	Quality of Service
RCU	Read-Copy-Update algorithm, an alternative to simple rwlocks.
Rd	Read
RED	Random Early Detection
RSS	Receive Side Scaling
RTE	Run Time Environment. Provides a fast and simple framework for fast packet processir
Rx	Reception
Slave Icore	Any <i>lcore</i> that is not the <i>master lcore</i> .
Socket	A physical CPU, that includes several <i>cores</i> .
SLA	Service Level Agreement
srTCM	Single Rate Three Color Marking
SRTD	Scheduler Round Trip Delay
SW	Software
Target	In the DPDK, the target is a combination of architecture, machine, executive environment
TCP	Transmission Control Protocol
TC	Traffic Class
TLB	Translation Lookaside Buffer
TLS	Thread Local Storage
trTCM	Two Rate Three Color Marking
TSC	Time Stamp Counter
Tx	Transmission
TUN/TAP	TUN and TAP are virtual network kernel devices.
VLAN	Virtual Local Area Network
Wr	Write
WRED	Weighted Random Early Detection
WRR	Weighted Round Robin

Figures

- Figure 1. Core Components Architecture
- Figure 2. EAL Initialization in a Linux Application Environment
- Figure 3. Example of a malloc heap and malloc elements within the malloc library
- Figure 4. Ring Structure
- Figure 5. Two Channels and Quad-ranked DIMM Example
- Figure 6. Three Channels and Two Dual-ranked DIMM Example
- Figure 7. A mempool in Memory with its Associated Ring
- Figure 8. An mbuf with One Segment
- Figure 9. An mbuf with Three Segments
- Figure 16. Memory Sharing inthe Intel® DPDK Multi-process Sample Application
- Figure 17. Components of an Intel® DPDK KNI Application
- Figure 18. Packet Flow via mbufs in the Intel DPDK® KNI

- Figure 19. vHost-net Architecture Overview
- Figure 20. KNI Traffic Flow
- Figure 21. Complex Packet Processing Pipeline with QoS Support
- Figure 22. Hierarchical Scheduler Block Internal Diagram
- Figure 23. Scheduling Hierarchy per Port
- Figure 24. Internal Data Structures per Port
- Figure 25. Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation
- Figure 26. Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation
- Figure 27. High-level Block Diagram of the Intel® DPDK Dropper
- Figure 28. Flow Through the Dropper
- Figure 29. Example Data Flow Through Dropper
- Figure 30. Packet Drop Probability for a Given RED Configuration
- Figure 31. Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a Factor 2 (Red Curve)
- Figure 32. Example of packet processing pipeline. The input ports 0 and 1 are connected with the output ports 0, 1 and 2 through tables 0 and 1.
- Figure 33. Sequence of steps for hash table operations in packet processing context
- Figure 34. Data structures for configurable key size hash tables
- Figure 35. Bucket search pipeline for key lookup operation (configurable key size hash tables)
- Figure 36. Pseudo-code for match, match_many and match_pos
- Figure 37. Data structures for 8-byte key hash tables
- Figure 38. Data structures for 16-byte key hash tables
- Figure 39. Bucket search pipeline for key lookup operation (single key size hash tables)

Tables

- Table 1. Packet Processing Pipeline Implementing QoS
- Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline
- Table 3. Port Scheduling Hierarchy
- Table 4. Scheduler Internal Data Structures per Port
- Table 5. Ethernet Frame Overhead Fields
- Table 6. Token Bucket Generic Operations
- Table 7. Token Bucket Generic Parameters
- Table 8. Token Bucket Persistent Data Structure
- Table 9. Token Bucket Operations
- Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure
- Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations

- Table 12. Weighted Round Robin (WRR)
- Table 13. Subport Traffic Class Oversubscription
- Table 14. Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period
- Table 15. Watermark Calculation
- Table 16. RED Configuration Parameters
- Table 17. Relative Performance of Alternative Approaches
- Table 18. RED Configuration Corresponding to RED Configuration File
- Table 19. Port types
- Table 20. Port abstract interface
- Table 21. Table types
- Table 29. Table Abstract Interface
- Table 22. Configuration parameters common for all hash table types
- Table 23. Configuration parameters specific to extendible bucket hash table
- Table 24. Configuration parameters specific to pre-computed key signature hash table
- Table 25. The main large data structures (arrays) used for configurable key size hash tables
- Table 26. Field description for bucket array entry (configurable key size hash tables)
- Table 27. Description of the bucket search pipeline stages (configurable key size hash tables)
- Table 28. Lookup tables for match, match_many, match_pos
- Table 29. Collapsed lookup tables for match, match_many and match_pos
- Table 30. The main large data structures (arrays) used for 8-byte and 16-byte key size hash tables
- Table 31. Field description for bucket array entry (8-byte and 16-byte key hash tables)
- Table 32. Description of the bucket search pipeline stages (8-byte and 16-byte key hash tables)
- Table 33. Next hop actions (reserved)
- Table 34. User action examples

Network Interface Controller Drivers

July 04, 2016

Contents

5.1 Driver for VM Emulated Devices

The DPDK EM poll mode driver supports the following emulated devices:

- qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)
- VMware* emulated Intel® 82545EM Gigabit Ethernet Controller
- VMware emulated Intel® 8274L Gigabit Ethernet Controller.

5.1.1 Validated Hypervisors

The validated hypervisors are:

- KVM (Kernel Virtual Machine) with Qemu, version 0.14.0
- KVM (Kernel Virtual Machine) with Qemu, version 0.15.1
- VMware ESXi 5.0, Update 1

5.1.2 Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

• Fedora* 18 (64-bit)

For supported kernel versions, refer to the *DPDK Release Notes*.

5.1.3 Setting Up a KVM Virtual Machine

The following describes a target environment:

- Host Operating System: Fedora 14
- Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0
- · Guest Operating System: Fedora 14

- Linux Kernel Version: Refer to the DPDK Getting Started Guide
- Target Applications: testpmd

The setup procedure is as follows:

1. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/ and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

```
tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel
```

When using an older kernel or a kernel from a distribution without the kvm modules, you must download (from the same link), compile and install the modules yourself:

```
tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel
```

Note that gemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to: http://www.linux-kvm.org/page/HOWTO1.

- 2. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred to as the Guest Operating System (Guest OS).
- 3. Start the Virtual Machine with at least one emulated e1000 device.

Note: The Qemu provides several choices for the emulated network device backend. Most commonly used is a TAP networking backend that uses a TAP networking device in the host. For more information about Qemu supported networking backends and different options for configuring networking at Qemu, please refer to:

- http://www.linux-kvm.org/page/Networking
- http://wiki.gemu.org/Documentation/Networking
- http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following command:

```
/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no
where:
```

- -m = memory to assign
- -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices, backed up with two TAP networking host interfaces, tapvm01 and tapvm02.

```
# ip tuntap show
tapvm01: tap
tapvm02: tap
```

- 4. Configure your TAP networking interfaces using ip/ifconfig tools.
- 5. Log in to the guest OS and check that the expected emulated devices exist:

```
# lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 0
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 0
```

6. Install the DPDK and run testpmd.

5.1.4 Known Limitations of Emulated Devices

The following are known limitations:

1. The Qemu e1000 RX path does not support multiple descriptors/buffers per packet. Therefore, rte_mbuf should be big enough to hold the whole packet. For example, to allow testpmd to receive jumbo frames, use the following:

```
testpmd [options] - -mbuf-size=<your-max-packet-size>
```

2. Qemu e1000 does not validate the checksum of incoming packets.

5.2 IXGBE Driver

5.2.1 Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O. It improves load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX register 1 (1). The wider register gives space to hold multiple packet buffers so as to save instruction number when processing bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet I/O. They are transparently registered at runtime RX/TX execution if all condition checks pass.

 To date, only an SSE version of IX GBE vPMD is available. To ensure that vPMD is in the binary code, ensure that the option CONFIG_RTE_IXGBE_INC_VECTOR=y is in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers. The following sections explain RX and TX constraints in the vPMD.

RX Constraints

Prerequisites and Pre-conditions

The following prerequisites apply:

5.2. IXGBE Driver 203

- To enable vPMD to work for RX, bulk allocation for Rx must be allowed.
- The RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC=y configuration MACRO must be set before compiling the code.

Ensure that the following pre-conditions are satisfied:

- rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
- rxq->rx_free_thresh < rxq->nb_rx_desc
- (rxq->nb rx desc % rxq->rx free thresh) == 0
- rxq->nb rx desc < (IXGBE MAX RING DESC-RTE PMD IXGBE RX MAX BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode. If an incoming packet is greater than the maximum acceptable length of one "mbuf" data size (by default, the size is 2 KB), vPMD for RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

- IEEE1588
- FDIR
- Header split
- · RX checksum off load

Other features are supported using optional MACRO configuration. They include:

- · HW VLAN strip
- · HW extend dual VLAN
- Enabled by RX_OLFLAGS (RTE_IXGBE_RX_OLFLAGS_DISABLE=n)

To guarantee the constraint, configuration flags in dev_conf.rxmode will be checked:

- hw_vlan_strip
- hw_vlan_extend
- hw_ip_checksum
- header split
- · dev conf

fdir conf->mode will also be checked.

5.2. IXGBE Driver 204

RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater than 32 per burst. It returns zero if using nb_pkt < 32 as the expected packet number in the receive handler.

TX Constraint

Prerequisite

The only prerequisite is related to tx_rs_thresh. The tx_rs_thresh value must be greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST, but less or equal to RTE_IXGBE_TX_MAX_FREE_BUF_SZ. Consequently, by default the tx_rs_thresh value is in the range 32 to 64.

Feature not Supported by RX Vector PMD

TX vPMD only works when txq_flags is set to IXGBE_SIMPLE_FLAGS.

This means that it does not support TX multi-segment, VLAN offload and TX csum offload. The following MACROs are used for these three features:

- ETH_TXQ_FLAGS_NOMULTSEGS
- ETH_TXQ_FLAGS_NOVLANOFFL
- ETH TXQ FLAGS NOXSUMSCTP
- ETH TXQ FLAGS NOXSUMUDP
- ETH_TXQ_FLAGS_NOXSUMTCP

Sample Application Notes

testpmd

By default, using CONFIG_RTE_IXGBE_RX_OLFLAGS_DISABLE=n:

```
./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=2
```

When CONFIG_RTE_IXGBE_RX_OLFLAGS_DISABLE=y, better performance can be achieved:

```
./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=2
```

I3fwd

When running l3fwd with vPMD, there is one thing to note. In the configuration, ensure that port_conf.rxmode.hw_ip_checksum=0. Otherwise, by default, RX vPMD is disabled.

5.2. IXGBE Driver 205

load_balancer

As in the case of l3fwd, set configure port_conf.rxmode.hw_ip_checksum=0 to enable vPMD. In addition, for improved performance, use -bsz "(32,32),(64,64),(32,32)" in load_balancer to avoid using the default burst size of 144.

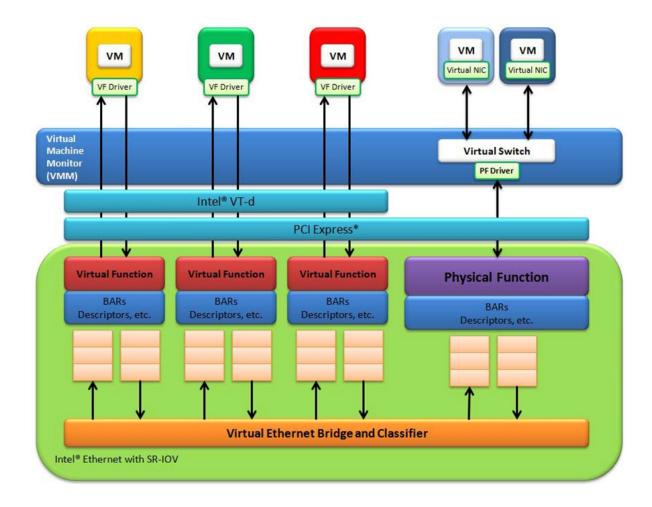
5.3 I40E/IXGBE/IGB Virtual Function Driver

Supported Intel® Ethernet Controllers (see the *DPDK Release Notes* for details) support the following modes of operation in a virtualized environment:

- **SR-IOV mode**: Involves direct assignment of part of the port resources to different guest operating systems using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard, also known as "native mode" or "pass-through" mode. In this chapter, this mode is referred to as IOV mode.
- VMDq mode: Involves central management of the networking resources by an IO Virtual Machine (IOVM) or a Virtual Machine Monitor (VMM), also known as software switch acceleration mode. In this chapter, this mode is referred to as the Next Generation VMDq mode.

5.3.1 SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode. Therefore, it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and expose them to a virtual machine as a separate PCI function called a "Virtual Function". Refer to Figure 10.


Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Figure 10), while still having global data in common to share with the Physical Function and other Virtual Functions. The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD) serves for the Intel® 82576 Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller NIC, Intel® Fortville 10/40 Gigabit Ethernet Controller NIC's virtual PCI function,or PCIE host-interface of the Intel Ethernet Switch FM10000 Series. Meanwhile the DPDK Poll Mode Driver (PMD) also supports "Physical Function" of such NIC's on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller, and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

- SR-IOV provides hardware based I/O sharing
- PCI-SIG-Single Root I/O Virtualization Support on IA
- Scalable I/O Virtualized Servers

Figure 1. Virtualization for a Single Port NIC in SR-IOV Mode

Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the supported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and therefore have no access to the global NIC resources that are shared between other functions for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the queues assigned to it. For global resource access, a Virtual Function has to send a request to the Physical Function for that port, and the Physical Function operates on the global resources on behalf of the Virtual Function. For this out-of-band communication, an SR-IOV enabled NIC provides a memory buffer for each Virtual Function, which is called a "Mailbox".

The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of *64 Virtual Functions* (*VF*) globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device. Each VF can have a maximum of 16 queue pairs. The Physical Function in host could be only configured by the Linux* fm10k driver (in the case of the Linux Kernel-based Virtual Machine [KVM]), DPDK PMD PF driver doesn't support it yet.

For example,

Using Linux* fm10k driver:

```
rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)
```

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3. However:

- Virtual Functions 0 and 2 belong to Physical Function 0
- Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a selected port.

Intel® Fortville 10/40 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128 Virtual Functions (VF) globally per Intel® Fortville 10/40 Gigabit Ethernet Controller NIC device. Each VF can have a maximum of 16 queue pairs. The Physical Function in host could be either configured by the Linux* i40e driver (in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* i40e driver:

```
rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)
```

Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

```
modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max vfs (To enable two VFs on a specific PCI
```

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI device, and launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

The available queue number(at most 4) per VF depends on the total number of pool, which is determined by the max number of VF at PF initialization stage and the number of queue specified in config:

If the max number of VF is set in the range of 1 to 32:

If the number of rxq is specified as 4(e.g. '-rxq 4' in testpmd), then there are totally 32 pools(ETH_32_POOLS), and each VF could have 4 or less(e.g. 2) queues;

If the number of rxq is specified as 2(e.g. '-rxq 2' in testpmd), then there are totally 32 pools(ETH_32_POOLS), and each VF could have 2 queues;

- If the max number of VF is in the range of 33 to 64:

If the number of rxq is 4 ('-rxq 4' in testpmd), then error message is expected as rxq is not correct at this case:

If the number of rxq is 2 ('-rxq 2' in testpmd), then there is totally 64 pools(ETH_64_POOLS), and each VF have 2 queues;

On host, to enable VF RSS functionality, rx mq mode should be set as ETH_MQ_RX_VMDQ_RSS or ETH_MQ_RX_RSS mode, and SRIOV mode should be activated(max_vfs >= 1). It also needs config VF RSS information like hash function, RSS key, RSS key length.

```
testpmd -c 0xffff -n 4 -- --coremask=<core-mask> --rxq=4 --txq=4 -i
```

The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is: The hash and key are shared among PF and all VF, the RETA table with 128 entries is also shared among PF and all VF; So it could not to provide a method to query the hash and reta content per VF on guest, while, if possible, please query them on host(PF) for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3. However:

- Virtual Functions 0 and 2 belong to Physical Function 0
- Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a selected port.

Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Physical Function per Intel® 82599 10 Gigabit Ethernet Controller NIC port. The reason for this is that the device allows for a maximum of 128 queues per port and a virtual/physical function has to have at least one queue pair (RX/TX). The current implementation of the DPDK ixgbevf driver supports a single queue pair (RX/TX) per Virtual Function. The Physical Function in host could be either configured by the Linux* ixgbe driver (in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

Using Linux* ixgbe driver:

```
rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)
```

Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

```
modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI
```

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3. However:

- Virtual Functions 0 and 2 belong to Physical Function 0
- Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a selected port.

Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight virtual machines (VMs). The controller has 16 TX and 16 RX queues. They are generally referred to (or thought of) as queue pairs (one TX and one RX queue). This gives the controller 16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive operations. The controller has eight pools, with each pool containing two queue pairs, that is, two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight virtual machines (VMs) per port. The eight queues can be accessed by eight different VMs if configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues), that means, one Transmit and one Receive queue assigned to each VF.

For example,

Using Linux* igb driver:

```
rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)
```

Using Intel® DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel iommu=on modprobe uio

```
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci
```

Launch DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a four-port NIC. When you enable the four Virtual Functions with the above command, the four enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence, starting from 0 to 7. However:

- Virtual Functions 0 and 4 belong to Physical Function 0
- Virtual Functions 1 and 5 belong to Physical Function 1
- Virtual Functions 2 and 6 belong to Physical Function 2
- Virtual Functions 3 and 7 belong to Physical Function 3

Note: The above is an important consideration to take into account when targeting specific packets to a selected port.

Validated Hypervisors

The validated hypervisor is:

KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mailbox interface, the solution is hypervisor-agnostic. Xen* and VMware* (when SR- IOV is supported) will also be able to support the DPDK with Virtual Function driver support.

Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

- Fedora* 14 (64-bit)
- Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the *DPDK Release Notes*.

5.3.2 Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

- Host Operating System: Fedora 14
- Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0
- · Guest Operating System: Fedora 14
- Linux Kernel Version: Refer to the DPDK Getting Started Guide
- Target Applications: I2fwd, I3fwd-vf

The setup procedure is as follows:

1. Before booting the Host OS, open BIOS setup and enable Intel® VT features.

- 2. While booting the Host OS kernel, pass the intel_iommu=on kernel command line argument using GRUB. When using DPDK PF driver on host, pass the iommu=pt kernel command line argument in GRUB.
- 3. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/ and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

```
tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel
```

When using an older kernel, or a kernel from a distribution without the kvm modules, you must download (from the same link), compile and install the modules yourself:

```
tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel
```

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

- 4. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred to as the Guest Operating System (Guest OS).
- 5. Download and install the latest ixgbe driver from:

```
http://downloadcenter.intel.com/Detail Desc.aspx?agr=Y&DwnldID=14687
```

6. In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the max vfs=2,2 argument:

```
rmmod ixgbe
modprobe ixgbe max_vfs=2,2
```

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the number of VF by sysfs max vfs:

```
modprobe uio
insmod igb_uio
./dpdk_nic_bind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs
```

Note: You need to explicitly specify number of vfs for each port, for example, in the command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

```
ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../00
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../00
```

It also creates two vfs for device 0000:02:00.1:

```
ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../00
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../00
```

- List the PCI devices connected and notice that the Host OS shows two Physical Functions (traditional ports) and four Virtual Functions (two for each port). This is the result of the previous step.
- 8. Insert the pci_stub module to hold the PCI devices that are freed from the default driver using the following command (see http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more information):

```
sudo /sbin/modprobe pci-stub
```

Unbind the default driver from the PCI devices representing the Virtual Functions. A script to perform this action is as follows:

```
echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind
```

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

9. Now, start the Virtual Machine by running the following command:

```
/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci where:
```

```
— -m = memory to assign
```

---smp = number of smp cores

— -boot = boot option

---hda = virtual disk image

— -device = device to attach

Note: — The pci-assign,host=08:10.0 alue indicates that you want to attach a PCI device to a Virtual Machine and the respective (Bus:Device.Function) numbers should be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM, but this is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the cpu model to emulate in a Virtual Machine. Therefore, it can be used as:

```
/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -decomposed to the same cpu_model equivalent to the host cpu)
```

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

10. Install and run DPDK host app to take over the Physical Function. Eg.

```
make install T=x86_64-native-linuxapp-gcc
./x86 64-native-linuxapp-gcc/app/testpmd -c f -n 4 -- -i
```

- 11. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the lspci command output in the Guest OS. The virtual functions will be listed as available for use.
- 12. Configure and install the DPDK with an x86_64-native-linuxapp-gcc configuration on the Guest OS as normal, that is, there is no change to the normal installation procedure.

```
make config T=x86_64-native-linuxapp-gcc 0=x86_64-native-linuxapp-gcc
cd x86_64-native-linuxapp-gcc
make
```

Note: If you are unable to compile the DPDK and you are getting "error: CPU you selected does not support x86-64 instruction set", power off the Guest OS and start the virtual machine with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9. You must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note: Run the DPDK I2fwd sample application in the Guest OS with Hugepages enabled. For the expected benchmark performance, you must pin the cores from the Guest OS to the Host OS (taskset can be used to do this) and you must also look at the PCI Bus layout on the board to ensure you are not running the traffic over the QPI Inteface.

Note:

- The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility for virtual machine management that can also be used to create, start, stop and delete virtual machines. If this option is used, step 2 and 6 in the instructions provided will be different.
- virsh, a command line utility for virtual machine management, can also be used to bind and unbind devices to a virtual machine in Ubuntu. If this option is used, step 6 in the instructions provided will be different.
- The Virtual Machine Monitor (see Figure 11) is equivalent to a Host OS with KVM installed as described in the instructions.

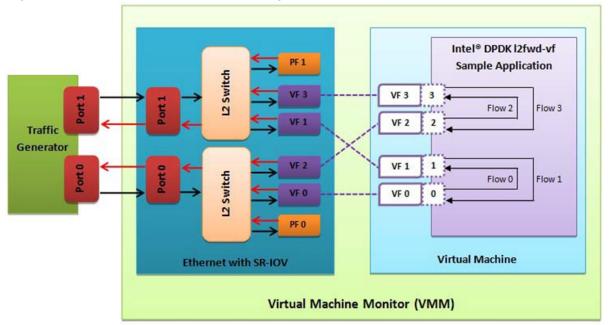
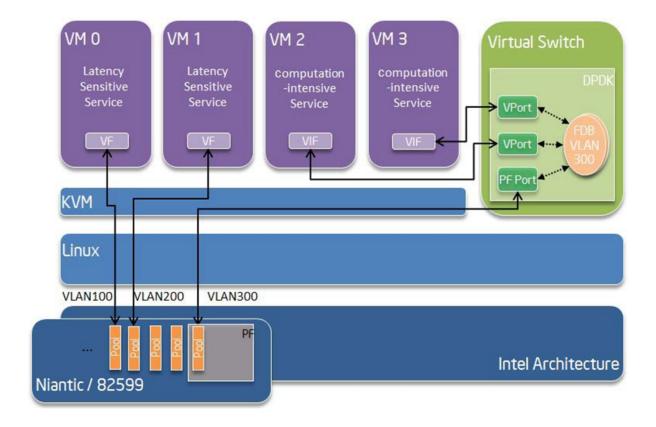


Figure 2. Performance Benchmark Setup


5.3.3 DPDK SR-IOV PMD PF/VF Driver Usage Model

Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling. In a virtualization environment, the DPDK VF PMD driver performs the same throughput result as a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS, DPI can be offloaded on the host fast path.

Figure 12 shows the scenario where some VMs directly communicate externally via a VFs, while others connect to a virtual switch and share the same uplink bandwidth. **Figure 3. Fast Host-based Packet Processing**

5.3.4 SR-IOV (PF/VF) Approach for Inter-VM Communication

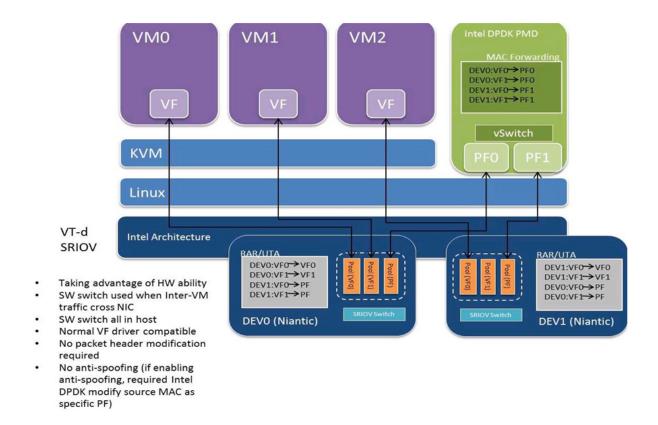

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms. SR-IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in the NIC. So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware acceleration. However, when VF crosses physical ports (VM0<->VM2), there is no such hardware bridge. In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Figure 13 shows an example. In this case an update of the MAC address lookup tables in both the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to the PF specific pool. So when a packet comes in, its destination MAC address will match and forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding, that is, the packet is forwarded to the correct PF pool. The SR-IOV NIC switch forwards the packet to a specific VM according to the MAC destination address which belongs to the destination VF on the VM.

Figure 4. Inter-VM Communication

5.4 MLX4 poll mode driver library

The MLX4 poll mode driver library (**librte_pmd_mlx4**) implements support for **Mellanox ConnectX-3 EN** 10/40 Gbps adapters as well as their virtual functions (VF) in SR-IOV context

Information and documentation about this family of adapters can be found on the Mellanox website. Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and recompiling DPDK.

5.4.1 Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI bus address, thus unlike most drivers, librte_pmd_mlx4 registers itself as a PCI driver that allocates one Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also white/blacklisting the others on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated kernel support), librte_pmd_mlx4 relies heavily on system calls for control operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The way resources allocations are handled by the kernel combined with hardware specifications that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain functional, although they stop receiving unicast packets as long as they share the same MAC address.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

5.4.2 Features and limitations

- RSS, also known as RCA, is supported. In this mode the number of configured RX queues must be a power of two.
- VLAN filtering is supported.
- · Link state information is provided.
- · Promiscuous mode is supported.
- · All multicast mode is supported.
- Multiple MAC addresses (unicast, multicast) can be configured.
- Scattered packets are supported for TX and RX.
- RSS hash key cannot be modified.
- Hardware counters are not implemented (they are software counters).
- Checksum offloads are not supported yet.

5.4.3 Configuration

Compilation options

These options can be modified in the .config file.

- CONFIG_RTE_LIBRTE_MLX4_PMD (default n)
 Toggle compilation of librte_pmd_mlx4 itself.
- CONFIG RTE LIBRTE MLX4 DEBUG (default **n**)

Toggle debugging code and stricter compilation flags. Enabling this option adds additional run-time checks and debugging messages at the cost of lower performance.

• CONFIG RTE LIBRTE MLX4 SGE WR N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering this number improves performance but also limits the ability to receive scattered packets (packets that do not fit a single mbuf). The default value is a safe tradeoff.

• CONFIG RTE LIBRTE MLX4 MAX INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency but lowers throughput.

• CONFIG RTE LIBRTE MLX4 TX MP CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from which buffers are to be transmitted must be associated to memory regions (MRs). This is a slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

• CONFIG RTE LIBRTE MLX4 SOFT COUNTERS (default 1)

Toggle software counters. No counters are available if this option is disabled since hardware counters are not supported.

Environment variables

• MLX4 INLINE RECV SIZE

A nonzero value enables inline receive for packets up to that size. May significantly improve performance in some cases but lower it in others. Requires careful testing.

Run-time configuration

- The only constraint when RSS mode is requested is to make sure the number of RX queues is a power of two. This is a hardware requirement.
- librte_pmd_mlx4 brings kernel network interfaces up during initialization because it is affected by their state. Forcing them down prevents packets reception.
- ethtool operations on related kernel interfaces also affect the PMD.

Kernel module parameters

The **mlx4_core** kernel module has several parameters that affect the behavior and/or the performance of librate_pmd_mlx4. Some of them are described below.

num_vfs (integer or triplet, optionally prefixed by device address strings)

Create the given number of VFs on the specified devices.

• log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is enabled by using a negative value, the last four bits of which have a special meaning.

- 1: force device-managed flow steering (DMFS).
- -7: configure optimized steering mode to improve performance with the following limitation: Ethernet frames with the port MAC address as the destination cannot be received, even in promiscuous mode. Additional MAC addresses can still be set by rte eth dev mac addr addr().

5.4.4 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initialization. The following dependencies are not part of DPDK and must be installed separately:

libibverbs

User space verbs framework used by librte_pmd_mlx4. This library provides a generic interface between the kernel and low-level user space drivers such as libmlx4.

It allows slow and privileged operations (context initialization, hardware resources allocations) to be managed by the kernel and fast operations to never leave user space.

libmlx4

Low-level user space driver library for Mellanox ConnectX-3 devices, it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side verbs API and low level device drivers that manage actual hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

- mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.
- mlx4_en: Ethernet device driver that provides kernel network interfaces.
- mlx4 ib: InifiniBand device driver.
- ib uverbs: user space driver for verbs (entry point for libibverbs).

Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to match the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Currently supported by DPDK:

- Mellanox OFED 2.4-1.
- Firmware version 2.33.5000 and higher.

Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics Aliance's website and provided by package managers on most distributions, this PMD requires Ethernet extensions that may not be supported at the moment (this is a work in progress).

Mellanox OFED includes the necessary support and should be used in the meantime. For DPDK, only libibverbs, libmlx4, mlnx-ofed-kernel packages and firmware updates are required from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK

release was developed and tested against is strongly recommended. Please check the *pre-requisites*.

Getting libibverbs and libmlx4 from DPDK.org

Based on Mellanox OFED, optimized libibverbs and libmlx4 versions can be optionally downloaded from DPDK.org:

http://www.dpdk.org/download/mlx4

Some enhancements are done for better performance with DPDK applications and are not merged upstream yet.

Since it is partly achieved by tuning compilation options to disable features not needed by DPDK, linking these libraries statically and avoid system-wide installation is the preferred method.

Installation documentation is available from the above link.

5.4.5 Usage example

This section demonstrates how to launch **testpmd** with Mellanox ConnectX-3 devices managed by librte_pmd_mlx4.

1. Load the kernel modules:

```
modprobe -a ib uverbs mlx4 en mlx4 core mlx4 ib
```

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related sysfs entries should be present:

```
ls -d /sys/class/net/*/device/infiniband verbs/uverbs* | cut -d / -f 5
```

Example output:

```
eth2
eth3
eth4
eth5
```

3. Optionally, retrieve their PCI bus addresses for whitelisting:

```
for intf in eth2 eth3 eth4 eth5;
   do
        (cd "/sys/class/net/${intf}/device/" && pwd -P);
   done;
} |
sed -n 's,.*/\(.*\),-w \1,p'
```

Example output:

```
-w 0000:83:00.0
-w 0000:83:00.0
```

```
-w 0000:84:00.0
-w 0000:84:00.0
```

Note: There are only two distinct PCI bus addresses because the Mellanox ConnectX-3 adapters installed on this system are dual port.

4. Request huge pages:

```
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages
```

5. Start testpmd with basic parameters:

```
testpmd -c 0xff00 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i
```

Example output:

```
[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
      probe driver: 15b3:1007 librte pmd mlx4
PMD: librte pmd mlx4: PCI information matches, using device "mlx4 0" (VF: false)
PMD: librte pmd mlx4: 2 port(s) detected
PMD: librte pmd mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
      probe driver: 15b3:1007 librte pmd mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte pmd mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte pmd mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte pmd mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte pmd mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte pmd mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte pmd mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>
```

5.5 Poll Mode Driver for Emulated Virtio NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor. In the Data Plane Development Kit (DPDK), we provide a virtio Poll Mode Driver (PMD) as

a software solution, comparing to SRIOV hardware solution, for fast guest VM to guest VM communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend. The DPDK extends kni to support vhost raw socket interface, which enables vhost to directly read/ write packets from/to a physical port. With this enhancement, virtio could achieve quite promising performance.

In future release, we will also make enhancement to vhost backend, releasing peak performance of virtio PMD driver.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM, please refer to Chapter "Driver for VM Emulated Devices".

In this chapter, we will demonstrate usage of virtio PMD driver with two backends, standard gemu vhost back end and vhost kni back end.

5.5.1 Virtio Implementation in DPDK

For details about the virtio spec, refer to Virtio PCI Card Specification written by Rusty Russell.

As a PMD, virtio provides packet reception and transmission callbacks virtio_recv_pkts and virtio_xmit_pkts.

In virtio_recv_pkts, index in range [vq->vq_used_cons_idx , vq->vq_ring.used->idx) in vring is available for virtio to burst out.

In virtio_xmit_pkts, same index range in vring is available for virtio to clean. Virtio will enqueue to be transmitted packets into vring, advance the vq->vq_ring.avail->idx, and then notify the host back end if necessary.

5.5.2 Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and transmission.

- It supports merge-able buffers per packet when receiving packets and scattered buffer per packet when transmitting packets. The packet size supported is from 64 to 1518.
- It supports multicast packets and promiscuous mode.
- The descriptor number for the RX/TX queue is hard-coded to be 256 by qemu. If given a different descriptor number by the upper application, the virtio PMD generates a warning and fall back to the hard-coded value.
- Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to support them. When backend can't support vlan filter, virtio app on guest should disable vlan filter to make sure the virtio port is configured correctly. E.g. specify '–disable-hw-vlan' in testpmd command line.
- RTE_PKTMBUF_HEADROOM should be defined larger than sizeof(struct virtio_net_hdr), which is 10 bytes.
- Virtio does not support runtime configuration.
- Virtio supports Link State interrupt.
- · Virtio supports software vlan stripping and inserting.

Virtio supports using port IO to get PCI resource when uio/igb_uio module is not available.

5.5.3 Prerequisites


The following prerequisites apply:

- In the BIOS, turn VT-x and VT-d on
- Linux kernel with KVM module; vhost module loaded and ioeventfd supported. Qemu standard backend without vhost support isn't tested, and probably isn't supported.

5.5.4 Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

Figure 5. Host2VM Communication Example Using kni vhost Back End

Host2VM communication example

Host2VM communication example

1. Load the kni kernel module:

```
insmod rte_kni.ko
```

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed here. Please refer to the *DPDK Getting Started Guide* for detailed instructions.

2. Launch the kni user application:

```
examples/kni/build/app/kni -c 0xf -n 4 -- -p 0x1 -i 0x1 -o 0x2
```

This command generates one network device vEth0 for physical port. If specify more physical ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads. One thread loops to fetch packets from the physical NIC port into the kni receive queue. The other user thread loops to send packets in the kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni receive queue, place them onto kni's raw socket's queue and wake up the vhost kernel thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to Chapter 24 "Kernel NIC Interface".

3. Enable the kni raw socket functionality for the specified physical NIC port, get the generated file descriptor and set it in the qemu command line parameter. Always remember to set ioeventfd on and vhost on.

Example:

```
echo 1 > /sys/class/net/vEth0/sock_en
fd=cat /sys/class/net/vEth0/sock_fd
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize
```

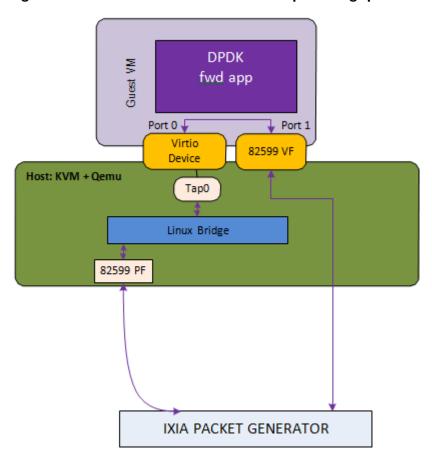
In the above example, virtio port 0 in the guest VM will be associated with vEth0, which in turns corresponds to a physical port, which means received packets come from vEth0, and transmitted packets is sent to vEth0.

4. In the guest, bind the virtio device to the uio_pci_generic kernel module and start the forwarding application. When the virtio port in guest bursts rx, it is getting packets from the raw socket's receive queue. When the virtio port bursts tx, it is sending packet to the tx_q.

```
modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python tools/dpdk_nic_bind.py -b uio_pci_generic 00:03.0
```

We use testpmd as the forwarding application in this example.

```
Iroot@localhost isg_cid-dpdk]# x86_64-default-linuxapp-gcc/app/testpmd -c f -n 4 -- -i
Interactive-mode selected
Configuring Port 0 (socket -1)
Harning: nb_desc(512) is not equal to vq size (256), fall to vq size
test1
test2
test3
test4
Harning: nb_desc(128) isn't equal to vq size (256), fall to vq size
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd> start _
```


Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI rx queue->KNI raw socket queue->Guest VM virtio port 0 rx burst->Guest VM virtio port 0 tx burst-> KNI tx queue->82599 PF-> IXIA packet generator

5.5.5 Virtio with gemu virtio Back End

Figure 6. Host2VM Communication Example Using gemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/ hugepages -mem-prealloc

- -drive file=/data/DPDKVMS/dpdk-vm1
- -netdev tap,id=vm1 p1,ifname=tap0,script=no,vhost=on
- -device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
- -device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0's socket queue-> Guest VM virtio port 0 rx burst-> Guest VM 82599 VF port1 tx burst-> IXIA packet generator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 rx burst-> Guest VM virtio port 0 tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

5.6 Poll Mode Driver for Paravirtual VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware* ESXi. It is designed for performance and is not related to VMXNET or VMXENET2. It offers all the features available in VMXNET2, and adds several new features such as, multi-queue support (also known as Receive Side Scaling, RSS), IPv6 offloads, and MSI/MSI-X interrupt delivery. Because operating system vendors do not provide built-in drivers for this card, VMware Tools must be installed to have a driver for the VMXNET3 network adapter available. One can use the same device in a DPDK application with VMXNET3 PMD introduced in DPDK API.

Currently, the driver provides basic support for using the device in a DPDK application running on a guest OS. Optimization is needed on the backend, that is, the VMware* ESXi vmkernel switch, to achieve optimal performance end-to-end.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

- 1. Vmxnet3 with a native NIC connected to a vSwitch
- 2. Vmxnet3 chaining VMs connected to a vSwitch

5.6.1 VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver's vmxnet3 directory and support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp 4 vmxnet3 perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case.

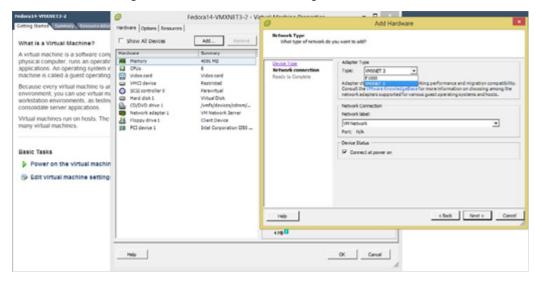
The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory.

5.6.2 Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and transmission. There are several options available for filtering packets at VMXNET3 device level including:

- 1. MAC Address based filtering:
 - Unicast, Broadcast, All Multicast modes SUPPORTED BY DEFAULT
 - Multicast with Multicast Filter table NOT SUPPORTED
 - Promiscuous mode SUPPORTED
 - RSS based load balancing between queues SUPPORTED
- 2. VLAN filtering:
 - VLAN tag based filtering without load balancing SUPPORTED


Note:

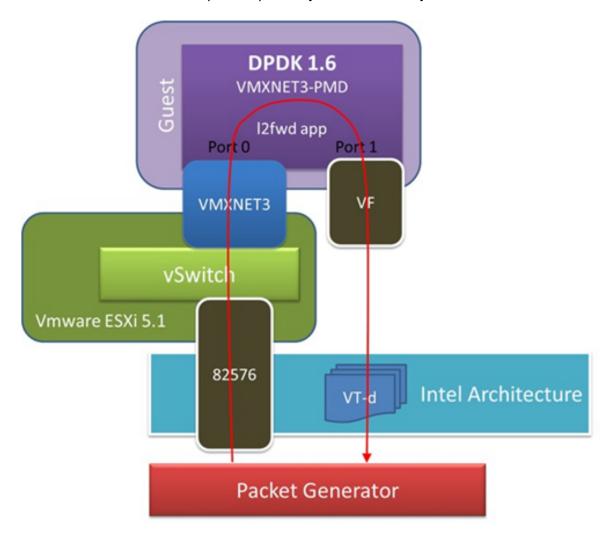
- Release 1.6.0 does not support separate headers and body receive cmd_ring and hence, multiple segment buffers are not supported. Only cmd_ring_0 is used for packet buffers, one for each descriptor.
- Receive and transmit of scattered packets is not supported.
- Multicast with Multicast Filter table is not supported.

5.6.3 Prerequisites

The following prerequisites apply:

• Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client must be assigned. This is shown in the figure below.

Note: Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet adaptors while adding an Ethernet device. Ensure that the VM type used offers a VMXNET3

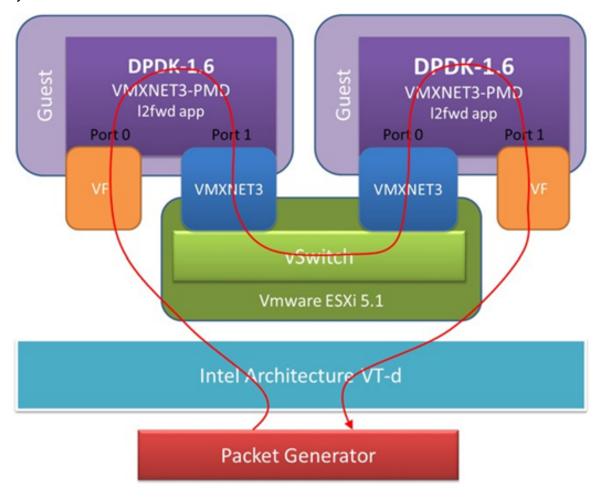

device. Refer to the VMware documentation for a listed of VMs.

Note: Follow the *DPDK Getting Started Guide* to setup the basic DPDK environment.

Note: Follow the *DPDK Sample Application's User Guide*, L2 Forwarding/L3 Forwarding and TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3 device.

5.6.4 VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.


Note: Other instructions on preparing to use DPDK such as, hugepage enabling, uio port binding are not listed here. Please refer to *DPDK Getting Started Guide and DPDK Sample Application's User Guide* for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576 -> VMware ESXi vSwitch -> VMXNET3 device -> Guest VM VMXNET3 port 0 rx burst -> Guest VM 82599 VF port 0 tx burst -> 82599 VF -> Packet generator

5.6.5 VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-Phy communication channel.

Note: When using the L2 Forwarding or L3 Forwarding applications, a destination MAC address needs to be written in packets to hit the other VM's VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF -> Guest VM 82599 port 0 rx burst -> Guest VM VMXNET3 port 1 tx burst -> VMXNET3 device -> VMware ESXi vSwitch -> VMXNET3 device -> Guest VM VMXNET3 port 0 rx burst -> Guest VM 82599 VF port 1 tx burst -> 82599 VF -> Packet generator

5.7 Libpcap and Ring Based Poll Mode Drivers

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, the DPDK also includes two pure-software PMDs. These two drivers are:

- A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap, both from files on disk, as well as from physical NIC devices using standard Linux kernel drivers.
- A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring) to be accessed using the PMD APIs, as though they were physical NICs.

Note: The libpcap -based PMD is disabled by default in the build configuration files, owing to an external dependency on the libpcap development files which must be installed on the board. Once the libpcap development files are installed, the library can be enabled by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the Intel® DPDK.

5.7.1 Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-ethernet devices, using one or more of these drivers, to be created at application startup time during EAL initialization.

To do so, the -vdev= parameter must be passed to the EAL. This takes take options to allow ring and pcap-based Ethernet to be allocated and used transparently by the application. This can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option. The device name must start with the eth_pcap prefix followed by numbers or letters. The name is unique for each device. Each device can have multiple stream options and multiple devices can be used. Multiple device definitions can be arranged using multiple –vdev. Device name and stream options must be separated by commas as shown below:

```
$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'eth_pcap0,stream_opt0=..,stream_opt1=..' --vdev='et
```

Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following two rules are respected:

- · A device is provided with two different streams reception and transmission.
- A device is provided with one network interface name used for reading and writing packets.

The different stream types are:

• rx_pcap: Defines a reception stream based on a pcap file. The driver reads each packet within the given pcap file as if it was receiving it from the wire. The value is a path to a valid pcap file.

```
rx_pcap=/path/to/file.pcap
```

tx_pcap: Defines a transmission stream based on a pcap file. The driver writes each
received packet to the given pcap file. The value is a path to a pcap file. The file is
overwritten if it already exists and it is created if it does not.

```
tx_pcap=/path/to/file.pcap
```

 rx_iface: Defines a reception stream based on a network interface name. The driver reads packets coming from the given interface using the Linux kernel driver for that interface. The value is an interface name.

```
rx iface=eth0
```

• tx_iface: Defines a transmission stream based on a network interface name. The driver sends packets to the given interface using the Linux kernel driver for that interface. The value is an interface name.

```
tx iface=eth0
```

• iface: Defines a device mapping a network interface. The driver both reads and writes packets from and to the given interface. The value is an interface name.

```
iface=eth0
```

Examples of Usage

Read packets from one pcap file and write them to another:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap.tx_pcap
```

Read packets from a network interface and write them to a pcap file:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_iface=eth0,tx_pcap=/path/to/file_tx
```

Read packets from a peap file and write them to a network interface:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_ifac
```

Forward packets through two network interfaces:

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,iface=eth0' --vdev='eth_pcap1;iface=et
```

Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX streams by reading the first 512 packets on every RX stream and discarding them. When using a libpcap-based PMD this behavior can be turned off using the following command line option:

```
--no-flush-rx
```

It is also available in the runtime command line:

```
set flush rx on/off
```

It is useful for the case where the rx_pcap is being used and no packets are meant to be discarded. Otherwise, the first 512 packets from the input pcap file will be discarded by the RX flushing operation.

```
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'eth_pcap0,rx_pcap=/path/to/ file_rx.pcap,tx_pcap
```

Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based rte_ethdevs can be used as below. The device names passed to the –vdev option must start with eth_ring and take no additional parameters. Multiple devices may be specified, separated by commas.

```
./testpmd -c E -n 4 --vdev=eth ring0 --vdev=eth ring1 -- -i
  EAL: Detected lcore 1 as core 1 on socket 0
  Interactive-mode selected
  Configuring Port 0 (socket 0)
  Configuring Port 1 (socket 0)
  Checking link statuses...
  Port 0 Link Up - speed 10000 Mbps - full-duplex
  Port 1 Link Up - speed 10000 Mbps - full-duplex
  Done
  testpmd> start tx_first
  io packet forwarding - CRC stripping disabled - packets/burst=16
  nb forwarding cores=1 - nb forwarding ports=2
  RX queues=1 - RX desc=128 - RX free threshold=0
  RX threshold registers: pthresh=8 hthresh=8 wthresh=4
  TX queues=1 - TX desc=512 - TX free threshold=0
  TX threshold registers: pthresh=36 hthresh=0 wthresh=0
  TX RS bit threshold=0 - TXQ flags=0x0
  testpmd> stop
 Telling cores to stop...
 Waiting for lcores to finish...
----- Forward statistics for port 0 ------
                    RX-dropped: 0
RX-packets: 231192368
                                                RX-total: 231192368
TX-packets: 231192384
                        TX-dropped: 0
                                                TX-total: 231192384
----- forward statistics for port 1 ------
RX-total: 231192368
                                                TX-total: 231192384
 ++++++++ Accumulated forward statistics for allports++++++++
 RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
 TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
  Done.
```

Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is, rte_ethdev structure, instances at run-time in the end-application, for example, using rte_eth_from_rings() or rte_eth_from_pcaps() APIs. For the rings- based PMD, this functionality could be used, for example, to allow data exchange between cores using rings to be done in exactly the same way as sending or receiving packets from an Ethernet device. For the libpcap-based PMD, it allows an application to open one or more pcap files and use these as a source of packet input to the application.

Usage Examples

To create two pseudo-ethernet ports where all traffic sent to a port is looped back for reception on the same port (error handling omitted for clarity):

```
struct rte_ring *r1, *r2;
int port1, port2;

r1 = rte_ring_create("R1", 256, SOCKET0,RING_F_SP_ENQ|RING_F_SC_DEQ);

r2 = rte_ring_create("R2", 256, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create an ethdev where RX and TX are done to/from r1, and * another from r2 */

port1 = rte_eth_from_rings(r1, 1, r1, 1, SOCKET0);
port2 = rte_eth_from_rings(r2, 1, r2, 1, SOCKET0);
```

To create two pseudo-Ethernet ports where the traffic is switched between them, that is, traffic sent to port 1 is read back from port 2 and vice-versa, the final two lines could be changed as below:

```
port1 = rte_eth_from_rings(r1, 1, r2, 1, SOCKET0);
port2 = rte eth from rings(r2, 1, r1, 1, SOCKET0);
```

This type of configuration could be useful in a pipeline model, for example, where one may want to have inter-core communication using pseudo Ethernet devices rather than raw rings, for reasons of API consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower than using the native rings API. This is because DPDK Ethernet drivers make use of function pointers to call the appropriate enqueue or dequeue functions, while the rte_ring specific functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD, it should be configured and started in the same way as a regular Ethernet device, that is, by calling rte_eth_dev_configure() to set the number of receive and transmit queues, then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues and finally calling rte_eth_dev_start() to allow transmission and reception of packets to begin.

Figures

- Figure 1. Virtualization for a Single Port NIC in SR-IOV Mode
- Figure 2. SR-IOV Performance Benchmark Setup
- Figure 3. Fast Host-based Packet Processing
- Figure 4. SR-IOV Inter-VM Communication
- Figure 5. Virtio Host2VM Communication Example Using KNI vhost Back End
- Figure 6. Virtio Host2VM Communication Example Using Qemu vhost Back End

Sample Applications User Guide

July 04, 2016

Contents

6.1 Introduction

This document describes the sample applications that are included in the Data Plane Development Kit (DPDK). Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

6.1.1 Documentation Roadmap

The following is a list of DPDK documents in suggested reading order:

- Release Notes: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.
- **Getting Started Guides**: Describes how to install and configure the DPDK software for your operating system; designed to get users up and running quickly with the software.
- Programmer's Guide: Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment.
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application.
 - Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

- **API Reference**: Provides detailed information about DPDK functions, data structures and other programming constructs.
- Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

6.2 Command Line Sample Application

This chapter describes the Command Line sample application that is part of the Data Plane Development Kit (DPDK).

6.2.1 Overview

The Command Line sample application is a simple application that demonstrates the use of the command line interface in the DPDK. This application is a readline-like interface that can be used to debug a DPDK application, in a Linux* application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated to the same standard as other Intel® DPDK libraries. See also the "rte_cmdline library should not be used in production code due to limited testing" item in the "Known Issues" section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such as, completion, cut/paste and some other special bindings that make configuration and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects. There are three simple commands:

- add obj_name IP: Add a new object with an IP/IPv6 address associated to it.
- · del obj name: Delete the specified object.
- show obj name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

6.2.2 Compiling the Application

1. Go to example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/cmdline
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

Refer to the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.2.3 Running the Application

To run the application in linuxapp environment, issue the following command:

```
$ ./build/cmdline -c f -n 4
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.2.4 Explanation

The following sections provide some explanation of the code.

EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved as follows:

```
int main(int argc, char **argv)
{
    ret = rte_eal_init(argc, argv);
    if (ret < 0)
        rte panic("Cannot init EAL\n");</pre>
```

Then, a new command line object is created and started to interact with the user through the console:

```
cl = cmdline_stdin_new(main_ctx, "example> ");
cmdline_interact(cl);
cmdline_stdin_exit(cl);
```

The cmd line_interact() function returns when the user types **Ctrl-d** and in this case, the application exits.

Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a callback function that is executed when the command is parsed, an opaque pointer, a help string and a list of tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

- String Token: Match a static string, a list of static strings or any string.
- Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.
- IP Address Token: Match an IPv4 or IPv6 address or network.
- Ethernet* Address Token: Match a MAC address.

In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c and parse_obj_list.h files.

For example, the cmd obj del show command is defined as shown below:

```
struct cmd obj add result {
    cmdline fixed string t action;
    cmdline fixed string t name;
    struct object *obj;
};
static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, attribute ((unuse
   /* ... */
}
cmdline parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show
parse token obj list t cmd obj obj = TOKEN OBJ LIST INITIALIZER(struct cmd obj del show result
cmdline parse inst t cmd obj del show = {
    .f = cmd_obj_del_show_parsed, /* function to call */
    .data = NULL, /* 2nd arg of func */
    .help_str = "Show/del an object",
    .tokens = { /* token list, NULL terminated */
        (void *)&cmd_obj_action,
        (void *)&cmd obj obj,
         NULL,
    },
};
```

This command is composed of two tokens:

- The first token is a string token that can be show or del.
- The second token is an object that was previously added using the add command in the global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure. A pointer to this structure is given as an argument to the callback function and can be used in the body of this function.

6.3 Exception Path Sample Application

The Exception Path sample application is a simple example that demonstrates the use of the DPDK to set up an exception path for packets to go through the Linux* kernel. This is done by using virtual TAP network interfaces. These can be read from and written to by the DPDK application and appear to the kernel as a standard network interface.

6.3.1 Overview

The application creates two threads for each NIC port being used. One thread reads from the port and writes the data unmodified to a thread-specific TAP interface. The second thread reads from a TAP interface and writes the data unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.

Figure 1. Packet Flow

To make throughput measurements, kernel bridges must be setup to forward data between the bridges appropriately.

6.3.2 Compiling the Application

1. Go to example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/exception path
```

2. Set the target (a default target will be used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

This application is intended as a linuxapp only. See the *DPDK Getting Started Guide* for possible RTE TARGET values.

1. Build the application:

make

6.3.3 Running the Application

The application requires a number of command line options:

```
.build/exception path [EAL options] -- -p PORTMASK -i IN CORES -o OUT CORES
```

where:

- -p PORTMASK: A hex bitmask of ports to use
- · -i IN CORES: A hex bitmask of cores which read from NIC
- -o OUT_CORES: A hex bitmask of cores which write to NIC

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

The number of bits set in each bitmask must be the same. The coremask -c parameter of the EAL options should include IN_CORES and OUT_CORES. The same bit must not be set in IN_CORES and OUT_CORES. The affinities between ports and cores are set beginning with the least significant bit of each mask, that is, the port represented by the lowest bit in PORTMASK is read from by the core represented by the lowest bit in IN_CORES, and written to by the core represented by the lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

```
./build/exception path -c f -n 4 -- -p 3 -i 3 -o c
```

Getting Statistics

While the application is running, statistics on packets sent and received can be displayed by sending the SIGUSR1 signal to the application from another terminal:

```
killall -USR1 exception path
```

The statistics can be reset by sending a SIGUSR2 signal in a similar way.

6.3.4 Explanation

The following sections provide some explanation of the code.

Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding sample application (see Chapter 9 "L2 forwarding Sample Application (in Real and Virtualized Environments" for details). In addition, the TAP interfaces must also be created. A TAP interface is created for each lcore that is being used. The code for creating the TAP interface is as follows:

```
Create a tap network interface, or use existing one with same name.
     If name[0]='\0' then a name is automatically assigned and returned in name.
static int tap create(char *name)
    struct ifreq ifr;
    int fd, ret;
    fd = open("/dev/net/tun", 0 RDWR);
    if (fd < 0)
        return fd;
    memset(&ifr, 0, sizeof(ifr));
    /* TAP device without packet information */
    ifr.ifr flags = IFF TAP | IFF NO PI;
    if (name && *name)
        rte snprinf(ifr.ifr name, IFNAMSIZ, name);
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
    if (ret < 0) {
        close(fd);
        return ret;
    }
    if (name)
        rte snprintf(name, IFNAMSIZ, ifr.ifr name);
    return fd;
}
```

The other step in the initialization process that is unique to this sample application is the association of each port with two cores:

- One core to read from the port and write to a TAP interface
- A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the lcore IDs. The population of this array is shown below:

```
tx_port = 0;
rx_port = 0;

RTE_LCORE_FOREACH(i) {
    if (input_cores_mask & (1ULL << i)) {
        /* Skip ports that are not enabled */
        while ((ports_mask & (1 << rx_port)) == 0) {
            rx_port++;
            if (rx_port > (sizeof(ports_mask) * 8))
```

```
goto fail; /* not enough ports */
}
port_ids[i] = rx_port++;
} else if (output_cores_mask & (1ULL << i)) {
    /* Skip ports that are not enabled */
    while ((ports_mask & (1 << tx_port)) == 0) {
        tx_port++;
        if (tx_port > (sizeof(ports_mask) * 8))
            goto fail; /* not enough ports */
    }
    port_ids[i] = tx_port++;
}
```

Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each lcore. This function first checks the lcore_id against the user provided input_cores_mask and output_cores_mask to see if this core is reading from or writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 Forwarding sample application (see Section 9.4.6, "Receive, Process and Transmit Packets"). The packet transmission is done by calling write() with the file descriptor of the appropriate TAP interface and then explicitly freeing the mbuf back to the pool.

```
/* Loop forever reading from NIC and writing to tap */
for (;;) {
    struct rte mbuf *pkts burst[PKT BURST SZ];
    unsigned i;
    const unsigned nb rx = rte eth rx burst(port ids[lcore id], 0, pkts burst, PKT BURST SZ);
    lcore_stats[lcore_id].rx += nb_rx;
    for (i = 0; likely(i < nb rx); i++) {
        struct rte mbuf *m = pkts burst[i];
        int ret = write(tap fd, rte pktmbuf mtod(m, void*),
        rte pktmbuf data len(m));
        rte_pktmbuf_free(m);
        if (unlikely(ret<0))</pre>
            lcore stats[lcore id].dropped++;
        else
            lcore stats[lcore id].tx++;
    }
}
```

For the other case that reads from a TAP interface and writes to a NIC port, packets are retrieved by doing a read() from the file descriptor of the appropriate TAP interface. This fills in the data into the mbuf, then other fields are set manually. The packet can then be transmitted as normal.

```
/* Loop forever reading from tap and writing to NIC */
for (;;) {
   int ret;
   struct rte_mbuf *m = rte_pktmbuf_alloc(pktmbuf_pool);
   if (m == NULL)
        continue;
```

```
ret = read(tap_fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
if (unlikely(ret < 0)) {
    FATAL_ERROR("Reading from %s interface failed", tap_name);
}

m->pkt.nb_segs = 1;
m->pkt.next = NULL;
m->pkt.data_len = (uint16_t)ret;

ret = rte_eth_tx_burst(port_ids[lcore_id], 0, &m, 1);
if (unlikely(ret < 1)) {
    rte_pktmuf_free(m);
    lcore_stats[lcore_id].dropped++;
}
else {
    lcore_stats[lcore_id].tx++;
}</pre>
```

To set up loops for measuring throughput, TAP interfaces can be connected using bridging. The steps to do this are described in the section that follows.

Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format tap_dpdk_nn, where nn is the lcore ID. These TAP interfaces need to be configured for use:

```
ifconfig tap dpdk 00 up
```

To set up a bridge between two interfaces so that packets sent to one interface can be read from another, use the brctl tool:

```
brctl addbr "br0"
brctl addif br0 tap_dpdk_00
brctl addif br0 tap_dpdk_03
ifconfig br0 up
```

The TAP interfaces created by this application exist only when the application is running, so the steps above need to be repeated each time the application is run. To avoid this, persistent TAP interfaces can be created using openvpn:

```
openvpn --mktun --dev tap dpdk 00
```

If this method is used, then the steps above have to be done only once and the same TAP interfaces can be reused each time the application is run. To remove bridges and persistent TAP interfaces, the following commands are used:

```
ifconfig br0 down
brctl delbr br0
openvpn --rmtun --dev tap_dpdk_00
```

6.4 Hello World Sample Application

The Hello World sample application is an example of the simplest DPDK application that can be written. The application simply prints an "helloworld" message on every enabled lcore.

6.4.1 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/helloworld
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.4.2 Running the Application

To run the example in a linuxapp environment:

```
$ ./build/helloworld -c f -n 4
```

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.4.3 Explanation

The following sections provide some explanation of code.

EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main() function using the following code:

```
int
main(int argc, char **argv)
{
    ret = rte_eal_init(argc, argv);
    if (ret < 0)
        rte panic("Cannot init EAL\n");</pre>
```

This call finishes the initialization process that was started before main() is called (in case of a Linuxapp environment). The argc and argv arguments are provided to the rte_eal_init() function. The value returned is the number of parsed arguments.

Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore. In this example, lcore_hello() is called on every available lcore. The following is the definition of the function:

```
static int
lcore_hello( attribute ((unused)) void *arg)
{
    unsigned lcore_id;

    lcore_id = rte_lcore_id();
    printf("hello from core %u\n", lcore_id);
    return 0;
}
```

The code that launches the function on each lcore is as follows:

```
/* call lcore_hello() on every slave lcore */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
    rte_eal_remote_launch(lcore_hello, NULL, lcore_id);
}
/* call it on master lcore too */
lcore hello(NULL);
```

The following code is equivalent and simpler:

```
rte eal mp remote launch(lcore hello, NULL, CALL MASTER);
```

Refer to the *DPDK API Reference* for detailed information on the rte_eal_mp_remote_launch() function.

6.5 Basic Forwarding Sample Application

The Basic Forwarding sample application is a simple *skeleton* example of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding application. For more detailed implementations see the L2 and L3 forwarding sample applications.

6.5.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/skeleton
```

Set the target, for example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the *DPDK Getting Started* Guide for possible RTE TARGET values.

Build the application as follows:

make

6.5.2 Running the Application

To run the example in a linuxapp environment:

```
./build/basicfwd -c 2 -n 4
```

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.5.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail in the DPDK API Documentation.

The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

```
int ret = rte_eal_init(argc, argv);
if (ret < 0)
    rte exit(EXIT FAILURE, "Error with EAL initialization\n");</pre>
```

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.

The main() function also initializes all the ports using the user defined port_init() function which is explained in the next section:

Once the initialization is complete, the application is ready to launch a function on an lcore. In this example lcore_main() is called on a single lcore.

```
lcore_main();
```

The lcore main() function is explained below.

The Port Initialization Function

static inline int

The main functional part of the port initialization used in the Basic Forwarding application is shown below:

```
port init(uint8 t port, struct rte mempool *mbuf pool)
      struct rte_eth_conf port_conf = port conf default;
      const uint16 t rx rings = 1, tx rings = 1;
      struct ether addr addr;
      int retval;
      uint16 t q;
      if (port >= rte eth dev count())
          return -1;
      /* Configure the Ethernet device. */
      retval = rte eth dev configure(port, rx rings, tx rings, &port conf);
      if (retval != 0)
          return retval;
      /* Allocate and set up 1 RX queue per Ethernet port. */
      for (q = 0; q < rx rings; q++) {
          retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
                   rte eth_dev_socket_id(port), NULL, mbuf_pool);
          if (retval < 0)
               return retval;
      }
      /* Allocate and set up 1 TX queue per Ethernet port. */
      for (q = 0; q < tx rings; q++) {
          retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
                   rte_eth_dev_socket_id(port), NULL);
          if (retval < 0)</pre>
              return retval;
      }
      /* Start the Ethernet port. */
      retval = rte eth dev start(port);
      if (retval < 0)</pre>
          return retval;
      /* Enable RX in promiscuous mode for the Ethernet device. */
      rte eth promiscuous enable(port);
      return 0;
  }
The
       Ethernet
                  ports
                                 configured
                                              with
                                                     default
                                                                                  the
                          are
                                                               settinas
                                                                          usina
rte eth dev configure() function and the port conf default struct:
  static const struct rte eth conf port conf default = {
      .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
  };
For this example the ports are set up with 1 RX and 1 TX queue using the
rte eth rx queue setup() and rte eth tx queue setup() functions.
The Ethernet port is then started:
  retval = rte eth dev start(port);
Finally the RX port is set in promiscuous mode:
```

```
rte eth promiscuous enable(port);
```

The Lcores Main

As we saw above the main() function calls an application function on the available lcores. For the Basic Forwarding application the lcore function looks like the following:

```
attribute ((noreturn)) void
static
lcore main(void)
{
    const uint8_t nb_ports = rte_eth_dev_count();
    uint8_t port;
     * Check that the port is on the same NUMA node as the polling thread
     * for best performance.
     */
    for (port = 0; port < nb_ports; port++)</pre>
        if (rte_eth_dev_socket_id(port) > 0 &&
                rte eth dev socket id(port) !=
                         (int)rte_socket_id())
            printf("WARNING, port %u is on remote NUMA node to "
                    "polling thread.\n\tPerformance will "
                    "not be optimal.\n", port);
    printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
            rte lcore id());
    /* Run until the application is quit or killed. */
    for (;;) {
        /*
        * Receive packets on a port and forward them on the paired
         * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
        for (port = 0; port < nb ports; port++) {</pre>
            /* Get burst of RX packets, from first port of pair. */
            struct rte_mbuf *bufs[BURST_SIZE];
            const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
                    bufs, BURST_SIZE);
            if (unlikely(nb_rx == 0))
                continue;
            /* Send burst of TX packets, to second port of pair. */
            const uint16_t nb tx = rte eth tx burst(port ^ 1, 0,
                    bufs, nb_rx);
            /* Free any unsent packets. */
            if (unlikely(nb_tx < nb_rx)) {</pre>
                uint16_t buf;
                for (buf = nb_tx; buf < nb_rx; buf++)</pre>
                    rte_pktmbuf_free(bufs[buf]);
            }
        }
    }
```

The main work of the application is done within the loop:

```
for (;;) {
    for (port = 0; port < nb_ports; port++) {</pre>
```

```
/* Get burst of RX packets, from first port of pair. */
        struct rte mbuf *bufs[BURST SIZE];
        const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
                bufs, BURST_SIZE);
        if (unlikely(nb_rx == 0))
            continue;
        /* Send burst of TX packets, to second port of pair. */
        const uint16_t nb tx = rte eth tx burst(port ^ 1, 0,
                bufs, nb_rx);
        /* Free any unsent packets. */
        if (unlikely(nb_tx < nb_rx)) {</pre>
            uint16_t buf;
            for (buf = nb_tx; buf < nb_rx; buf++)</pre>
                rte_pktmbuf_free(bufs[buf]);
        }
    }
}
```

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are grouped in pairs with a simple mapping scheme using the an XOR on the port number:

```
0 -> 1
1 -> 0
2 -> 3
3 -> 2
```

The rte_eth_tx_burst() function frees the memory buffers of packets that are transmitted. If packets fail to transmit, $(nb_tx < nb_rx)$, then they must be freed explicitly using rte pktmbuf free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

6.6 RX/TX Callbacks Sample Application

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates the use of user defined callbacks on received and transmitted packets. The application performs a simple latency check, using callbacks, to determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received packets to add a timestamp. A separate callback is applied to all packets prior to transmission to calculate the elapsed time, in CPU cycles.

6.6.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/rxtx_callbacks
```

Set the target, for example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the *DPDK Getting Started* Guide for possible RTE_TARGET values.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is on in the config/common config file that applies to the target. This is generally on by default:

```
CONFIG RTE ETHDEV RXTX CALLBACKS=y
```

Build the application as follows:

make

6.6.2 Running the Application

To run the example in a linuxapp environment:

```
./build/rxtx_callbacks -c 2 -n 4
```

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.6.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the Basic Forwarding Sample Application. See that section of the documentation for more details of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

The Main Function

The main() function performs the application initialization and calls the execution threads for each lcore. This function is effectively identical to the main() function explained in Basic Forwarding Sample Application.

The lcore main() function is also identical.

The main difference is in the user defined port_init() function where the callbacks are added. This is explained in the next section:

The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

```
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
    struct rte_eth_conf port_conf = port_conf_default;
    const uint16_t rx_rings = 1, tx_rings = 1;
    struct ether_addr addr;
    int retval;
```

```
uint16_t q;
if (port >= rte eth dev count())
    return -1;
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
    return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx rings; q++) {
    retval = rte eth rx queue setup(port, q, RX RING SIZE,
            rte eth dev socket id(port), NULL, mbuf pool);
    if (retval < 0)</pre>
        return retval;
}
/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {
    retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
            rte_eth_dev_socket_id(port), NULL);
    if (retval < 0)</pre>
        return retval;
}
/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)</pre>
    return retval;
/* Enable RX in promiscuous mode for the Ethernet device. */
rte eth promiscuous enable(port);
/* Add the callbacks for RX and TX.*/
rte eth add rx callback(port, 0, add timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);
return 0;
```

The RX and TX callbacks are added to the ports/queues as function pointers:

```
rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte eth add tx callback(port, 0, calc latency, NULL);
```

More than one callback can be added and additional information can be passed to callback function pointers as a void*. In the examples above NULL is used.

The add timestamps() and calc latency() functions are explained below.

The add timestamps() Callback

}

The add_timestamps() callback is added to the RX port and is applied to all packets received:

```
uint64_t now = rte_rdtsc();
for (i = 0; i < nb_pkts; i++)
    pkts[i]->udata64 = now;
return nb_pkts;
}
```

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to each packet (see the *cycles* section of the *DPDK API Documentation* for details).

The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all packets prior to transmission:

```
static uint16 t
calc_latency(uint8_t port __rte_unused, uint16_t qidx __rte_unused,
        struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
    uint64_t cycles = 0;
    uint64 t now = rte rdtsc();
    unsigned i;
    for (i = 0; i < nb_pkts; i++)</pre>
        cycles += now - pkts[i]->udata64;
    latency numbers.total cycles += cycles;
    latency numbers.total pkts
                                += nb pkts;
    if (latency numbers.total pkts > (100 * 1000 * 1000ULL)) {
        printf("Latency = %"PRIu64" cycles\n",
                latency_numbers.total_cycles / latency_numbers.total_pkts);
        latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
    }
    return nb_pkts;
}
```

The calc_latency() function accumulates the total number of packets and the total number of cycles used. Once more than 100 million packets have been transmitted the average cycle count per packet is printed out and the counters are reset.

6.7 IP Fragmentation Sample Application

The IPv4 Fragmentation application is a simple example of packet processing using the Data Plane Development Kit (DPDK). The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

6.7.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Simple Application (in Real and Virtualised Environments)" for more information). This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:

- The first difference is that the IP Fragmentation sample application makes use of indirect buffers.
- The second difference is that the forwarding decision is taken based on information read from the input packet's IP header.
- The third difference is that the application differentiates between IP and non-IP traffic by means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number, associated with that IP address. Any unmatched packets are forwarded to the originating port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet is fragmented to fit into the "standard" Ethernet* v2 MTU (1500 bytes).

6.7.2 Building the Application

To build the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_fragmentation
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

1. Build the application:

make

6.7.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global I3fwd_ipv4_route_array and I3fwd_ipv6_route_array tables. For each input packet, the packet forwarding decision (that is, the identification of the output interface for the packet) is taken as a result of LPM lookup. If the IP packet size is greater than default output MTU, then the input packet is fragmented and several fragments are sent via the output interface.

Application usage:

```
./build/ip fragmentation [EAL options] -- -p PORTMASK [-q NQ]
```

where:

- -p PORTMASK is a hexadecimal bitmask of ports to configure
- -q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

```
./build/ip_fragmentation -c 0x14 -n 3 -- -p 5 EAL: coremask set to 14 EAL: Detected lcore 0 on socket 0
```

```
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)
IP_FRAG: entering main loop on lcore 4
IP FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP FRAG: -- lcoreid=2 portid=0
```

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

```
./build/ip fragmentation -c 0x10 -n 3 -- -p 5 -q 2
```

To test the application, flows should be set up in the flow generator that match the values in the l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default I3fwd_ipv4_route_array table is:

The default 13fwd ipv6 route array table is:

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198 bytes, seven IPv4 packets will be sent out from port #0 to the destination address 100.10.1.1: six of those packets will have length 1500 bytes and one packet will have length 318 bytes. IP Fragmentation sample application provides basic NUMA support in that all the memory structures are allocated on all sockets that have active lcores on them.

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.8 IPv4 Multicast Sample Application

The IPv4 Multicast application is a simple example of packet processing using the Data Plane Development Kit (DPDK). The application performs L3 multicasting.

6.8.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Sample Application (in Real and Virtualized Environments)" for details more information). This guide highlights the differences between the two applications. There are two key differences from the L2 Forwarding sample application:

- The IPv4 Multicast sample application makes use of indirect buffers.
- The forwarding decision is taken based on information read from the input packet's IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is composed of pairs of destination IPv4 address (the FBK) and a port mask associated with that IPv4 address.

For convenience and simplicity, this sample application does not take IANA-assigned multicast addresses into account, but instead equates the last four bytes of the multicast group (that is, the last four bytes of the destination IP address) with the mask of ports to multicast packets to. Also, the application does not consider the Ethernet addresses; it looks only at the IPv4 destination address for any given packet.

6.8.2 Building the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/ipv4 multicast
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for possible RTE_TARGET values.

1. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application written to a different location, the O=/path/to/build/directory option may be specified in the make command.

6.8.3 Running the Application

The application has a number of command line options:

```
./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]
```

where,

- -p PORTMASK: Hexadecimal bitmask of ports to configure
- -q NQ: determines the number of queues per lcore

Note: Unlike the basic L2/L3 Forwarding sample applications, NUMA support is not provided in the IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

```
./build/ipv4 multicast -c 0x00f -n 3 -- -p 0x3 -q 1
```

In this command:

- The -c option enables cores 0, 1, 2 and 3
- · The -n option specifies 3 memory channels
- · The -p option enables ports 0 and 1
- The -q option assigns 1 queue to each lcore

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.8.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding sample application (see Chapter 9 "L2 Forwarding Sample Application in Real and Virtualized Environments" for more information). The following sections describe aspects that are specific to the IPv4 Multicast sample application.

Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for indirect buffers used for packet duplication purposes. Memory pools for indirect buffers are initialized differently from the memory pool for direct buffers:

The reason for this is because indirect buffers are not supposed to hold any packet data and therefore can be initialized with lower amount of reserved memory for each buffer.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

```
static int
init_mcast_hash(void)
{
    uint32_t i;
    mcast_hash_params.socket_id = rte_socket_id();

    mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
    if (mcast_hash == NULL){
        return -1;
    }

    for (i = 0; i < N_MCAST_GROUPS; i ++){
        if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].porreturn -1;
     }
    }
    return 0;
}</pre>
```

Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is removed from the packet and the IPv4 address is extracted from the IPv4 header:

```
/* Remove the Ethernet header from the input packet */
iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct ether_hdr));
RTE_MBUF_ASSERT(iphdr != NULL);
dest addr = rte be to cpu 32(iphdr->dst addr);
```

Then, the packet is checked to see if it has a multicast destination address and if the routing table has any ports assigned to the destination address:

```
if (!IS_IPV4_MCAST(dest_addr) ||
    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
    (port_mask = hash & enabled_port_mask) == 0) {
        rte_pktmbuf_free(m);
        return;
}</pre>
```

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt() function:

```
/* Get number of bits set. */
static inline uint32_t bitcnt(uint32_t v)
{
    uint32_t n;
    for (n = 0; v != 0; v &= v - 1, n++)
        ;
    return (n);
}
```

This is done to determine which forwarding algorithm to use. This is explained in more detail in the next section.

Thereafter, a destination Ethernet address is constructed:

```
/* construct destination ethernet address */
dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
```

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same destination Ethernet address. The destination Ethernet address is constructed from the lower 23 bits of the multicast group ORed with the Ethernet address 01:00:5e:00:00:00, as per RFC 1112:

```
#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
(rte cpu to be 64(0x01005e000000ULL | ((x) & 0x7ffffff)) >> 16)
```

Then, packets are dispatched to the destination ports according to the portmask associated with a multicast group:

```
for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
    /* Prepare output packet and send it out. */

    if ((port_mask & 1) != 0) {
        if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
            mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
        else if (use_clone == 0)
            rte_pktmbuf_free(m);
    }
}
```

The actual packet transmission is done in the mcast_send_pkt() function:

```
static inline void mcast send pkt(struct rte mbuf *pkt, struct ether addr *dest addr, struct l
    struct ether hdr *ethdr;
    uint16_t len;
    /* Construct Ethernet header. */
    ethdr = (struct ether hdr *)rte pktmbuf prepend(pkt, (uint16_t) sizeof(*ethdr));
    RTE MBUF ASSERT(ethdr != NULL);
    ether addr copy(dest addr, &ethdr->d addr);
    ether addr copy(&ports eth addr[port], &ethdr->s addr);
    ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
    /* Put new packet into the output queue */
    len = gconf->tx mbufs[port].len;
    qconf->tx mbufs[port].m table[len] = pkt;
    qconf->tx mbufs[port].len = ++len;
    /* Transmit packets */
    if (unlikely(MAX PKT BURST == len))
        send_burst(qconf, port);
}
```

Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero-copy buffer cloning. There are two approaches for creating the outgoing packet and although both are based on the data zero-copy idea, there are some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments of the input packet and for each of segment, create a new buffer and attach that new buffer to the segment (refer to rte_pktmbuf_clone() in the rte_mbuf library for more details). A new buffer is then allocated for the packet header and is prepended to the cloned buffer.

The second approach does not make a clone, it just increments the reference counter for all input packet segment, allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet's data, but creates its own copy of packet's metadata. The second approach reuses both input packet's data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata, so we can safely modify the data pointer of the input packet. That allows us to skip creation if the output packet is for the last destination port and instead modify input packet's header in place. For example, for N destination ports, we need to invoke moast out pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet, that is, the "clone" operation is skipped completely. However, there is a price to pay. The input packet's metadata must remain intact, so for N destination ports, we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first approach is faster. As the number of outgoing ports (and/or input segments) grows, the second approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either the first (with cloning) or the second (without cloning) approach is taken:

```
use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);</pre>
```

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually cloning the buffers):

```
static inline struct rte mbuf *mcast out pkt(struct rte mbuf *pkt, int use clone)
   struct rte mbuf *hdr;
   /* Create new mbuf for the header. */
   if (unlikely ((hdr = rte pktmbuf alloc(header pool)) == NULL))
        return (NULL);
   /* If requested, then make a new clone packet. */
   if (use clone != 0 \& unlikely ((pkt = rte pktmbuf clone(pkt, clone pool)) == NULL)) {
        rte pktmbuf free(hdr);
        return (NULL);
   }
   /* prepend new header */
   hdr->pkt.next = pkt;
   /* update header's fields */
   hdr->pkt.pkt len = (uint16 t)(hdr->pkt.data len + pkt->pkt.pkt len);
   hdr->pkt.nb segs = (uint8_t)(pkt->pkt.nb segs + 1);
   /* copy metadata from source packet */
   hdr->pkt.in_port = pkt->pkt.in_port;
   hdr->pkt.vlan macip = pkt->pkt.vlan macip;
   hdr->pkt.hash = pkt->pkt.hash;
   hdr->ol flags = pkt->ol flags;
    rte_mbuf_sanity_check(hdr, RTE MBUF PKT, 1);
```

```
return (hdr);
}
```

6.9 IP Reassembly Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The application performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

6.9.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding with reassembly for IPv4 and IPv6 fragmented packets. The initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Sample Application" for more information). The main difference from the L2 Forwarding sample application is that it reassembles fragmented IPv4 and IPv6 packets before forwarding. The maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

- The first difference is that the forwarding decision is taken based on information read from the input packet's IP header.
- The second difference is that the application differentiates between IP and non-IP traffic by means of offload flags.
- 6.9.2 The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating port.Compiling the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_reassembly
```

1. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for possible RTE_TARGET values.

1. Build the application:

make

6.9.3 Running the Application

The application has a number of command line options:

```
./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[ where:
```

- -p PORTMASK: Hexadecimal bitmask of ports to configure
- -q NQ: Number of RX queues per lcore
- –maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535).
 Default value: 4096.
- -flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet. If all fragments of the packet wouldn't appear within given time-out, then they are consirdered as invalid and will be dropped. Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

```
./build/ip reassembly -c 0x14 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
. . .
IP RSMBL: entering main loop on lcore 4
IP_RSMBL: -- lcoreid=4 portid=2
IP RSMBL: entering main loop on lcore 2
IP RSMBL: -- lcoreid=2 portid=0
```

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

```
./build/ip_reassembly -c 0x10 -n 3 -- -p 5 -q 2
```

To test the application, flows should be set up in the flow generator that match the values in the l3fwd ipv4 route array and/or l3fwd ipv6 route array table.

Please note that in order to test this application, the traffic generator should be generating valid fragmented IP packets. For IPv6, the only supported case is when no other extension headers other than fragment extension header are present in the packet.

The default I3fwd_ipv4_route_array table is:

```
struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
     {IPv4(100, 10, 0, 0), 16, 0},
     {IPv4(100, 20, 0, 0), 16, 1},
     {IPv4(100, 30, 0, 0), 16, 2},
     {IPv4(100, 40, 0, 0), 16, 3},
     {IPv4(100, 50, 0, 0), 16, 4},
     {IPv4(100, 60, 0, 0), 16, 5},
     {IPv4(100, 70, 0, 0), 16, 6},
```

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a reassembled IPv4 packet be sent out from port #0 to the destination address 100.10.1.1 once all the fragments are collected.

6.9.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview section, the initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Sample Application" for more information). The following sections describe aspects that are specific to the IP reassemble sample application.

IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer's Guide for more detailed explanation of how to use this library. Fragment table maintains information about already received fragments of the packet. Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>. To avoid lock contention, each RX queue has its own Fragment Table, e.g. the application can't handle the situation when different fragments of the same packet arrive through different RX queues. Each table entry can hold information about packet consisting of up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

```
frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES
{
    RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", mareturn -1;
}
```

Mempools Initialization

The reassembly application demands a lot of mbuf's to be allocated. At any given time up to (2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per packet>) can be stored inside Fragment Table waiting for remaining fragments. To keep mempool size under reasonable limits and to avoid situation when one RX queue can starve other queues, each RX queue uses its own mempool.

```
nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
```

```
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
rte_snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {
    RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
    return -1;
}
```

Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function. If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 packets, or rte_ipv6_reassemble_packet() for IPv6 packets. These functions either return a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet can't be reassembled for some reason). Then l3fwd_simple_forward() continues with the code for the packet forwarding decision (that is, the identification of the output interface for the packet) and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

- Searching the Fragment Table for entry with packet's <IP Source Address, IP Destination Address, Packet ID>
- 2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously received fragments, and remove information about them from the entry.
- 3. If no entry with such key is found, then try to create a new one by one of two ways:
 - (a) Use as empty entry
 - (b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.
- 4. Update the entry with new fragment information and check if a packet can be reassembled (the packet's entry contains all fragments).
 - (a) If yes, then, reassemble the packet, mark table's entry as empty and return the reassembled mbuf to the caller.
 - (b) If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error (can't insert new entry into the Fragment table, or invalid/timed-out fragment), then it will free all associated with the packet fragments, mark the table entry as invalid and return NULL to the caller.

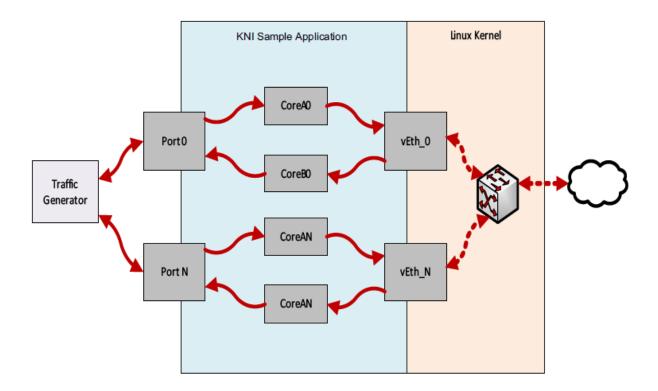
Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table. This macro is disabled by default. To make ip_reassembly print the statistics to the standard output, the user must send either an USR1, INT or TERM signal to the process. For all of these signals, the ip_reassembly process prints Fragment table statistics for each RX queue, plus the INT and TERM will cause process termination as usual.

6.10 Kernel NIC Interface Sample Application

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to exchange packets with the kernel networking stack. To accomplish this, DPDK userspace applications use an IOCTL call to request the creation of a KNI virtual device in the Linux* kernel. The IOCTL call provides interface information and the DPDK's physical address space, which is re-mapped into the kernel address space by the KNI kernel loadable module that saves the information to a virtual device context. The DPDK creates FIFO queues for packet ingress and egress to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL call access the DPDK's FIFO queue to receive/transmit packets from/to the DPDK userspace application. The FIFO queues contain pointers to data packets in the DPDK. This:


- Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
- Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)
- Eliminate the copy to user and copy from user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of the DPDK to create a path for packets to go through the Linux* kernel. This is done by creating one or more kernel net devices for each of the DPDK ports. The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and also the exchange of packets between the DPDK application and the Linux* kernel.

6.10.1 Overview

The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used, and allocates one or more KNI device for each physical NIC port with kernel module's support. For a physical NIC port, one thread reads from the port and writes to KNI devices, and another thread reads from KNI devices and writes the data unmodified to the physical NIC port. It is recommended to configure one KNI device for each physical NIC port. If configured with more than one KNI devices for a physical NIC port, it is just for performance testing, or it can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure. Figure 2. Kernel NIC Application Packet Flow

6.10.2 Compiling the Application

Compile the application as follows:

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk cd
${RTE_SDK}/examples/kni
```

2. Set the target (a default target is used if not specified)

Note: This application is intended as a linuxapp only.

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

3. Build the application:

make

6.10.3 Loading the Kernel Module

Loading the KNI kernel module without any parameter is the typical way a DPDK application gets packets into and out of the kernel net stack. This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side:

```
#insmod rte kni.ko
```

Pinning the kernel thread to a specific core can be done using a taskset command such as following:

```
#taskset -p 100000 pgrep --fl kni_thread | awk '{print $1}'
```

This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0), which means it needs to check if that lcore is available on the board. This command must be sent after the application has been launched, as insmod does not start the kni thread.

For optimum performance, the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application.

To provide flexibility of performance, the kernel module of the KNI, located in the kmod subdirectory of the DPDK target directory, can be loaded with parameter of kthread_mode as follows:

#insmod rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side. By default, it is in this single kernel thread mode. It can set core affinity for this kernel thread by using Linux command taskset.

#insmod rte_kni.ko kthread_mode =multiple

This mode will create a kernel thread for each KNI device for packet receiving in kernel side. The core affinity of each kernel thread is set when creating the KNI device. The lcore ID for each kernel thread is provided in the command line of launching the application. Multiple kernel thread mode can provide scalable higher performance.

To measure the throughput in a loopback mode, the kernel module of the KNI, located in the kmod sub-directory of the DPDK target directory, can be loaded with parameters as follows:

- #insmod rte_kni.ko lo_mode=lo_mode_fifo
 This loopback mode will involve ring engueue/dequeue operations in kernel space.
- #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb

This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.

6.10.4 Running the Application

The application requires a number of command line options:

```
kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,po
```

Where:

- -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
- -p PORTMASK: Hexadecimal bitmask of ports to configure.
- -config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]": Determines which lcores of RX, TX, kernel thread are mapped to which ports.

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

The -c coremask parameter of the EAL options should include the lcores indicated by the lcore rx and lcore tx, but does not need to include lcores indicated by lcore kthread as they

are used to pin the kernel thread on. The -p PORTMASK parameter should include the ports indicated by the port in -config, neither more nor less.

The lcore_kthread in —config can be configured none, one or more lcore IDs. In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port, while no specific lcore affinity will be set for its kernel thread. If configured one or more lcore IDs, one or more KNI devices will be allocated for each port, while specific lcore affinity will be set for its kernel thread. In single kernel thread mode, if configured none, a KNI device will be allocated for each port. If configured one or more lcore IDs, one or more KNI devices will be allocated for each port while no lcore affinity will be set as there is only one kernel thread for all KNI devices.

For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX, and one lcore of kernel thread for each port:

```
./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
```

6.10.5 KNI Operations

Once the KNI application is started, one can use different Linux* commands to manage the net interfaces. If more than one KNI devices configured for a physical port, only the first KNI device will be paired to the physical device. Operations on other KNI devices will not affect the physical port handled in user space application.

Assigning an IP address:

```
#ifconfig vEth0_0 192.168.0.1

Displaying the NIC registers:
#ethtool -d vEth0_0

Dumping the network traffic:
```

```
#tcpdump -i vEth0 0
```

When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.

6.10.6 Explanation

The following sections provide some explanation of code.

Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding sample application (see Chapter 9 "L2 Forwarding Sample Application (in Real and Virtualized Environments" for details). In addition, one or more kernel NIC interfaces are allocated for each of the configured ports according to the command line parameters.

The code for creating the kernel NIC interface for a specific port is as follows:

The code for allocating the kernel NIC interfaces for a specific port is as follows:

```
kni_alloc(uint8_t port_id)
     uint8_t i;
     struct rte_kni *kni;
     struct rte kni conf conf;
     struct kni_port_params **params = kni_port_params_array;
     if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
         return -1;
     params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;
     for (i = 0; i < params[port id] -> nb kni; i++) {
         /* Clear conf at first */
         memset(&conf, 0, sizeof(conf));
         if (params[port_id]->nb_lcore_k) {
             rte_snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
             conf.core id = params[port_id]->lcore_k[i];
             conf.force bind = 1;
         } else
             rte snprintf(conf.name, RTE KNI NAMESIZE, "vEth%u", port id);
             conf.group_id = (uint16_t)port_id;
             conf.mbuf_size = MAX_PACKET_SZ;
                  The first KNI device associated to a port
                  is the master, for multiple kernel thread
                  environment.
             if (i == 0) {
                 struct rte kni ops ops;
                 struct rte_eth_dev_info dev_info;
                 memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_in
                 conf.addr = dev info.pci dev->addr;
                 conf.id = dev_info.pci_dev->id;
                 memset(&ops, 0, sizeof(ops));
                 ops.port id = port id;
                 ops.change mtu = kni change mtu;
                 ops.config network if = kni config network interface;
                 kni = rte kni alloc(pktmbuf pool, &conf, &ops);
             } else
                 kni = rte kni alloc(pktmbuf pool, &conf, NULL);
             if (!kni)
                 rte exit(EXIT FAILURE, "Fail to create kni for "
                          "port: %d\n", port id);
             params[port id]->kni[i] = kni;
         }
     return 0;
}
```

The other step in the initialization process that is unique to this sample application is the association of each port with lcores for RX, TX and kernel threads.

static int

- · One Icore to read from the port and write to the associated one or more KNI devices
- Another lcore to read from one or more KNI devices and write to the port
- Other lcores for pinning the kernel threads on one by one

This is done by using the 'kni_port_params_array[]' array, which is indexed by the port ID. The code is as follows:

```
static int
parse config(const char *arg)
    const char *p, *p0 = arg;
    char s[256], *end;
    unsigned size;
    enum fieldnames {
        FLD PORT = 0,
        FLD LCORE RX,
        FLD LCORE TX,
        NUM FLD = KNI MAX KTHREAD + 3,
    };
    int i, j, nb token;
    char *str fld[ NUM FLD];
    unsigned long int_fld[_NUM_FLD];
    uint8 t port id, nb kni port params = 0;
    memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));
    while (((p = strchr(p0, '('))) != NULL) \&\& nb_kni_port_params < RTE_MAX_ETHPORTS) {
        p++;
        if ((p0 = strchr(p, ')')) == NULL)
            goto fail;
        size = p0 - p;
        if (size >= sizeof(s)) {
            printf("Invalid config parameters\n");
            goto fail;
        }
        rte snprintf(s, sizeof(s), "%.*s", size, p);
        nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');
        if (nb token <= FLD LCORE TX) {
            printf("Invalid config parameters\n");
            goto fail;
        }
        for (i = 0; i < nb\_token; i++) {
            errno = 0;
            int fld[i] = strtoul(str fld[i], &end, 0);
            if (errno != 0 || end == str fld[i]) {
                printf("Invalid config parameters\n");
                goto fail;
            }
        }
        i = 0;
        port_id = (uint8_t)int_fld[i++];
        if (port id >= RTE MAX ETHPORTS) {
            printf("Port ID %u could not exceed the maximum %u\n", port id, RTE MAX ETHPORTS);
            goto fail;
        }
```

```
if (kni port params array[port id]) {
            printf("Port %u has been configured\n", port id);
            goto fail;
        }
        kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params
        kni_port_params_array[port_id]->port_id = port_id;
        kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
        kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
        if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array
            printf("lcore rx %u or lcore tx %u ID could not "
                    "exceed the maximum u\n",
                    kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->
            goto fail;
       }
    for (j = 0; i < nb token \&\& j < KNI MAX KTHREAD; i++, j++)
        kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
        kni_port_params_array[port_id]->nb_lcore_k = j;
    print config();
    return 0;
fail:
    for (i = 0; i < RTE_MAX_ETHPORTS; i++) {</pre>
        if (kni_port_params_array[i]) {
            rte_free(kni_port_params_array[i]);
            kni_port_params_array[i] = NULL;
    }
    return -1;
}
```

Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore. This function first checks the lcore_id against the user provided lcore_rx and lcore_tx to see if this lcore is reading from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces, the packet reception is the same as in L2 Forwarding sample application (see Section 9.4.6 "Receive, Process and Transmit Packets"). The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst(). The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.

```
/**
  * Interface to burst rx and enqueue mbufs into rx_q
  */
static void
kni_ingress(struct kni_port_params *p)
{
    uint8_t i, nb_kni, port_id;
    unsigned nb_rx, num;
```

```
struct rte mbuf *pkts burst[PKT BURST SZ];
    if (p == NULL)
        return;
    nb kni = p->nb kni;
    port_id = p->port_id;
    for (i = 0; i < nb_kni; i++) {</pre>
        /* Burst rx from eth */
        nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT BURST SZ);
        if (unlikely(nb_rx > PKT_BURST_SZ)) {
            RTE LOG(ERR, APP, "Error receiving from eth\n");
            return;
        }
        /* Burst tx to kni */
        num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
        kni_stats[port_id].rx_packets += num;
        rte_kni_handle_request(p->kni[i]);
        if (unlikely(num < nb rx)) {</pre>
            /* Free mbufs not tx to kni interface */
            kni burst free mbufs(&pkts burst[num], nb rx - num);
            kni_stats[port_id].rx_dropped += nb_rx - num;
        }
    }
}
```

For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading mbufs from kernel NIC interfaces by $rte_kni_rx_burst()$. The packet transmission is the same as in the L2 Forwarding sample application (see Section 9.4.6 "Receive, Process and Transmit Packet's").

```
Interface to dequeue mbufs from tx q and burst tx
static void
kni egress(struct kni port params *p)
    uint8 t i, nb kni, port id;
    unsigned nb tx, num;
    struct rte mbuf *pkts burst[PKT BURST SZ];
    if (p == NULL)
        return;
    nb kni = p->nb kni;
    port id = p->port id;
    for (i = 0; i < nb kni; i++) {
        /* Burst rx from kni */
        num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT BURST SZ);
        if (unlikely(num > PKT BURST SZ)) {
            RTE LOG(ERR, APP, "Error receiving from KNI\n");
            return;
        }
        /* Burst tx to eth */
        nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);
```

```
kni_stats[port_id].tx_packets += nb_tx;

if (unlikely(nb_tx < num)) {
     /* Free mbufs not tx to NIC */
     kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
     kni_stats[port_id].tx_dropped += num - nb_tx;
    }
}
}</pre>
```

Callbacks for Kernel Requests

To execute specific PMD operations in user space requested by some Linux* commands, call-backs must be implemented and filled in the struct rte_kni_ops structure. Currently, setting a new MTU and configuring the network interface (up/ down) are supported.

```
static struct rte_kni_ops kni_ops = {
    .change_mtu = kni_change_mtu,
    .config_network_if = kni_config_network_interface,
};
/* Callback for request of changing MTU */
static int
kni change mtu(uint8_t port id, unsigned new mtu)
    int ret;
    struct rte_eth_conf conf;
    if (port_id >= rte_eth_dev_count()) {
        RTE LOG(ERR, APP, "Invalid port id %d\n", port id);
        return -EINVAL;
    RTE LOG(INFO, APP, "Change MTU of port %d to %u\n", port id, new mtu);
    /* Stop specific port */
    rte_eth_dev_stop(port_id);
    memcpy(&conf, &port_conf, sizeof(conf));
    /* Set new MTU */
    if (new mtu > ETHER MAX LEN)
        conf.rxmode.jumbo frame = 1;
    else
        conf.rxmode.jumbo_frame = 0;
    /* mtu + length of header + length of FCS = max pkt length */
    conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;
    ret = rte eth dev configure(port id, 1, 1, &conf);
    if (ret < 0) {
        RTE LOG(ERR, APP, "Fail to reconfigure port %d\n", port id);
        return ret;
    }
    /* Restart specific port */
```

```
ret = rte_eth_dev_start(port_id);
    if (ret < 0) {
        RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);
    }
    return 0;
}
/* Callback for request of configuring network interface up/down */
static int
kni config network interface(uint8_t port id, uint8_t if up)
    int ret = 0;
    if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
        RTE LOG(ERR, APP, "Invalid port id %d\n", port_id);
        return -EINVAL;
    }
    RTE LOG(INFO, APP, "Configure network interface of %d %s\n",
    port_id, if_up ? "up" : "down");
    if (if up != 0) {
        /* Configure network interface up */
        rte_eth_dev_stop(port_id);
        ret = rte_eth_dev_start(port_id);
    } else /* Configure network interface down */
        rte eth dev stop(port id);
    if (ret < 0)
        RTE LOG(ERR, APP, "Failed to start port %d\n", port id);
    return ret;
}
```

6.11 L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.

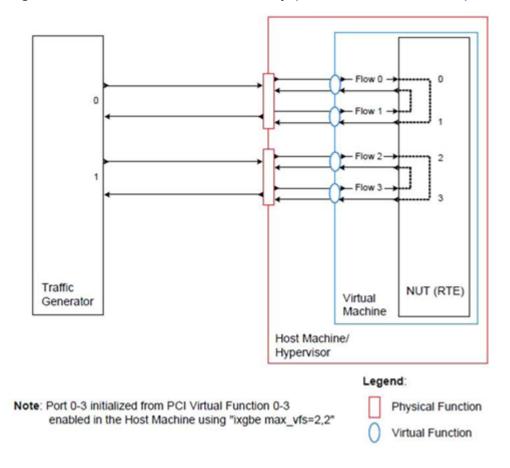
The L2 Forwarding sample application is a simple example of packet processing using the Data Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate possible scheme of job stats library usage therefore some parts of this document is identical with original L2 forwarding application.

6.11.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs L2 forwarding for each packet that is received. The destination port is the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask 0xf), ports

1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the MAC addresses are affected as follows:


- The source MAC address is replaced by the TX port MAC address
- The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Figure 3.

The application can also be used in a virtualized environment as shown in Figure 4.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. **Figure 3. Performance Benchmark Setup (Basic Environment)**

Figure 4. Performance Benchmark Setup (Virtualized Environment)

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a virtual machine without passing through the whole Network Device into a guest machine in a virtualized scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical ports in the PCI configuration space. It is important to note that enabled Virtual

Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

6.11.2 Compiling the Application

1. Go to the example directory:

```
export RTE SDK=/path/to/rte sdk cd ${RTE SDK}/examples/l2fwd-jobstats
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

6.11.3 Running the Application

The application requires a number of command line options:

```
./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l] where.
```

- p PORTMASK: A hexadecimal bitmask of the ports to configure
- q NQ: A number of queues (=ports) per lcore (default is 1)
- I: Use locale thousands separator when formatting big numbers.

To run the application in linuxapp environment with 4 lcores, 16 ports, 8 RX queues per lcore and thousands separator printing, issue the command:

```
$ ./build/l2fwd-jobstats -c f -n 4 -- -q 8 -p ffff -l
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.11.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction Layer (EAL) arguments (see Section 9.3). The preferred way to parse parameters is to use the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument parsing is not described here. Refer to the *glibc getopt(3)* man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of the main() function:

```
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
    rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */
ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
    rte exit(EXIT_FAILURE, "Invalid_L2FWD_arguments\n");</pre>
```

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects that will be used by the driver and the application to store network packet data:

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a pool that will be used by the driver, which expects to have some reserved space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32 mbufs is kept. The memory is allocated in rte_socket_id() socket, but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte mempool create() function:

- The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private data of the mempool, which is needed by the driver. This function is provided by the mbuf API, but can be copied and extended by the developer.
- The second callback pointer given to rte_mempool_create() is the mbuf initializer. The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a more complex application wants to extend the rte_pktmbuf structure for its own needs, a new function derived from rte_pktmbuf_init() can be created.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the *DPDK Programmer's Guide* and the *DPDK API Reference*.

```
nb_ports = rte_eth_dev_count();
```

```
if (nb ports == 0)
    rte exit(EXIT FAILURE, "No Ethernet ports - bye\n");
if (nb_ports > RTE_MAX_ETHPORTS)
    nb_ports = RTE_MAX_ETHPORTS;
/* reset l2fwd_dst_ports */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)</pre>
    l2fwd_dst_ports[portid] = 0;
last port = 0;
* Each logical core is assigned a dedicated TX queue on each port.
for (portid = 0; portid < nb_ports; portid++) {</pre>
    /* skip ports that are not enabled */
    if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
       continue;
    if (nb ports in mask % 2) {
        l2fwd dst ports[portid] = last port;
        l2fwd_dst_ports[last_port] = portid;
    }
    else
       last port = portid;
    nb_ports_in_mask++;
    rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}
```

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one lcore is able to poll a given port). The number of TX queues depends on the number of available lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

The global configuration is stored in a static structure:

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores to poll all the ports.

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

```
struct lcore_queue_conf {
    unsigned n_rx_port;
    unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
    truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

    struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
    struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

    struct rte_timer flush_timer;
    struct rte_jobstats flush_job;
    struct rte_jobstats idle_job;
    struct rte_jobstats_context jobs_context;

    rte_atomic16_t stats_read_pending;
    rte_spinlock_t lock;
} __rte_cache_aligned;
```

Values of struct lcore queue conf:

- n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section 9.4.6 "Receive, Process and Transmit Packets" later in this chapter).
- rx timers and flush timer are used to ensure forced TX on low packet rate.
- flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd jobs.
- stats read pending and lock are used during job stats read phase.

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

Jobs statistics initialization

There are several statistics objects available:

· Flush job statistics

```
rte jobstats init(&gconf->flush job, "flush", drain tsc, drain tsc,
        drain tsc, 0);
rte timer init(&qconf->flush timer);
ret = rte timer reset(&qconf->flush timer, drain tsc, PERIODICAL,
           lcore_id, &l2fwd_flush_job, NULL);
if (ret < 0) {
    rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",
                lcore id, rte strerror(-ret));

    Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);
rte timer init(&qconf->rx timers[i]);
ret = rte timer reset(&qconf->rx timers[i], 0, PERIODICAL, lcore id,
        l2fwd_fwd_job, (void *)(uintptr_t)i);
if (ret < 0) {
    rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",
                lcore id, qconf->rx port list[i], rte strerror(-ret));
}
```

Following parameters are passed to rte_jobstats_init():

- · 0 as minimal poll period
- drain_tsc as maximum poll period
- MAX PKT BURST as desired target value (RX burst size)

Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the I2fwd_main_loop() function three loops are placed.

```
for (;;) {
    rte_spinlock_lock(&qconf->lock);

do {
       rte_jobstats_context_start(&qconf->jobs_context);

       /* Do the Idle job:
       * - Read stats_read_pending flag
       * - check if some real job need to be executed
       */
       rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);
       do {
```

```
uint8 t i;
        uint64_t now = rte_get_timer_cycles();
        need_manage = qconf->flush_timer.expire < now;</pre>
        /* Check if we was esked to give a stats. */
        stats_read_pending =
                rte_atomic16_read(&qconf->stats_read_pending);
        need_manage |= stats_read_pending;
        for (i = 0; i < qconf->n_rx_port && !need_manage; i++)
            need manage = qconf->rx timers[i].expire < now;</pre>
    } while (!need manage);
    rte jobstats finish(&qconf->idle job, qconf->idle job.target);
    rte timer manage();
    rte_jobstats_context_finish(&qconf->jobs_context);
} while (likely(stats_read_pending == 0));
rte_spinlock_unlock(&qconf->lock);
rte pause();
```

First inifnite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. When any job is ready, the use rte_timer_manage() is used to call the job handler. In this place functions I2fwd_fwd_job() and I2fwd_flush_job() are called when needed. Then rte_jobstats_context_finish() is called to mark loop end - no other jobs are ready to execute. By this time stats are ready to be read and if stats read pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is moniting if any job is ready or stats job read is pending for this lcore. Statistics from this part of code is considered as the headroom available fo additional processing.

Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of particular port and forward it. This is done using the following code:

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

After first read second try is issued.

```
if (total_nb_rx == MAX_PKT_BURST) {
   const uint16 t nb rx = rte eth rx burst((uint8 t) portid, 0, pkts burst,
```

```
MAX_PKT_BURST);

total_nb_rx += nb_rx;
for (j = 0; j < nb_rx; j++) {
    m = pkts_burst[j];
    rte_prefetch0(rte_pktmbuf_mtod(m, void *));
    l2fwd_simple_forward(m, portid);
}
</pre>
```

This second read is important to give job stats library a feedback how many packets was processed.

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each l2fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be increased. If it is greater the period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (I2fwd_dst_ports[]) is filled such that for each source port, a destination port is assigned that is either the next or previous enabled port from the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

```
static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
    struct ether_hdr *eth;
    void *tmp;
    unsigned dst_port;

    dst_port = l2fwd_dst_ports[portid];
    eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

    /* 02:00:00:00:00:xx */

    tmp = &eth->d_addr.addr_bytes[0];
    *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

    /* src addr */
    ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
    l2fwd_send_packet(m, (uint8_t) dst_port);
}
```

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test application, the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop to send all the received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as packet N-1. The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The I2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full, the whole packets table is transmitted using the I2fwd_send_burst() function:

```
/* Send the packet on an output interface */
static int
12fwd send packet(struct rte mbuf *m, uint8 t port)
    unsigned lcore id, len;
    struct lcore queue conf *qconf;
    lcore_id = rte_lcore_id();
    qconf = &lcore_queue_conf[lcore_id];
    len = qconf->tx mbufs[port].len;
    qconf->tx mbufs[port].m table[len] = m;
    len++:
    /* enough pkts to be sent */
    if (unlikely(len == MAX PKT BURST)) {
        l2fwd send burst(gconf, MAX PKT BURST, port);
        len = 0;
    }
    gconf->tx mbufs[port].len = len; return 0;
}
```

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job() is called periodically to for each lcore draining TX queue of each port. This technique introduces some latency when there are not many packets to send, however it improves performance:

```
static void
l2fwd flush job( rte unused struct rte timer *timer,  rte unused void *arg)
    uint64 t now;
    unsigned lcore id;
    struct lcore queue conf *qconf;
    struct mbuf_table *m table;
    uint8 t portid;
    lcore id = rte lcore id();
    qconf = &lcore_queue_conf[lcore_id];
    rte jobstats start(&qconf->jobs context, &qconf->flush job);
    now = rte get timer cycles();
    lcore id = rte lcore id();
    qconf = &lcore queue conf[lcore id];
    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {</pre>
        m table = &qconf->tx mbufs[portid];
        if (m table->len == 0 || m table->next flush time <= now)</pre>
            continue;
        l2fwd send burst(qconf, portid);
    }
    /* Pass target to indicate that this job is happy of time interval
     * in which it was called. */
```

```
rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);
}
```

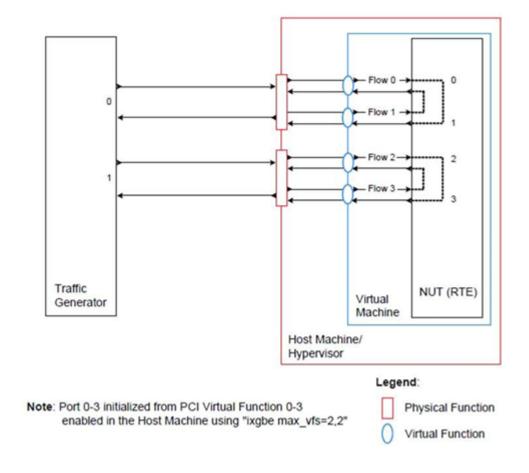
6.12 L2 Forwarding Sample Application (in Real and Virtualized Environments)

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used, however, in later DPDK versions these sample applications have been merged.

6.12.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs L2 forwarding for each packet that is received on an RX_PORT. The destination port is the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask 0xf), ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the MAC addresses are affected as follows:


- The source MAC address is replaced by the TX_PORT MAC address
- The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Figure 3.

The application can also be used in a virtualized environment as shown in Figure 4.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. **Figure 3. Performance Benchmark Setup (Basic Environment)**

Figure 4. Performance Benchmark Setup (Virtualized Environment)

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a virtual machine without passing through the whole Network Device into a guest machine in a virtualized scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

```
modprobe ixgbe max_vfs=2,2
```

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical ports in the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

6.12.2 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l2fwd
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

6.12.3 Running the Application

The application requires a number of command line options:

```
./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] where.
```

- p PORTMASK: A hexadecimal bitmask of the ports to configure
- q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore, issue the command:

```
$ ./build/l2fwd -c f -n 4 -- -q 8 -p ffff
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.12.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction Layer (EAL) arguments (see Section 9.3). The preferred way to parse parameters is to use the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument parsing is not described here. Refer to the *glibc getopt(3)* man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of the main() function:

```
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
    rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
    rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");</pre>
```

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects that will be used by the driver and the application to store network packet data:

```
/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_mempool_create("mbuf_pool", NB_MBUF, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, SOCKETO, 0);
if (l2fwd_pktmbuf_pool == NULL)
    rte_panic("Cannot init mbuf pool\n");
```

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a pool that will be used by the driver, which expects to have some reserved space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32 mbufs is kept. The memory is allocated in NUMA socket 0, but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte mempool create() function:

- The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private data of the mempool, which is needed by the driver. This function is provided by the mbuf API, but can be copied and extended by the developer.
- The second callback pointer given to rte_mempool_create() is the mbuf initializer. The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a more complex application wants to extend the rte_pktmbuf structure for its own needs, a new function derived from rte_pktmbuf_init() can be created.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.

```
if (rte_eal_pci_probe() < 0)
    rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
    rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > RTE_MAX_ETHPORTS)
    nb_ports = RTE_MAX_ETHPORTS;

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
    l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
    * Each logical core is assigned a dedicated TX queue on each port.
    */</pre>
```

```
for (portid = 0; portid < nb_ports; portid++) {
    /* skip ports that are not enabled */

    if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
        continue;

    if (nb_ports_in_mask % 2) {
        l2fwd_dst_ports[portid] = last_port;
        l2fwd_dst_ports[last_port] = portid;
    }
    else
        last_port = portid;
    nb_ports_in_mask++;
    rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}</pre>
```

Observe that:

- rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.
- rte eal pci probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one lcore is able to poll a given port). The number of TX queues depends on the number of available lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

The global configuration is stored in a static structure:

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores to poll all the ports.

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore queue conf.

```
struct lcore_queue_conf {
    unsigned n_rx_port;
    unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
    struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
} rte_cache_aligned;
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
```

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section 9.4.6 "Receive, Process and Transmit Packets" later in this chapter).

The global configuration for the RX queues is stored in a static structure:

```
static const struct rte_eth_rxconf rx_conf = {
    .rx_thresh = {
        .pthresh = RX_PTHRESH,
        .hthresh = RX_HTHRESH,
        .wthresh = RX_WTHRESH,
    },
};
```

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

The global configuration for TX queues is stored in a static structure:

```
static const struct rte_eth_txconf tx_conf = {
    .tx_thresh = {
        .pthresh = TX_PTHRESH,
        .hthresh = TX_HTHRESH,
        .wthresh = TX_WTHRESH,
    },
    .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};
```

Receive, Process and Transmit Packets

In the I2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. This is done using the following code:

```
/*
  * Read packet from RX queues
  */

for (i = 0; i < qconf->n_rx_port; i++) {
    portid = qconf->rx_port_list[i];
    nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

  for (j = 0; j < nb_rx; j++) {
        m = pkts_burst[j];
        rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
    }
}</pre>
```

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, a destination port is assigned that is either the next or previous enabled port from the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

```
static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
    struct ether_hdr *eth;
    void *tmp;
    unsigned dst_port;
    dst_port = l2fwd_dst_ports[portid];
    eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
    /* 02:00:00:00:00:xx */
    tmp = &eth->d_addr.addr_bytes[0];
    *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
    /* src addr */
    ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
    l2fwd_send_packet(m, (uint8_t) dst_port);
}
```

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test application, the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop to send all the received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as packet N-1. The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The I2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full, the whole packets table is transmitted using the I2fwd_send_burst() function:

```
/* Send the packet on an output interface */
static int
l2fwd send packet(struct rte mbuf *m, uint8 t port)
    unsigned lcore id, len;
    struct lcore_queue_conf \*qconf;
    lcore_id = rte_lcore_id();
    qconf = &lcore_queue_conf[lcore_id];
    len = qconf->tx mbufs[port].len;
    qconf->tx mbufs[port].m table[len] = m;
    len++:
    /* enough pkts to be sent */
    if (unlikely(len == MAX PKT BURST)) {
        l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
        len = 0;
    }
    qconf->tx mbufs[port].len = len; return 0;
}
```

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop. This technique introduces some latency when there are not many packets to send, however it improves performance:

```
cur_tsc = rte_rdtsc();
     TX burst queue drain
diff tsc = cur tsc - prev tsc;
if (unlikely(diff tsc > drain tsc)) {
    for (portid = 0; portid < RTE MAX ETHPORTS; portid++) {</pre>
        if (qconf->tx_mbufs[portid].len == 0)
            continue:
        l2fwd send burst(&lcore queue conf[lcore id], qconf->tx mbufs[portid].len, (uint8 t) p
        qconf->tx mbufs[portid].len = 0;
    }
    /* if timer is enabled */
    if (timer period > 0) {
        /* advance the timer */
        timer tsc += diff tsc;
        /* if timer has reached its timeout */
        if (unlikely(timer tsc >= (uint64_t) timer period)) {
```

```
/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
    print_stats();

    /* reset the timer */
    timer_tsc = 0;
    }
}

prev_tsc = cur_tsc;
}
```

6.13 L3 Forwarding Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The application performs L3 forwarding.

6.13.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding. The initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Sample Application (in Real and Virtualized Environments)" for more information). The main difference from the L2 Forwarding sample application is that the forwarding decision is made based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When the selected lookup method is hash-based, a hash object is used to emulate the flow classification stage. The hash object is used in correlation with a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port. The ID of the output interface for the input packet is read from the identified flow table entry. The set of flows used by the application is statically configured and loaded into the hash at initialization time. When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet. The ID of the output interface for the input packet is the next hop returned by the LPM lookup. The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.

6.13.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l3fwd
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.13.3 Running the Application

The application has a number of command line options:

```
./build/l3fwd [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore) where,
```

- -p PORTMASK: Hexadecimal bitmask of ports to configure
- -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless
 of the packet's Ethernet MAC destination address. Without this option, only packets
 with the Ethernet MAC destination address set to the Ethernet address of the port are
 accepted.
- -config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores
- · -enable-jumbo: optional, enables jumbo frames
- –max-pkt-len: optional, maximum packet length in decimal (64-9600)
- · -no-numa: optional, disables numa awareness
- –hash-entry-num: optional, specifies the hash entry number in hexadecimal to be setup
- –ipv6: optional, set it if running ipv6 packets

For example, consider a dual processor socket platform where cores 0-7 and 16-23 appear on socket 0, while cores 8-15 and 24-31 appear on socket 1. Let's say that the programmer wants to use memory from both NUMA nodes, the platform has only two ports, one connected to each NUMA node, and the programmer wants to use two cores from each processor socket to do the packet processing.

To enable L3 forwarding between two ports, using two cores, cores 1 and 2, from each processor, while also taking advantage of local memory access by optimizing around NUMA, the programmer must enable two queues from each port, pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is achieved using the following command:

```
./build/l3fwd -c 606 -n 4 -- -p 0x3 --config="(0,0,1),(0,1,2),(1,0,9),(1,1,10)"
```

In this command:

- The -c option enables cores 0, 1, 2, 3
- The -p option enables ports 0 and 1

The –config option enables two queues on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port	Queue	Icore	Description	
0	0	0	Map queue 0 from port 0 to lcore 0.	
0	1	2	Map queue 1 from port 0 to lcore 2.	
1	0	1	Map queue 0 from port 1 to lcore 1.	
1	1	3	Map queue 1 from port 1 to lcore 3.	

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.13.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview section, the initialization and run-time paths are very similar to those of the L2 forwarding application (see Chapter 9 "L2 Forwarding Sample Application (in Real and Virtualized Environments)" for more information). The following sections describe aspects that are specific to the L3 Forwarding sample application.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array, and then generate the expected 5-tuple as key to keep consistence with those of real flow for the convenience to execute hash performance test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either table depending on the value of variable ipv6. To support the hash performance test with up to 8M single direction flows/16M bi-direction flows, populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry number(default 4M).

Note: Value of global variable ipv6 can be specified with –ipv6 in the command line. Value of global variable hash_entry_number, which is used to specify the total hash entry number for all used ports in hash performance test, can be specified with –hash-entry-num VALUE in command line, being its default value 4.

```
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

static void
setup_hash(int socketid)
{
    // ...

if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
    if (ipv6 == 0) {
        /* populate the ipv4 hash */
        populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_end
} else {
        /* populate the ipv6 hash */
```

LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

```
#if (APP LOOKUP METHOD == APP LOOKUP LPM)
static void
setup_lpm(int socketid)
    unsigned i;
    int ret;
    char s[64];
    /* create the LPM table */
    rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
    ipv4 l3fwd lookup struct[socketid] = rte lpm create(s, socketid, IPV4 L3FWD LPM MAX RULES,
    if (ipv4 l3fwd lookup struct[socketid] == NULL)
        rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
            " on socket %d\n", socketid);
    /* populate the LPM table */
    for (i = 0; i < IPV4 L3FWD NUM ROUTES; i++) {
        /* skip unused ports */
        if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)</pre>
            continue;
        ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
                                 ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_
        if (ret < 0) {
            rte exit(EXIT FAILURE, "Unable to add entry %u to the "
                    "l3fwd LPM table on socket %d\n", i, socketid);
        }
        printf("LPM: Adding route 0x%08x / %d (%d)\n",
            (unsigned)ipv4 l3fwd route array[i].ip, ipv4 l3fwd route array[i].depth, ipv4 l3fwl
    }
#endif
```

Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets. The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding for any number of burst packets received, and the packet forwarding decision (that is, the identification of the output interface for the packet) for hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function. The get_ipv4_dst_port() function is shown below:

```
static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
   int ret = 0;
   union ipv4_5tuple_host key;
   ipv4_hdr = (uint8_t \*)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
   m128i data = _mm_loadu_si128(( m128i*)(ipv4_hdr));
   /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
   key.xmm = _mm_and_si128(data, mask0);
   /* Find destination port */
   ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
   return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
}</pre>
```

The get ipv6 dst port() function is similar to the get ipv4 dst port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and ipv6 packets, they leverage the multiple buffer optimization to boost the performance of forwarding packets with the exact match on hash table. The key code snippet of simple_ipv4_fwd_4pkts() is shown below:

```
static inline void
simple ipv4 fwd 4pkts(struct rte mbuf* m[4], uint8_t portid, struct lcore conf *qconf)
    data[0] = mm loadu si128(( m128i*)(rte pktmbuf mtod(m[0], unsigned char *) + sizeof(struc
    data[1] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struc
    data[2] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(structure)
    data[3] = mm loadu si128(( m128i*)(rte pktmbuf mtod(m[3], unsigned char *) + sizeof(struc
    key[0].xmm = _mm_and_si128(data[0], mask0);
    key[1].xmm = _mm_and_si128(data[1], mask0);
    key[2].xmm = _mm_and_si128(data[2], mask0);
    key[3].xmm = _mm_and_si128(data[3], mask0);
    const void *key array[4] = \{\&key[0], \&key[1], \&key[2], \&key[3]\};
    rte hash lookup multi(qconf->ipv4 lookup struct, &key array[0], 4, ret);
    dst port[0] = (ret[0] < 0)? portid:ipv4 l3fwd out if[ret[0]];
    dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];</pre>
    dst port[2] = (ret[2] < 0)? portid:ipv4 l3fwd out if[ret[2]];</pre>
    dst port[3] = (ret[3] < 0)? portid:ipv4 l3fwd out if[ret[3]];</pre>
```

```
} // ...
```

The simple ipv6 fwd 4pkts() function is similar to the simple ipv4 fwd 4pkts() function.

Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function, but the packet forwarding decision (that is, the identification of the output interface for the packet) for LPM-based lookups is done by the get_ipv4_dst_port() function below:

```
static inline uint8_t
get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup{
    uint8_t next_hop;
    return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_))
}
```

6.14 L3 Forwarding with Power Management Sample Application

6.14.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet processing using the DPDK. The application is based on existing L3 Forwarding sample application, with the power management algorithms to control the P-states and C-states of the Intel processor via a power management library.

6.14.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet forwarding. The initialization and run-time paths are very similar to those of the L3 forwarding sample application (see Chapter 10 "L3 Forwarding Sample Application" for more information). The main difference from the L3 Forwarding sample application is that this application introduces power-aware optimization algorithms by leveraging the Power library to control P-state and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit (Tx) queues. The design principle of this PMD is to access the Rx and Tx descriptors directly without any interrupts to quickly receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the following steps:

- · Retrieve input packets through the PMD to poll Rx queue
- Process each received packet or provide received packets to other processing cores through software queues
- Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at the cost of keeping cores active and running at the highest frequency, hence consuming the maximum power all the time. However, during the period of processing light network traffic, which happens regularly in communication infrastructure systems due to well-known "tidal effect", the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch between different supported operating frequencies and voltages. If configured correctly, according to system workload, this feature provides power savings. CPUFreq is the infrastructure provided by the Linux* kernel to control the processor performance state capability. CPUFreq supports a user space governor that enables setting frequency via manipulating the virtual file device from a user space application. The Power library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space application to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent to CPUFreq. The algorithm uses the number of received and available Rx packets on recent polls to make a heuristic decision to scale frequency up/down. Specifically, some thresholds are checked to see whether a specific core running an DPDK polling thread needs to increase frequency a step up based on the near to full trend of polled Rx queues. Also, it decreases frequency a step if packet processed per loop is far less than the expected threshold or the thread's sleeping time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low power idle state from which it is possible to exit via an event, such as an interrupt. However, there is a tradeoff between the power consumed in the idle state and the time required to wake up from the idle state (exit latency). Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is increased. Each C-state has a target residency. It is essential that when entering into a C-state, the core remains in this C-state for at least as long as the target residency in order to fully realize the benefits of entering the C-state. CPUIdle is the infrastructure provide by the Linux kernel to control the processor C-state capability. Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-state. It actually has its own heuristic algorithms in kernel space to select target C-state to enter by executing privileged instructions like HLT and MWAIT, based on the speculative sleep duration of the core. In this application, we introduce a heuristic algorithm that allows packet processing cores to sleep for a short period if there is no Rx packet received on recent polls. In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states instead of always running to the C0 state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended to enable deeper C3 and C6 states in the BIOS during system boot up.

6.14.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE SDK=/path/to/rte sdk cd ${RTE SDK}/examples/l3fwd-power
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.14.4 Running the Application

The application has a number of command line options:

```
./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue where.
```

- -p PORTMASK: Hexadecimal bitmask of ports to configure
- -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
- -config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores.
- –enable-jumbo: optional, enables jumbo frames
- –max-pkt-len: optional, maximum packet length in decimal (64-9600)
- –no-numa: optional, disables numa awareness

See Chapter 10 "L3 Forwarding Sample Application" for details. The L3fwd-power example reuses the L3fwd command line options.

6.14.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview section, the initialization and run-time paths are identical to those of the L3 forwarding application. The following sections describe aspects that are specific to the L3 Forwarding with Power Management sample application.

Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace for specific cores that are under control. The Timer library is also initialized and several timers are created later on, responsible for checking if it needs to scale down frequency at run time by checking CPU utilization statistics.

Note: Only the power management related initialization is shown.

```
int main(int argc, char **argv)
{
    struct lcore_conf *qconf;
    int ret;
    unsigned nb_ports;
    uint16_t queueid;
    unsigned lcore_id;
    uint64_t hz;
    uint32_t n_tx_queue, nb_lcores;
    uint8_t portid, nb_rx_queue, queue, socketid;
```

```
// ...
    /* init RTE timer library to be used to initialize per-core timers */
    rte_timer_subsystem_init();
    // ...
    /* per-core initialization */
    for (lcore id = 0; lcore id < RTE MAX LCORE; lcore id++) {</pre>
        if (rte lcore is enabled(lcore id) == 0)
            continue;
        /* init power management library for a specified core */
        ret = rte_power_init(lcore_id);
        if (ret)
            rte_exit(EXIT_FAILURE, "Power management library "
                "initialization failed on core%d\n", lcore id);
        /* init timer structures for each enabled lcore */
        rte_timer_init(&power_timers[lcore_id]);
        hz = rte get hpet hz();
        rte timer reset(&power timers[lcore id], hz/TIMER NUMBER PER SECOND, SINGLE, lcore id,
        // ...
    }
    // ...
}
```

Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing if the network load is actually heavy or light. In this sample, sampling network load work is done by monitoring received and available descriptors on NIC Rx queues in recent polls. Based on the number of returned and available Rx descriptors, this example implements algorithms to generate frequency scaling hints and speculative sleep duration, and use them to control P-state and C-state of processors via the power management library. Frequency (P-state) control and sleep state (C-state) control work individually for each logical core, and the combination of them contributes to a power efficient packet processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the endless packet processing loop to return the number of received and available Rx descriptors. And those numbers of specific queue are passed to P-state and C-state heuristic algorithms to generate hints based on recent network load trends.

Note: Only power control related code is shown.

```
static
attribute ((noreturn)) int main_loop( attribute ((unused)) void *dummy)
```

```
{
   // ...
   while (1) {
    // ...
    /**
    * Read packet from RX queues
    lcore scaleup hint = FREQ CURRENT;
    lcore_rx_idle_count = 0;
    for (i = 0; i < qconf->n rx queue; ++i)
        rx_queue = &(qconf->rx_queue_list[i]);
        rx_queue->idle_hint = 0;
        portid = rx_queue->port_id;
        queueid = rx_queue->queue_id;
        nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
        stats[lcore id].nb rx processed += nb rx;
        if (unlikely(nb rx == 0)) {
             * no packet received from rx queue, try to
             * sleep for a while forcing CPU enter deeper
             * C states.
            rx_queue->zero_rx_packet_count++;
            if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)</pre>
                continue;
            rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
            lcore rx idle count++;
        } else {
            rx ring length = rte eth rx queue count(portid, queueid);
            rx_queue->zero_rx_packet_count = 0;
            /**
             * do not scale up frequency immediately as
             * user to kernel space communication is costly
             * which might impact packet I/O for received
             * packets.
            rx queue->freq up hint = power freq scaleup heuristic(lcore id, rx ring length);
        }
        /* Prefetch and forward packets */
        // ...
    if (likely(lcore rx idle count != gconf->n rx queue)) {
        for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_
            x_queue = &(qconf->rx_queue_list[i]);
            if (rx_queue->freq_up_hint > lcore_scaleup_hint)
```

```
lcore scaleup hint = rx queue->freq up hint;
        }
        if (lcore_scaleup_hint == FREQ_HIGHEST)
            rte power freq max(lcore id);
        else if (lcore scaleup hint == FREQ HIGHER)
            rte_power_freq_up(lcore_id);
        } else {
               All Rx queues empty in recent consecutive polls,
                sleep in a conservative manner, meaning sleep as
             * less as possible.
            for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_q
                rx_queue = &(qconf->rx_queue_list[i]);
                if (rx_queue->idle_hint < lcore_idle_hint)</pre>
                    lcore_idle_hint = rx_queue->idle_hint;
            }
            if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)</pre>
                     execute "pause" instruction to avoid context
                     switch for short sleep.
                 */
                rte_delay_us(lcore_idle_hint);
            else
                /* long sleep force runing thread to suspend */
                usleep(lcore_idle_hint);
           stats[lcore_id].sleep_time += lcore_idle_hint;
        }
    }
}
```

P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the specified logical core according to available descriptor number returned from rte_eth_rx_queue_count(). On every poll for new packets, the length of available descriptor on an Rx queue is evaluated, and the algorithm used for frequency hinting is as follows:

- If the size of available descriptors exceeds 96, the maximum frequency is hinted.
- If the size of available descriptors exceeds 64, a trend counter is incremented by 100.
- If the length of the ring exceeds 32, the trend counter is incremented by 1.
- When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above must be adjusted accordingly based on actual hardware Rx queue size, which are configured via the rte eth rx queue setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue have different load, so they would return different frequency hints. The algorithm evaluates all the hints and then scales up frequency in an aggressive manner by scaling up to highest frequency as long as one Rx queue requires. In this way, we can minimize any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specifically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period, or if the average packet per iteration is less than expectation, the frequency is decreased by one step.

C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter begins incrementing for each successive zero poll. At the same time, the function power_idle_heuristic() is called to generate speculative sleep duration in order to force logical to enter deeper sleeping C-state. There is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough to select C-state to enter based on actual sleep period time of giving logical core. The algorithm has the following sleeping behavior depending on the idle counter:

- If idle count less than 100, the counter value is used as a microsecond sleep value through rte_delay_us() which execute pause instructions to avoid costly context switch but saving power at the same time.
- If idle count is between 100 and 999, a fixed sleep interval of 100 μ s is used. A 100 μ s sleep interval allows the core to enter the C1 state while keeping a fast response time in case new traffic arrives.
- If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration is used. This allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values, the algorithm controls the sleep time in a conservative manner by sleeping for the least possible time in order to avoid a potential performance impact.

6.15 L3 Forwarding with Access Control Sample Application

The L3 Forwarding with Access Control application is a simple example of packet processing using the DPDK. The application performs a security check on received packets. Packets that are in the Access Control List (ACL), which is loaded during initialization, are dropped. Others are forwarded to the correct port.

6.15.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control and packet L3 forwarding. The application loads two types of rules at initialization:

- Route information rules, which are used for L3 forwarding
- Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port, the application extracts the necessary information from the TCP/IP header of the received packet and performs a lookup in the rule database to figure out whether the packets should be dropped (in the ACL range) or forwarded to desired ports. The initialization and run-time paths are similar to those of the L3 forwarding application (see Chapter 10, "L3 Forwarding Sample Application" for more information). However, there are significant differences in the two applications. For example, the original L3 forwarding application uses either LPM or an exact match algorithm to perform forwarding port lookup, while this application uses the ACL library to perform both ACL and route entry lookup. The following sections provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application also assumes that all the packets it processes are TCP/UDP packets and always extracts source/destination port information from the packets.

Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically. The 5-tuple syntax consist of a source IP address, a destination IP address, a source port, a destination port and a protocol identifier. The fields in the 5-tuple syntax have the following formats:

- Source IP address and destination IP address: Each is either a 32-bit field (for IPv4), or a set of 4 32-bit fields (for IPv6) represented by a value and a mask length. For example, an IPv4 range of 192.168.1.0 to 192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask length = 24.
- Source port and destination port: Each is a 16-bit field, represented by a lower start and a higher end. For example, a range of ports 0 to 8192 could be represented by lower = 0 and higher = 8192.
- Protocol identifier: An 8-bit field, represented by a value and a mask, that covers a
 range of values. To verify that a value is in the range, use the following expression: "(VAL
 & mask) == value"

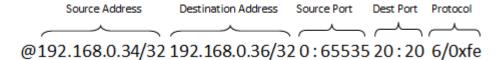
The trick in how to represent a range with a mask and value is as follows. A range can be enumerated in binary numbers with some bits that are never changed and some bits that are dynamically changed. Set those bits that dynamically changed in mask and value with 0. Set those bits that never changed in the mask with 1, in value with number expected. For example, a range of 6 to 7 is enumerated as 0b110 and 0b111. Bit 1-7 are bits never changed and bit 0 is the bit dynamically changed. Therefore, set bit 0 in mask and value with 0, set bits 1-7 in mask with 1, and bits 1-7 in value with number 0b11. So, mask is 0xfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when creating the database. It internally converts them to MSB or Big Endian order. When performing a lookup, the library assumes the input is in MSB or Big Endian order.

Access Rule Syntax

In this sample application, each rule is a combination of the following:

- 5-tuple field: This field has a format described in Section.
- priority field: A weight to measure the priority of the rules. The rule with the higher priority will ALWAYS be returned if the specific input has multiple matches in the rule database. Rules with lower priority will NEVER be returned in any cases.
- userdata field: A user-defined field that could be any value. It can be the forwarding port number if the rule is a route table entry or it can be a pointer to a mapping address if the rule is used for address mapping in the NAT application. The key point is that it is a useful reserved field for user convenience.


ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are mandatory, while ACL rules are optional. To simplify the complexity of the priority field for each rule, all ACL and route entries are assumed to be in the same file. To read data from the specified file successfully, the application assumes the following:

- Each rule occupies a single line.
- Only the following four rule line types are valid in this application:
- ACL rule line, which starts with a leading character '@'
- · Route rule line, which starts with a leading character 'R'
- · Comment line, which starts with a leading character '#'
- Empty line, which consists of a space, form-feed ('f'), newline ('n'), carriage return ('r'), horizontal tab ('t'), or vertical tab ('v').

Other lines types are considered invalid.

- Rules are organized in descending order of priority, which means rules at the head of the file always have a higher priority than those further down in the file.
- A typical IPv4 ACL rule line should have a format as shown below:

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot notation for the address and a prefix length separated by '/'. For example, 192.168.0.34/32, where the address is 192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX are the inclusive minimum and maximum values of the range. The range 0:65535 represents all possible ports in a range. When MIN and MAX are the same value, a single port is represented, for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by '/'. For example: 6/0xfe matches protocol values 6 and 7.

• Route rules start with a leading character 'R' and have the same format as ACL rules except an extra field at the tail that indicates the forwarding port number.

Rules File Example

Figure 5 is an example of a rules file. This file has three rules, one for ACL and two for route information.

Figure 5.Example Rules File

Source Address	Destination Address	Source Port	Dest Port	Protocol	Fwd
		. —	$\overline{}$		\land
@1.2.3.0/24	192.168.0.36/3	20:65535	0:6553	5 6/0xfe	
R0.0.0.0/0	192.168.0.36/3	20:6553	50:6553	5 6/0xfe	1
RO.O.O.O/O	0.0.0.0/0	0:6553	50:6553	5 0x0/0x0	0

Each rule is explained as follows:

- Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.*], destination IP address = [192.168.0.36], protocol = [6]/[7]
- Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored. It tells the application to forward packets with destination IP address = [192.168.0.36], protocol = [6]/[7], destined to port 1.
- Rule 3 (the third line) tells the application to forward all packets to port 0. This is something like a default route entry.

As described earlier, the application assume rules are listed in descending order of priority, therefore Rule 1 has the highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

- Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [6]
- Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol = [6]
- Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [8]

Observe that:

- · Packet 1 matches all of the rules
- · Packet 2 matches Rule 2 and Rule 3
- Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and is forwarded to port 1. Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files (inside <RTE_SDK>/examples/l3fwd-acl/).

Application Phases

Once the application starts, it transitions through three phases:

- Initialization Phase Perform the following tasks:
- Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores, receive and transmit queues. Bind ports, queues and logical cores. Check ACL search options, and so on.
- Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize the environment and detect possible NICs. The EAL creates several threads and sets affinity to a specific hardware thread CPU based on the configuration specified by the command line arguments.
- Read the rule files and format the rules into the representation that the ACL library can recognize. Call the ACL library function to add the rules into the database and compile them as a trie of pattern sets. Note that application maintains a separate AC contexts for IPv4 and IPv6 rules.
- **Runtime Phase** Process the incoming packets from a port. Packets are processed in three steps:
 - Retrieval: Gets a packet from the receive queue. Each logical core may process several queues for different ports. This depends on the configuration specified by command line arguments.
 - Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup over corresponding AC context. If an ACL rule is matched, the packets will be dropped and return back to step 1. If a route rule is matched, it indicates the packet is not in the ACL list and should be forwarded. If there is no matches for the packet, then the packet is dropped.
 - Forwarding: Forwards the packet to the corresponding port.
- Final Phase Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

6.15.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-acl
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK IPL Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.15.3 Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] ./ where.

- · -p PORTMASK: Hexadecimal bitmask of ports to configure
- -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
- -config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores
- -rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file
- -rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file
- –scalar: Use a scalar function to perform rule lookup
- · -enable-jumbo: optional, enables jumbo frames
- –max-pkt-len: optional, maximum packet length in decimal (64-9600)
- –no-numa: optional, disables numa awareness

As an example, consider a dual processor socket platform where cores 0, 2, 4, 6, 8 and 10 appear on socket 0, while cores 1, 3, 5, 7, 9 and 11 appear on socket 1. Let's say that the user wants to use memory from both NUMA nodes, the platform has only two ports and the user wants to use two cores from each processor socket to do the packet processing.

To enable L3 forwarding between two ports, using two cores from each processor, while also taking advantage of local memory access by optimizing around NUMA, the user must enable two queues from each port, pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is achieved using the following command:

```
./build/l3fwd-acl -c f -n 4 -- -p 0x3 --config="(0,0,0),(0,1,2),(1,0,1),(1,1,3)" --rule_ipv4="
```

In this command:

- The -c option enables cores 0, 1, 2, 3
- The -p option enables ports 0 and 1
- The –config option enables two queues on each port and maps each (port,queue) pair to a specific core. Logic to enable multiple RX queues using RSS and to allocate memory from the correct NUMA nodes is included in the application and is done transparently. The following table shows the mapping in this example:

Port	Queue	Icore	Description
0	0	0	Map queue 0 from port 0 to lcore 0.
0	1	2	Map queue 1 from port 0 to lcore 2.
1	0	1	Map queue 0 from port 1 to lcore 1.
1	1	3	Map queue 1 from port 1 to lcore 3.

- The -rule ipv4 option specifies the reading of IPv4 rules sets from the ./ rule ipv4.db file.
- The -rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

• The –scalar option specifies the performing of rule lookup with a scalar function.

6.15.4 Explanation

The following sections provide some explanation of the sample application code. The aspects of port, device and CPU configuration are similar to those of the L3 forwarding application (see Chapter 10, "L3 Forwarding Sample Application" for more information). The following sections describe aspects that are specific to L3 forwarding with access control.

Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The application parses the rules from the file and adds them to the database by calling the ACL library function. It ignores empty and comment lines, and parses and validates the rules it reads. If errors are detected, the application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index to the specific rules in the userdata field, while route rules save the forwarding port number. In order to differentiate the two types of rules, ACL rules add a signature in the userdata field. As for the priority field, the application assumes rules are organized in descending order of priority. Therefore, the code only decreases the priority number with each rule it parses.

Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context handler from the ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of the fields from the start of the packet. That's why only packets with fixed IPv4/ IPv6 header are supported. That allows to perform ACL classify straight over incoming packet buffer - no extra protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records the socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from the file into the database and build an ACL trie. It is important to note that the application creates an independent copy of each database for each socket CPU involved in the task to reduce the time for remote memory access.

6.16 L3 Forwarding in a Virtualization Environment Sample Application

The L3 Forwarding in a Virtualization Environment sample application is a simple example of packet processing using the DPDK. The application performs L3 forwarding that takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

6.16.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding. The initialization and run-time paths are very similar to those of the L3 forwarding application (see Chapter 10 "L3 Forwarding Sample Application" for more information). The forwarding decision is taken based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When the selected lookup method is hash-based, a hash object is used to emulate the flow classification stage. The hash object is used in correlation with the flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields read from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port. The ID of the output interface for the input packet is read from the identified flow table entry. The set of flows used by the application is statically configured and loaded into the hash at initialization time. When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet. The ID of the output interface for the input packet is the next hop returned by the LPM lookup. The set of LPM rules used by the application is statically configured and loaded into the LPM object at the initialization time.

Note: Please refer to Section 9.1.1 "Virtual Function Setup Instructions" for virtualized test case setup.

6.16.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/l3fwd-vf
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for possible RTE_TARGET values.

3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application written to a different location, the O=/path/to/build/directory option may be specified in the make command.

6.16.3 Running the Application

The application has a number of command line options:

```
./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)] where.
```

- –p PORTMASK: Hexadecimal bitmask of ports to configure
- -config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which ports are mapped to which cores
- –no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform where cores 0,2,4,6, 8, and 10 appear on socket 0, while cores 1,3,5,7,9, and 11 appear on socket 1. Let's say that the programmer wants to use memory from both NUMA nodes, the platform has only two ports and the programmer wants to use one core from each processor socket to do the packet processing since only one Rx/Tx queue pair can be used in virtualization mode.

To enable L3 forwarding between two ports, using one core from each processor, while also taking advantage of local memory accesses by optimizing around NUMA, the programmer can pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is achieved using the following command:

```
./build/l3fwd-vf -c 0x03 -n 3 -- -p 0x3 --config="(0,0,0),(1,0,1)"
```

In this command:

- The -c option enables cores 0 and 1
- The -p option enables ports 0 and 1
- The –config option enables one queue on each port and maps each (port,queue) pair to a specific core. Logic to enable multiple RX queues using RSS and to allocate memory from the correct NUMA nodes is included in the application and is done transparently. The following table shows the mapping in this example:

Port	Queue	Icore	Description	
0	0	0	Map queue 0 from port 0 to lcore 0	
1	1	1	Map queue 0 from port 1 to lcore 1	

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.16.4 Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Application. See Section 10.4 "Explanation" for more information.

6.17 Link Status Interrupt Sample Application

The Link Status Interrupt sample application is a simple example of packet processing using the Data Plane Development Kit (DPDK) that demonstrates how network link status changes for a network port can be captured and used by a DPDK application.

6.17.1 Overview

The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port and performs L2 forwarding for each packet that is received on an RX_PORT. The following operations are performed:

- RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
- The source MAC address is replaced by the TX PORT MAC address
- The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks and the behavior of L2 forwarding each time the link status changes.

6.17.2 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/link_status_interrupt
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application written to a different location, the O=/path/to/build/directory option may be specified on the make command line.

6.17.3 Running the Application

The application requires a number of command line options:

- · -p PORTMASK: A hexadecimal bitmask of the ports to configure
- -q NQ: A number of queues (=ports) per lcore (default is 1)
- -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore, issue the command:

```
$ ./build/link status interrupt -c f -n 4-- -q 8 -p ffff
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.17.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environment Abstraction Layer (EAL) arguments (see Section 13.3).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.1, "Command Line Arguments" for more information.

Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.2, "Mbuf Pool Initialization" for more information.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the *DPDK Programmer's Guide and the DPDK API Reference*.

```
if (rte eal pci probe() < 0)</pre>
    rte exit(EXIT FAILURE, "Cannot probe PCI\n");
nb ports = rte eth dev count();
if (nb ports == 0)
    rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
if (nb ports > RTE MAX ETHPORTS)
    nb ports = RTE MAX ETHPORTS;
 * Each logical core is assigned a dedicated TX queue on each port.
for (portid = 0; portid < nb ports; portid++) {</pre>
    /* skip ports that are not enabled */
    if ((lsi enabled port mask & (1 << portion)) == 0)
        continue;
    /* save the destination port id */
    if (nb ports in mask % 2) {
        lsi dst ports[portid] = portid last;
        lsi dst ports[portid last] = portid;
    }
    else
        portid last = portid;
    nb_ports_in_mask++;
    rte eth dev info get((uint8 t) portid, &dev info);
}
```

Observe that:

};

• rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one lcore is able to poll a given port). The number of TX queues depends on the number of available lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

```
ret = rte eth dev configure((uint8_t) portid, 1, 1, &port conf);
  if (ret < 0)
      rte exit(EXIT FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
The global configuration is stored in a static structure:
  static const struct rte eth conf port conf = {
       .rxmode = {
           .split hdr size = 0,
          .header_split = 0, /**< Header Split disabled */
           .hw_ip_checksum = 0, /**< IP checksum offload disabled */
          .hw_vlan_filter = 0, /**< VLAN filtering disabled */</pre>
           .hw strip crc= 0, /**< CRC stripped by hardware */
      },
      .txmode = \{\},
      .intr conf = {
           .lsc = 1, /**< link status interrupt feature enabled */
      },
```

Configuring Isc to 0 (the default) disables the generation of any link status change interrupts in kernel space and no user space interrupt event is received. The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status. Configuring Isc to non-zero enables the generation of link status change interrupts in kernel space when a link status change is present and calls the user space callbacks registered by the application. The public interface rte_eth_link_get() just reads the link status in a global structure that would be updated in the interrupt host thread only.

Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event. An example callback function that has been written as indicated below.

This function is called when a link status interrupt is present for the right port. The port_id indicates which port the interrupt applies to. The type parameter identifies the interrupt event type, which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. The param parameter is the address of the parameter for the callback. This function should be implemented with care since it will be called in the interrupt host thread, which is different from the main thread of its caller.

The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:

```
rte eth dev callback register((uint8_t)portid, RTE ETH EVENT INTR LSC, lsi event callback, NUL
```

This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function. If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores to poll all the ports.

```
ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool)
if (ret < 0)
    rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);</pre>
```

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore queue conf.

```
struct lcore_queue_conf {
    unsigned n_rx_port;
    unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
    struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
} rte_cache_aligned;
struct lcore queue conf lcore queue conf[RTE MAX_LCORE];
```

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop (see Section 13.4.7, "Receive, Process and Transmit Packets" later in this chapter).

The global configuration for the RX queues is stored in a static structure:

```
static const struct rte_eth_rxconf rx_conf = {
    .rx_thresh = {
        .pthresh = RX_PTHRESH,
        .hthresh = RX_HTHRESH,
        .wthresh = RX_WTHRESH,
    },
};
```

TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. This is done using the following code:

```
/*
    * Read packet from RX queues
    */

for (i = 0; i < qconf->n_rx_port; i++) {
    portid = qconf->rx_port_list[i];
    nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
    port_statistics[portid].rx += nb_rx;

    for (j = 0; j < nb_rx; j++) {
        m = pkts_burst[j];
        rte_prefetch0(rte_pktmbuf_mtod(m, void *));
        lsi_simple_forward(m, portid);
    }
}</pre>
```

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function. The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.

Note: In the following code, the two lines for calculating the output port require some explanation. If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. If portId is odd, the first line subtracts one and the second line does nothing. Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

```
static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{
    struct ether_hdr *eth;
    void *tmp;
    unsigned dst_port = lsi_dst_ports[portid];
```

```
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = &eth->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000000 + (dst_port << 40);

/* src addr */
ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);

lsi_send_packet(m, dst_port);
}
```

Then, the packet is sent using the lsi_send_packet(m, dst_port) function. For this test application, the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop to send all the received packets on the same TX port using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as packet N-1. The application is implemented to illustrate that so the same approach can be reused in a more complex application.

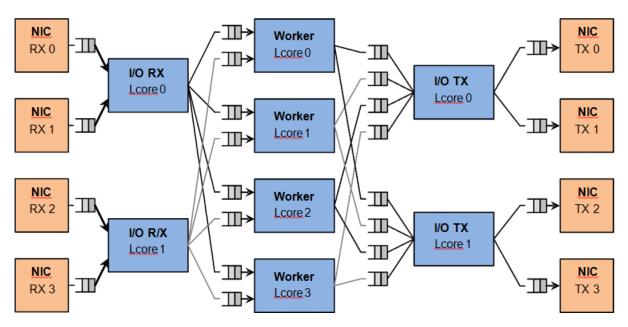
The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:

```
/* Send the packet on an output interface */
static int
lsi_send_packet(struct rte_mbuf *m, uint8_t port)
    unsigned lcore id, len;
    struct lcore_queue_conf *qconf;
    lcore id = rte lcore id();
    qconf = &lcore queue conf[lcore id];
    len = qconf->tx mbufs[port].len;
    qconf->tx_mbufs[port].m_table[len] = m;
    len++;
    /* enough pkts to be sent */
    if (unlikely(len == MAX PKT BURST)) {
        lsi_send_burst(qconf, MAX_PKT_BURST, port);
        len = 0;
    qconf->tx mbufs[port].len = len;
    return 0;
}
```

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop. This technique introduces some latency when there are not many packets to send. However, it improves performance:

```
cur_tsc = rte_rdtsc();

/*
    * TX burst queue drain
    */
```


```
diff tsc = cur_tsc - prev_tsc;
 if (unlikely(diff tsc > drain tsc)) {
     /* this could be optimized (use queueid instead of * portid), but it is not called so ofto
     for (portid = 0; portid < RTE MAX ETHPORTS; portid++) {</pre>
         if (qconf->tx_mbufs[portid].len == 0)
             continue;
         lsi_send_burst(&lcore_queue_conf[lcore_id],
         qconf->tx_mbufs[portid].len, (uint8_t) portid);
         qconf->tx_mbufs[portid].len = 0;
     /* if timer is enabled */
     if (timer_period > 0) {
         /* advance the timer */
         timer_tsc += diff_tsc;
         /* if timer has reached its timeout */
         if (unlikely(timer tsc >= (uint64_t) timer period)) {
             /* do this only on master core */
             if (lcore id == rte get master lcore()) {
                 print_stats();
                 /* reset the timer */
                 timer_tsc = 0;
             }
         }
     prev tsc = cur tsc;
}
```

6.18 Load Balancer Sample Application

The Load Balancer sample application demonstrates the concept of isolating the packet I/O task from the application-specific workload. Depending on the performance target, a number of logical cores (lcores) are dedicated to handle the interaction with the NIC ports (I/O lcores), while the rest of the lcores are dedicated to performing the application processing (worker lcores). The worker lcores are totally oblivious to the intricacies of the packet I/O activity and use the NIC-agnostic interface provided by software rings to exchange packets with the I/O cores.

6.18.1 Overview

The architecture of the Load Balance application is presented in the following figure. **Figure 5. Load Balancer Application Architecture**

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX lcores off loading the packet I/O overhead incurred by four NIC ports from four worker cores, with each I/O lcore handling RX/TX for two NIC ports.

I/O RX Logical Cores

Each I/O RX Icore performs packet RX from its assigned NIC RX rings and then distributes the received packets to the worker threads. The application allows each I/O RX Icore to communicate with any of the worker threads, therefore each (I/O RX Icore, worker Icore) pair is connected through a dedicated single producer - single consumer software ring.

The worker lcore to handle the current packet is determined by reading a predefined 1-byte field from the input packet:

worker id = packet[load balancing field] % n workers

Since all the packets that are part of the same traffic flow are expected to have the same value for the load balancing field, this scheme also ensures that all the packets that are part of the same traffic flow are directed to the same worker lcore (flow affinity) in the same order they enter the system (packet ordering).

I/O TX Logical Cores

Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each worker thread to send packets to any NIC TX port, the application creates a software ring for each (worker lcore, NIC TX port) pair, with each I/O TX core handling those software rings that are associated with NIC ports that it handles.

Worker Logical Cores

Each worker lcore reads packets from its set of input software rings and routes them to the NIC ports for transmission by dispatching them to output software rings. The routing logic is LPM based, with all the worker threads sharing the same LPM rules.

6.18.2 Compiling the Application

The sequence of steps used to build the application is:

1. Export the required environment variables:

```
export RTE_SDK=<Path to the DPDK installation folder>
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

2. Build the application executable file:

```
cd ${RTE SDK}/examples/load balancer make
```

For more details on how to build the DPDK libraries and sample applications, please refer to the *DPDK Getting Started Guide*.

6.18.3 Running the Application

To successfully run the application, the command line used to start the application has to be in sync with the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test Report. For more details on how to set up and run the sample applications provided with DPDK package, please refer to the *DPDK Getting Started Guide*.

6.18.4 Explanation

Application Configuration

The application run-time configuration is done through the application command line parameters. Any parameter that is not specified as mandatory is optional, with the default value hard-coded in the main.h header file from the application folder.

The list of application command line parameters is listed below:

- 1. -rx "(PORT, QUEUE, LCORE), ...": The list of NIC RX ports and queues handled by the I/O RX lcores. This parameter also implicitly defines the list of I/O RX lcores. This is a mandatory parameter.
- 2. -tx "(PORT, LCORE), ... ": The list of NIC TX ports handled by the I/O TX lcores. This parameter also implicitly defines the list of I/O TX lcores. This is a mandatory parameter.
- 3. -w "LCORE, ...": The list of the worker lcores. This is a mandatory parameter.
- 4. -lpm "IP / PREFIX => PORT; ...": The list of LPM rules used by the worker lcores for packet forwarding. This is a mandatory parameter.
- 5. -rsz "A, B, C, D": Ring sizes:
 - (a) A = The size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX lcores.
 - (b) B = The size (in number of elements) of each of the software rings used by the I/O RX lcores to send packets to worker lcores.
 - (c) C = The size (in number of elements) of each of the software rings used by the worker lcores to send packets to I/O TX lcores.

- (d) D = The size (in number of buffer descriptors) of each of the NIC TX rings written by I/O TX lcores.
- 6. -bsz "(A, B), (C, D), (E, F)": Burst sizes:
 - (a) A = The I/O RX Icore read burst size from NIC RX.
 - (b) B = The I/O RX lcore write burst size to the output software rings.
 - (c) C = The worker lcore read burst size from the input software rings.
 - (d) D = The worker lcore write burst size to the output software rings.
 - (e) E = The I/O TX Icore read burst size from the input software rings.
 - (f) F = The I/O TX Icore write burst size to the NIC TX.
- 7. –pos-lb POS: The position of the 1-byte field within the input packet used by the I/O RX lcores to identify the worker lcore for the current packet. This field needs to be within the first 64 bytes of the input packet.

The infrastructure of software rings connecting I/O lcores and worker lcores is built by the application as a result of the application configuration provided by the user through the application command line parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the I/O TX role for the same or a different set of NIC ports. A specific lcore cannot perform both the I/O role (either RX or TX) and the worker role during the same session.

Example:

```
./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm
```

There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1) that handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that are assigned worker IDs 0 to 3 (worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2 and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP address of the current packet is A.B.C.D, the worker lcore for the current packet is determined by byte D (which is byte 29). There are two LPM rules that are used by each worker lcore to route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible traffic flows:

Flow	Source IP	Destination IP	Worker ID (Worker	Output NIC
#	Address	Address	Icore)	Port
1	0.0.0.0	1.0.0.1	0 (4)	0
2	0.0.0.1	1.0.1.2	1 (5)	1
3	0.0.0.14	1.0.0.3	2 (6)	0
4	0.0.0.15	1.0.1.4	3 (7)	1

NUMA Support

The application has built-in performance enhancements for the NUMA case:

- 1. One buffer pool per each CPU socket.
- 2. One LPM table per each CPU socket.

3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore handling the respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to enable at least one lcore to fulfil the I/O role for the NIC ports that are directly attached to that CPU socket through the PCI Express* bus. It is always recommended to handle the packet I/O with lcores from the same CPU socket as the NICs.

Depending on whether the I/O RX Icore (same CPU socket as NIC RX), the worker Icore and the I/O TX Icore (same CPU socket as NIC TX) handling a specific input packet, are on the same or different CPU sockets, the following run-time scenarios are possible:

- 1. AAA: The packet is received, processed and transmitted without going across CPU sockets.
- 2. AAB: The packet is received and processed on socket A, but as it has to be transmitted on a NIC port connected to socket B, the packet is sent to socket B through software rings.
- 3. ABB: The packet is received on socket A, but as it has to be processed by a worker lcore on socket B, the packet is sent to socket B through software rings. The packet is transmitted by a NIC port connected to the same CPU socket as the worker lcore that processed it.
- 4. ABC: The packet is received on socket A, it is processed by an lcore on socket B, then it has to be transmitted out by a NIC connected to socket C. The performance price for crossing the CPU socket boundary is paid twice for this packet.

6.19 Multi-process Sample Application

This chapter describes the example applications for multi-processing that are included in the DPDK.

6.19.1 Example Applications

Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications, and as documented in the *DPDK Getting Started Guide*. To build all the example applications:

1. Set RTE_SDK and go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/multi_process
```

2. Set the target (a default target will be used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for possible RTE_TARGET values.

3. Build the applications:

make

Note: If just a specific multi-process application needs to be built, the final make command can be run just in that application's directory, rather than at the top-level multi-process directory.

Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to demonstrate how two DPDK processes can work together using queues and memory pools to share information.

Running the Application

To run the application, start one copy of the simple_mp binary in one terminal, passing at least two cores in the coremask, as follows:

```
./build/simple mp -c 3 -n 4 --proc-type=primary
```

For the first DPDK process run, the proc-type flag can be omitted or set to auto, since all DPDK processes will default to being a primary instance, meaning they have control over the hugepage shared memory regions. The process should start successfully and display a command prompt as follows:

```
$ ./build/simple mp -c 3 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 0
EAL: Requesting 2 pages of size 1073741824
EAL: Requesting 768 pages of size 2097152
EAL: Ask a virtual area of 0x40000000 bytes
EAL: Virtual area found at 0x7ff200000000 (size = 0x400000000)
EAL: check igb_uio module
EAL: check module finished
EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)
Starting core 1
simple mp >
```

To run the secondary process to communicate with the primary process, again run the same binary setting at least two cores in the coremask:

```
./build/simple_mp -c C -n 4 --proc-type=secondary
```

When running a secondary process such as that shown above, the proc-type parameter can again be specified as auto. However, omitting the parameter altogether will cause the process to try and start as a primary rather than secondary process.

Once the process type is specified correctly, the process starts up, displaying largely similar status messages to the primary instance as it initializes. Once again, you will be presented with a command prompt.

Once both processes are running, messages can be sent between them using the send command. At any stage, either process can be terminated using the quit command.

```
EAL: Master core 10 is ready (tid=b5f89820)

EAL: Core 11 is ready (tid=84ffe700)

Starting core 11

Simple_mp > send hello_secondary

simple_mp > core 11: Received 'hello_primary'

simple_mp > quit

EAL: Master core 8 is ready (tid=864a382)

EAL: Core 9 is ready (tid=85995700)

Starting core 9

simple_mp > core 9: Received 'hello_secondary

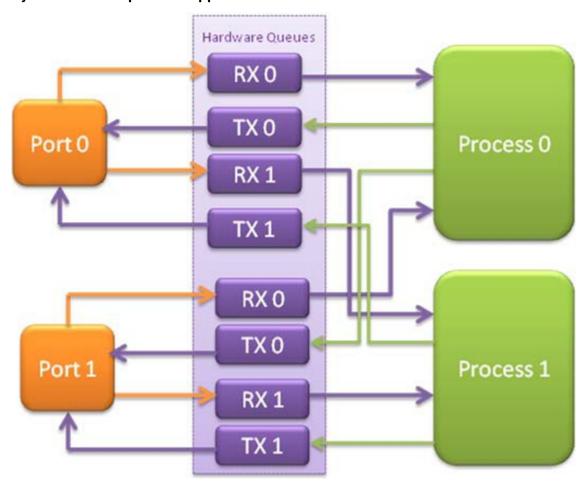
simple_mp > send hello_primary

simple_mp > quit
```

Note: If the primary instance is terminated, the secondary instance must also be shut-down and restarted after the primary. This is necessary because the primary instance will clear and reset the shared memory regions on startup, invalidating the secondary process's pointers. The secondary process can be stopped and restarted without affecting the primary process.

How the Application Works

The core of this example application is based on using two queues and a single memory pool in shared memory. These three objects are created at startup by the primary process, since the secondary process cannot create objects in memory as it cannot reserve memory zones, and the secondary process then uses lookup functions to attach to these objects as it starts up.


```
if (rte_eal_process_type() == RTE_PROC_PRIMARY){
    send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);
    recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);
    message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data]
} else {
    recv_ring = rte_ring_lookup(_PRI_2_SEC);
    send_ring = rte_ring_lookup(_SEC_2_PRI);
    message_pool = rte_mempool_lookup(_MSG_POOL);
}
```

Note, however, that the named ring structure used as send_ring in the primary process is the recv ring in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary processes, the application simply dedicates two threads to sending and receiving messages respectively. The receive thread simply dequeues any messages on the receive ring, prints them, and frees the buffer space used by the messages back to the memory pool. The send thread makes use of the command-prompt library to interactively request user input for messages to send. Once a send command is issued by the user, a buffer is allocated from the memory pool, filled in with the message contents, then enqueued on the appropriate rte_ring.

Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can run in parallel, with each process performing the same set of packet- processing operations. (Since each process is identical in functionality to the others, we refer to this as symmetric multi-processing, to differentiate it from asymmetric multi- processing - such as a client-server mode of operation seen in the next example, where different processes perform different tasks, yet co-operate to form a packet-processing system.) The following diagram shows the data-

flow through the application, using two processes. Figure 6. Example Data Flow in a Symmetric Multi-process Application

As the diagram shows, each process reads packets from each of the network ports in use. RSS is used to distribute incoming packets on each port to different hardware RX queues. Each process reads a different RX queue on each port and so does not contend with any other process for that queue access. Similarly, each process writes outgoing packets to a different TX queue on each port.

Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run as the primary instance, though with a number of other application- specific parameters also provided after the EAL arguments. These additional parameters are:

- -p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system are to be used. For example: -p 3 to use ports 0 and 1 only.
- -num-procs <N>, where N is the total number of symmetric_mp instances that will be run side-by-side to perform packet processing. This parameter is used to configure the appropriate number of receive queues on each network port.
- -proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes, specified above). This identifies which symmetric_mp instance is being run, so that each process can read a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified, and the first two must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4, all performing level-2 forwarding of packets between ports 0 and 1, the following commands can be used (assuming run as root):

```
# ./build/symmetric_mp -c 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
# ./build/symmetric_mp -c 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
# ./build/symmetric_mp -c 8 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
# ./build/symmetric_mp -c 10 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3
```

Note: In the above example, the process type can be explicitly specified as primary or secondary, rather than auto. When using auto, the first process run creates all the memory structures needed for all processes - irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note: For the symmetric multi-process example, since all processes work in the same manner, once the hugepage shared memory and the network ports are initialized, it is not necessary to restart all processes if the primary instance dies. Instead, that process can be restarted as a secondary, by explicitly setting the proc-type to secondary on the command line. (All subsequent instances launched will also need this explicitly specified, as auto-detection will detect no primary processes running and therefore attempt to re-initialize shared memory.)

How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most part, calling the rte_eal_init(), 1 G and 10 G driver initialization and then rte_eal_pci_probe() functions. Thereafter, the initialization done depends on whether the process is configured as a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports to be used are initialized - the number of RX and TX queues per port being determined by the num-procs parameter passed on the command-line. The structures for the initialized network ports are stored in shared memory and therefore will be accessible by the secondary process as it initializes.

```
if (num_ports & 1)
    rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i < num_ports; i++){
    if(proc_type == RTE_PROC_PRIMARY)
        if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)
            rte_exit(EXIT_FAILURE, "Error initialising ports\n");
}</pre>
```

In the secondary instance, rather than initializing the network ports, the port information exported by the primary process is used, giving the secondary process access to the hardware and software rings for each network port. Similarly, the memory pool of mbufs is accessed by doing a lookup for it by name:

```
mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_crea
```

Once this initialization is complete, the main loop of each process, both primary and secondary,

is exactly the same - each process reads from each port using the queue corresponding to its proc-id parameter, and writes to the corresponding transmit queue on the output port.

Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can use a client-server type multi-process design to do packet processing. In this example, a single server process performs the packet reception from the ports being used and distributes these packets using round-robin ordering among a set of client processes, which perform the actual packet processing. In this case, the client applications just perform level-2 forwarding of packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

Hardware Queues RXServer RXSoftware Queues тх о Port 0 Client 0 TX 1 TX 0 Port 1 TX 1 Client 1

Figure 7. Example Data Flow in a Client-Server Symmetric Multi-process Application

Running the Application

The server process must be run initially as the primary process to set up all memory structures for use by the clients. In addition to the EAL parameters, the application- specific parameters are:

- -p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system are to be used. For example: -p 3 to use ports 0 and 1 only.
- -n <num-clients>, where the num-clients parameter is the number of client processes that will process the packets received by the server application.

Note: In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the coremask, performs all packet I/O. If a coremask is specified with more than a single lcore bit set in it, an additional lcore will be used for a thread to periodically print packet count statistics.

Since the server application stores configuration data in shared memory, including the network ports to be used, the only application parameter needed by a client process is its client instance ID. Therefore, to run a server application on lcore 1 (with lcore 2 printing statistics) along with two client processes running on lcores 3 and 4, the following commands could be used:

```
# ./mp_server/build/mp_server -c 6 -n 4 -- -p 3 -n 2
# ./mp_client/build/mp_client -c 8 -n 4 --proc-type=auto -- -n 0
# ./mp_client/build/mp_client -c 10 -n 4 --proc-type=auto -- -n 1
```

Note: If the server application dies and needs to be restarted, all client applications also need to be restarted, as there is no support in the server application for it to run as a secondary process. Any client processes that need restarting can be restarted without affecting the server process.

How the Application Works

The server process performs the network port and data structure initialization much as the symmetric multi-process application does when run as primary. One additional enhancement in this sample application is that the server process stores its port configuration data in a memory zone in hugepage shared memory. This eliminates the need for the client processes to have the portmask parameter passed into them on the command line, as is done for the symmetric multi-process application, and therefore eliminates mismatched parameters as a potential source of errors.

In the same way that the server process is designed to be run as a primary process instance only, the client processes are designed to be run as secondary instances only. They have no code to attempt to create shared memory objects. Instead, handles to all needed rings and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup(). The network ports for use by the processes are obtained by loading the network port drivers and probing the PCI bus, which will, as in the symmetric multi-process example, automatically get access to the network ports using the settings already configured by the primary/server process.

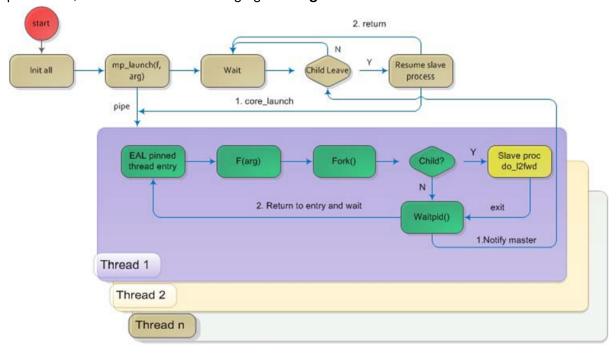
Once all applications are initialized, the server operates by reading packets from each network port in turn and distributing those packets to the client queues (software rings, one for each client process) in round-robin order. On the client side, the packets are read from the rings in as big of bursts as possible, then routed out to a different network port. The routing used is very simple. All packets received on the first NIC port are transmitted back out on the second port and vice versa. Similarly, packets are routed between the 3rd and 4th network ports and so on. The sending of packets is done by writing the packets directly to the network ports; they are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent, so as to allow the sending of multiple packets in a single burst to improve efficiency. For example, the client process will buffer packets to send, until either the buffer is full or until we receive no further packets from the server.

Master-slave Multi-process Example

The fourth example of DPDK multi-process support demonstrates a master-slave model that provide the capability of application recovery if a slave process crashes or meets unexpected

conditions. In addition, it also demonstrates the floating process, which can run among different cores in contrast to the traditional way of binding a process/thread to a specific CPU core, using the local cache mechanism of mempool structures.


This application performs the same functionality as the L2 Forwarding sample application, therefore this chapter does not cover that part but describes functionality that is introduced in this multi-process example only. Please refer to Chapter 9, "L2 Forwarding Sample Application (in Real and Virtualized Environments)" for more information.

Unlike previous examples where all processes are started from the command line with input arguments, in this example, only one process is spawned from the command line and that process creates other processes. The following section describes this in more detail.

Master-slave Process Models

The process spawned from the command line is called the *master process* in this document. A process created by the master is called a *slave process*. The application has only one master process, but could have multiple slave processes.

Once the master process begins to run, it tries to initialize all the resources such as memory, CPU cores, driver, ports, and so on, as the other examples do. Thereafter, it creates slave processes, as shown in the following figure. **Figure 8. Master-slave Process Workflow**

The master process calls the rte_eal_mp_remote_launch() EAL function to launch an application function for each pinned thread through the pipe. Then, it waits to check if any slave processes have exited. If so, the process tries to re-initialize the resources that belong to that slave and launch them in the pinned thread entry again. The following section describes the recovery procedures in more detail.

For each pinned thread in EAL, after reading any data from the pipe, it tries to call the function that the application specified. In this master specified function, a fork() call creates a slave process that performs the L2 forwarding task. Then, the function waits until the slave exits, is killed or crashes. Thereafter, it notifies the master of this event and returns. Finally, the EAL pinned thread waits until the new function is launched.

After discussing the master-slave model, it is necessary to mention another issue, global and static variables.

For multiple-thread cases, all global and static variables have only one copy and they can be accessed by any thread if applicable. So, they can be used to sync or share data among threads.

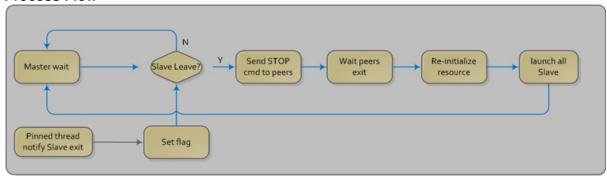
In the previous examples, each process has separate global and static variables in memory and are independent of each other. If it is necessary to share the knowledge, some communication mechanism should be deployed, such as, memzone, ring, shared memory, and so on. The global or static variables are not a valid approach to share data among processes. For variables in this example, on the one hand, the slave process inherits all the knowledge of these variables after being created by the master. On the other hand, other processes cannot know if one or more processes modifies them after slave creation since that is the nature of a multiple process address space. But this does not mean that these variables cannot be used to share or sync data; it depends on the use case. The following are the possible use cases:

- 1. The master process starts and initializes a variable and it will never be changed after slave processes created. This case is OK.
- 2. After the slave processes are created, the master or slave cores need to change a variable, but other processes do not need to know the change. This case is also OK.
- 3. After the slave processes are created, the master or a slave needs to change a variable. In the meantime, one or more other process needs to be aware of the change. In this case, global and static variables cannot be used to share knowledge. Another communication mechanism is needed. A simple approach without lock protection can be a heap buffer allocated by rte_malloc or mem zone.

Slave Process Recovery Mechanism

Before talking about the recovery mechanism, it is necessary to know what is needed before a new slave instance can run if a previous one exited.

When a slave process exits, the system returns all the resources allocated for this process automatically. However, this does not include the resources that were allocated by the DPDK. All the hardware resources are shared among the processes, which include memzone, mempool, ring, a heap buffer allocated by the rte_malloc library, and so on. If the new instance runs and the allocated resource is not returned, either resource allocation failed or the hardware resource is lost forever.


When a slave process runs, it may have dependencies on other processes. They could have execution sequence orders; they could share the ring to communicate; they could share the same port for reception and forwarding; they could use lock structures to do exclusive access in some critical path. What happens to the dependent process(es) if the peer leaves? The consequence are varied since the dependency cases are complex. It depends on what the processed had shared. However, it is necessary to notify the peer(s) if one slave exited. Then, the peer(s) will be aware of that and wait until the new instance begins to run.

Therefore, to provide the capability to resume the new slave instance if the previous one exited, it is necessary to provide several mechanisms:

1. Keep a resource list for each slave process. Before a slave process run, the master should prepare a resource list. After it exits, the master could either delete the allocated resources and create new ones, or re-initialize those for use by the new instance.

- 2. Set up a notification mechanism for slave process exit cases. After the specific slave leaves, the master should be notified and then help to create a new instance. This mechanism is provided in Section 15.1.5.1, "Master-slave Process Models".
- 3. Use a synchronization mechanism among dependent processes. The master should have the capability to stop or kill slave processes that have a dependency on the one that has exited. Then, after the new instance of exited slave process begins to run, the dependency ones could resume or run from the start. The example sends a STOP command to slave processes dependent on the exited one, then they will exit. Thereafter, the master creates new instances for the exited slave processes.

The following diagram describes slave process recovery. Figure 9. Slave Process Recovery Process Flow

Floating Process Support

When the DPDK application runs, there is always a -c option passed in to indicate the cores that are enabled. Then, the DPDK creates a thread for each enabled core. By doing so, it creates a 1:1 mapping between the enabled core and each thread. The enabled core always has an ID, therefore, each thread has a unique core ID in the DPDK execution environment. With the ID, each thread can easily access the structures or resources exclusively belonging to it without using function parameter passing. It can easily use the rte_lcore_id() function to get the value in every function that is called.

For threads/processes not created in that way, either pinned to a core or not, they will not own a unique ID and the rte_lcore_id() function will not work in the correct way. However, sometimes these threads/processes still need the unique ID mechanism to do easy access on structures or resources. For example, the DPDK mempool library provides a local cache mechanism (refer to *DPDK Programmer's Guide*, Section 6.4, "Local Cache") for fast element allocation and freeing. If using a non-unique ID or a fake one, a race condition occurs if two or more threads/ processes with the same core ID try to use the local cache.

Therefore, unused core IDs from the passing of parameters with the -c option are used to organize the core ID allocation array. Once the floating process is spawned, it tries to allocate a unique core ID from the array and release it on exit.

A natural way to spawn a floating process is to use the fork() function and allocate a unique core ID from the unused core ID array. However, it is necessary to write new code to provide a notification mechanism for slave exit and make sure the process recovery mechanism can work with it.

To avoid producing redundant code, the Master-Slave process model is still used to spawn floating processes, then cancel the affinity to specific cores. Besides that, clear the core ID as-

signed to the DPDK spawning a thread that has a 1:1 mapping with the core mask. Thereafter, get a new core ID from the unused core ID allocation array.

Run the Application

This example has a command line similar to the L2 Forwarding sample application with a few differences.

To run the application, start one copy of the l2fwd_fork binary in one terminal. Unlike the L2 Forwarding example, this example requires at least three cores since the master process will wait and be accountable for slave process recovery. The command is as follows:

```
#./build/l2fwd fork -c 1c -n 4 -- -p 3 -f
```

This example provides another -f option to specify the use of floating process. If not specified, the example will use a pinned process to perform the L2 forwarding task.

To verify the recovery mechanism, proceed as follows: First, check the PID of the slave processes:

```
#ps -fe | grep l2fwd_fork
root 5136 4843 29 11:11 pts/1 00:00:05 ./build/l2fwd_fork
root 5145 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork
root 5146 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd fork
```

Then, kill one of the slaves:

```
#kill -9 5145
```

After 1 or 2 seconds, check whether the slave has resumed:

```
#ps -fe | grep l2fwd_fork
root 5136 4843 3 11:11 pts/1 00:00:06 ./build/l2fwd_fork
root 5247 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork
root 5248 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd fork
```

It can also monitor the traffic generator statics to see whether slave processes have resumed.

Explanation

As described in previous sections, not all global and static variables need to change to be accessible in multiple processes; it depends on how they are used. In this example, the statics info on packets dropped/forwarded/received count needs to be updated by the slave process, and the master needs to see the update and print them out. So, it needs to allocate a heap buffer using rte_zmalloc. In addition, if the -f option is specified, an array is needed to store the allocated core ID for the floating process so that the master can return it after a slave has exited accidently.

```
static int
l2fwd_malloc_shared_struct(void)
{
   port_statistics = rte_zmalloc("port_stat", sizeof(struct l2fwd_port_statistics) * RTE_MAX_!

   if (port_statistics == NULL)
        return -1;

   /* allocate mapping_id array */
```

if (float proc) {

```
int i;

mapping_id = rte_malloc("mapping_id", sizeof(unsigned) * RTE_MAX_LCORE, 0);
if (mapping_id == NULL)
    return -1;

for (i = 0 ;i < RTE_MAX_LCORE; i++)
    mapping_id[i] = INVALID_MAPPING_ID;
}
return 0;
}</pre>
```

For each slave process, packets are received from one port and forwarded to another port that another slave is operating on. If the other slave exits accidentally, the port it is operating on may not work normally, so the first slave cannot forward packets to that port. There is a dependency on the port in this case. So, the master should recognize the dependency. The following is the code to detect this dependency:

```
for (portid = 0; portid < nb ports; portid++) {</pre>
    /* skip ports that are not enabled */
    if ((l2fwd enabled port mask & (1 << portid)) == 0)
        continue;
    /* Find pair ports' lcores */
    find_lcore = find_pair_lcore = 0;
    pair port = l2fwd dst ports[portid];
    for (i = 0; i < RTE MAX LCORE; i++) {
        if (!rte lcore_is_enabled(i))
            continue;
        for (j = 0; j < lcore queue conf[i].n rx port; j++) {
            if (lcore_queue_conf[i].rx_port_list[j] == portid) {
                lcore = i:
                find lcore = 1;
                break;
            }
            if (lcore queue conf[i].rx port list[j] == pair port) {
                pair lcore = i;
                find_pair_lcore = 1;
                break;
            }
        }
        if (find lcore && find pair lcore)
            break;
    }
    if (!find lcore || !find pair lcore)
        rte_exit(EXIT_FAILURE, "Not find port=%d pair\\n", portid);
    printf("lcore %u and %u paired\\n", lcore, pair lcore);
    lcore resource[lcore].pair id = pair lcore;
    lcore_resource[pair_lcore].pair_id = lcore;
```

Before launching the slave process, it is necessary to set up the communication channel between the master and slave so that the master can notify the slave if its peer process with the dependency exited. In addition, the master needs to register a callback function in the case where a specific slave exited.

```
for (i = 0; i < RTE_MAX_LCORE; i++) {
    if (lcore_resource[i].enabled) {
        /* Create ring for master and slave communication */

        ret = create_ms_ring(i);
        if (ret != 0)
            rte_exit(EXIT_FAILURE, "Create ring for lcore=%u failed",i);

        if (flib_register_slave_exit_notify(i,slave_exit_cb) != 0)
            rte_exit(EXIT_FAILURE, "Register master_trace_slave_exit failed");
        }
}</pre>
```

After launching the slave process, the master waits and prints out the port statics periodically. If an event indicating that a slave process exited is detected, it sends the STOP command to the peer and waits until it has also exited. Then, it tries to clean up the execution environment and prepare new resources. Finally, the new slave instance is launched.

```
while (1) {
    sleep(1);
    cur tsc = rte rdtsc();
    diff tsc = cur tsc - prev tsc;
    /* if timer is enabled */
    if (timer_period > 0) {
        /* advance the timer */
        timer tsc += diff tsc;
        /* if timer has reached its timeout */
        if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
            print stats();
            /* reset the timer */
            timer tsc = 0;
        }
    }
    prev_tsc = cur_tsc;
    /* Check any slave need restart or recreate */
    rte spinlock lock(&res lock);
    for (i = 0; i < RTE MAX LCORE; i++) {
        struct lcore resource struct *res = &lcore resource[i];
        struct lcore_resource_struct *pair = &lcore_resource[res->pair_id];
        /* If find slave exited, try to reset pair */
        if (res->enabled && res->flags && pair->enabled) {
            if (!pair->flags) {
                master sendcmd with ack(pair->lcore id, CMD STOP);
                rte spinlock unlock(&res lock);
                sleep(1);
                rte spinlock lock(&res lock);
                if (pair->flags)
                    continue;
            }
```

When the slave process is spawned and starts to run, it checks whether the floating process option is applied. If so, it clears the affinity to a specific core and also sets the unique core ID to 0. Then, it tries to allocate a new core ID. Since the core ID has changed, the resource allocated by the master cannot work, so it remaps the resource to the new core ID slot.

```
static int
l2fwd_launch_one_lcore( attribute ((unused)) void *dummy)
    unsigned lcore id = rte lcore id();
    if (float proc) {
        unsigned flcore id;
        /* Change it to floating process, also change it's lcore id */
        clear cpu affinity();
        RTE PER LCORE( lcore id) = 0;
        /* Get a lcore id */
        if (flib assign lcore id() < 0 ) {</pre>
            printf("flib assign lcore id failed\n");
            return -1;
        }
        flcore id = rte lcore id();
        /* Set mapping id, so master can return it after slave exited */
        mapping id[lcore id] = flcore id;
        printf("Org lcore id = %u, cur lcore id = %u\n", lcore id, flcore id);
        remapping slave resource(lcore id, flcore id);
    l2fwd main loop();
    /* return lcore id before return */
    if (float proc) {
        flib free lcore id(rte lcore id());
        mapping id[lcore id] = INVALID MAPPING ID;
    return 0;
}
```

6.20 QoS Metering Sample Application

The QoS meter sample application is an example that demonstrates the use of DPDK to provide QoS marking and metering, as defined by RFC2697 for Single Rate Three Color Marker (srTCM) and RFC 2698 for Two Rate Three Color Marker (trTCM) algorithm.

6.20.1 Overview

The application uses a single thread for reading the packets from the RX port, metering, marking them with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or changing the color of the packet in a static manner depending on both the input and output colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:

- Simple forwarding
- srTCM color blind
- · srTCM color aware
- srTCM color blind
- srTCM color aware

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable parameters (CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when all the incoming packets are colored as green.

6.20.2 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/gos meter
```

2. Set the target (a default target is used if not specified):

Note: This application is intended as a linuxapp only.

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

3. Build the application:

make

6.20.3 Running the Application

The application execution command line is as below:

```
./gos meter [EAL options] -- -p PORTMASK
```

The application is constrained to use a single core in the EAL core mask and 2 ports only in the application port mask (first port from the port mask is used for RX and the other port in the core mask is used for TX).

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.20.4 Explanation

Selecting one of the metering modes is done with these defines:

```
#define APP_MODE_FWD 0
#define APP_MODE_SRTCM_COLOR_BLIND 1
#define APP_MODE_SRTCM_COLOR_AWARE 2
#define APP_MODE_TRTCM_COLOR_BLIND 3
#define APP_MODE_TRTCM_COLOR_AWARE 4
#define APP_MODE_APP_MODE_SRTCM_COLOR_BLIND
```

To simplify debugging (for example, by using the traffic generator RX side MAC address based packet filtering feature), the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default values:

```
struct rte_meter_srtcm_params app_srtcm_params[] = {
          {.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},
};

struct rte_meter_trtcm_params app_trtcm_params[] = {
          {.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},
};
```

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames (IPv4 packet size of 46 bytes) and green, the expected output traffic should be marked as shown in the following table: **Table 1. Output Traffic Marking**

Mode	Green (Mpps)	Yellow (Mpps)	Red (Mpps)
srTCM blind	1	1	12.88
srTCM color	1	1	12.88
trTCM blind	1	0.5	13.38
trTCM color	1	0.5	13.38
FWD	14.88	0	0

To set up the policing scheme as desired, it is necessary to modify the main.h source file, where this policy is implemented as a static structure, as follows:

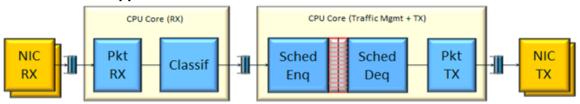
```
int policer_table[e_RTE_METER_COLORS][e_RTE_METER_COLORS] =
{
    {     GREEN, RED, RED},
    {     DROP, YELLOW, RED},
    {     DROP, DROP, RED}
};
```

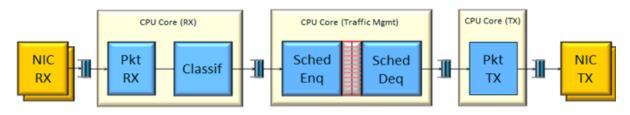
Where rows indicate the input color, columns indicate the output color, and the value that is stored in the table indicates the action to be taken for that particular case.

There are four different actions:

- GREEN: The packet's color is changed to green.
- YELLOW: The packet's color is changed to yellow.
- RED: The packet's color is changed to red.
- DROP: The packet is dropped.

In this particular case:


- Every packet which input and output color are the same, keeps the same color.
- Every packet which color has improved is dropped (this particular case can't happen, so these values will not be used).
- For the rest of the cases, the color is changed to red.


6.21 QoS Scheduler Sample Application

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

6.21.1 Overview

The architecture of the QoS scheduler application is shown in the following figure. **Figure 10. QoS Scheduler Application Architecture**

There are two flavors of the runtime execution for this application, with two or three threads per each packet flow configuration being used. The RX thread reads packets from the RX port, classifies the packets based on the double VLAN (outer and inner) and the lower two bytes of the IP destination address and puts them into the ring queue. The worker thread dequeues the packets from the ring and calls the QoS scheduler enqueue/dequeue functions. If a separate TX core is used, these are sent to the TX ring. Otherwise, they are sent directly to the TX port. The TX thread, if present, reads from the TX ring and write the packets to the TX port.

6.21.2 Compiling the Application

To compile the application:

- 1. Go to the sample application directory:
 - export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/qos_sched$
- 2. Set the target (a default target is used if not specified). For example:

Note: This application is intended as a linuxapp only.

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

3. Build the application:

make

Note: To get statistics on the sample app using the command line interface as described in the next section, DPDK must be compiled defining *CONFIG_RTE_SCHED_COLLECT_STATS*, which can be done by changing the configuration file for the specific target to be compiled.

6.21.3 Running the Application

Note: In order to run the application, a total of at least 4 G of huge pages must be set up for each of the used sockets (depending on the cores in use).

The application has a number of command line options:

```
./gos sched [EAL options] -- <APP PARAMS>
```

Mandatory application parameters include:

–pfc "RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE": Packet flow configuration. Multiple pfc entities can be configured in the command line, having 4 or 5 items (if TX core defined or not).

Optional application parameters include:

- -i: It makes the application to start in the interactive mode. In this mode, the application shows a command line that can be used for obtaining statistics while scheduling is taking place (see interactive mode below for more information).
- –mst n: Master core index (the default value is 1).
- -rsz "A, B, C": Ring sizes:
- A = Size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX lcores (the default value is 128).
- B = Size (in number of elements) of each of the software rings used by the I/O RX lcores to send packets to worker lcores (the default value is 8192).
- C = Size (in number of buffer descriptors) of each of the NIC TX rings written by worker lcores (the default value is 256)
- –bsz "A, B, C, D": Burst sizes
- A = I/O RX Icore read burst size from the NIC RX (the default value is 64)
- B = I/O RX lcore write burst size to the output software rings, worker lcore read burst size from input software rings, QoS enqueue size (the default value is 64)
- C = QoS dequeue size (the default value is 32)

- D = Worker lcore write burst size to the NIC TX (the default value is 64)
- –msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)
- -rth "A, B, C": The RX queue threshold parameters
- A = RX prefetch threshold (the default value is 8)
- B = RX host threshold (the default value is 8)
- C = RX write-back threshold (the default value is 4)
- -tth "A, B, C": TX queue threshold parameters
- A = TX prefetch threshold (the default value is 36)
- B = TX host threshold (the default value is 0)
- C = TX write-back threshold (the default value is 0)
- -cfg FILE: Profile configuration to load

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters needed for the QoS scheduler configuration.

The profile file has the following format:

```
; port configuration [port]
frame overhead = 24
number of subports per port = 1
number of pipes per subport = 4096
queue sizes = 64 64 64 64
; Subport configuration
[subport 0]
tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 12500000000;
                            Bytes per second
tc 1 rate = 12500000000;
                            Bytes per second
tc 2 rate = 12500000000;
                            Bytes per second
tc 3 rate = 12500000000;
                            Bytes per second
tc period = 10;
                            Milliseconds
tc oversubscription period = 10;
                                     Milliseconds
pipe 0-4095 = 0;
                        These pipes are configured with pipe profile 0
; Pipe configuration
[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc period = 40; Milliseconds
tc 0 oversubscription weight = 1
tc 1 oversubscription weight = 1
```

```
tc 2 oversubscription weight = 1
tc 3 oversubscription weight = 1
tc 0 wrr weights = 1 1 1 1
tc 1 wrr weights = 1 1 1 1
tc 2 wrr weights = 1 1 1 1
tc 3 wrr weights = 1 1 1 1
; RED params per traffic class and color (Green / Yellow / Red)
[red]
tc 0 wred min = 48 40 32
tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 \ 10 \ 10
tc 0 wred weight = 9 9 9
tc 1 wred min = 48 \ 40 \ 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 \ 10 \ 10
tc 1 wred weight = 999
tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 \ 10 \ 10
tc 2 wred weight = 999
tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 \ 10 \ 10
tc 3 wred weight = 999
```

Interactive mode

These are the commands that are currently working under the command line interface:

- Control Commands
- –quit: Quits the application.
- · General Statistics
 - stats app: Shows a table with in-app calculated statistics.
 - stats port X subport Y: For a specific subport, it shows the number of packets that went through the scheduler properly and the number of packets that were dropped.
 The same information is shown in bytes. The information is displayed in a table separating it in different traffic classes.
 - stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that went through the scheduler properly and the number of packets that were dropped.
 The same information is shown in bytes. This information is displayed in a table separating it in individual queues.
- Average queue size

All of these commands work the same way, averaging the number of packets throughout a specific subset of queues.

Two parameters can be configured for this prior to calling any of these commands:

- qavg n X: n is the number of times that the calculation will take place. Bigger numbers provide higher accuracy. The default value is 10.
- qavg period X: period is the number of microseconds that will be allowed between each calculation. The default value is 100.

The commands that can be used for measuring average queue size are:

- qavg port X subport Y: Show average queue size per subport.
- qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic class.
- qavg port X subport Y pipe Z: Show average queue size per pipe.
- qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic class.
- qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

Example

The following is an example command with a single packet flow configuration:

```
./qos sched -c a2 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg
```

This example uses a single packet flow configuration which creates one RX thread on lcore 5 reading from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same core for QoS scheduler is given below:

```
./qos sched -c c6 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg
```

Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread are also supported, providing flexibility to balance the work.

The EAL coremask is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.

6.21.4 Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS application:

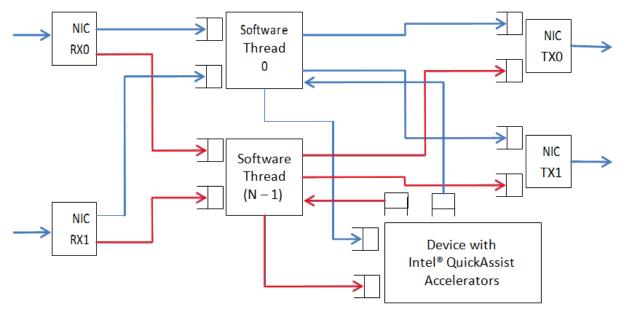
- A subport represents a predefined group of users.
- A pipe represents an individual user/subscriber.
- A traffic class is the representation of a different traffic type with a specific loss rate, delay and jitter requirements; such as data voice, video or data transfers.
- A queue hosts packets from one or multiple connections of the same type belonging to the same user.

The traffic flows that need to be configured are application dependent. This application classifies based on the QinQ double VLAN tags and the IP destination address as indicated in the following table. **Table 2. Entity Types**

Level Name	Siblings per Parent	QoS Functional De- scription	Selected By
Port	•	Ethernet port	Physical port
Subport	Config (8)	Traffic shaped (token bucket)	Outer VLAN tag
Pipe	Config (4k)	Traffic shaped (token bucket)	Inner VLAN tag
Traffic Class	4	TCs of the same pipe services in strict priority	Destination IP address (0.0.X.0)
Queue	4	Queue of the same TC serviced in WRR	Destination IP address (0.0.0.X)

Please refer to the "QoS Scheduler" chapter in the *DPDK Programmer's Guide* for more information about these parameters.

6.22 Intel® QuickAssist Technology Sample Application


This sample application demonstrates the use of the cryptographic operations provided by the Intel® QuickAssist Technology from within the DPDK environment. Therefore, building and running this application requires having both the DPDK and the QuickAssist Technology Software Library installed, as well as at least one Intel® QuickAssist Technology hardware device present in the system.

For this sample application, there is a dependency on either of:

- Intel® Communications Chipset 8900 to 8920 Series Software for Linux* package
- Intel® Communications Chipset 8925 to 8955 Series Software for Linux* package

6.22.1 Overview

An overview of the application is provided in Figure 11. For simplicity, only two NIC ports and one Intel® QuickAssist Technology device are shown in this diagram, although the number of NIC ports and Intel® QuickAssist Technology devices can be different. **Figure 11. Intel® QuickAssist Technology Application Block Diagram**

Note: Lines in blue show the packet flow for Software Thread 0, and lines in red show the packet flow for Software Thread (N - 1).

The application allows the configuration of the following items:

- · Number of NIC ports
- Number of logical cores (Icores)
- · Mapping of NIC RX queues to logical cores

Each lcore communicates with every cryptographic acceleration engine in the system through a pair of dedicated input - output queues. Each lcore has a dedicated NIC TX queue with every NIC port in the system. Therefore, each lcore reads packets from its NIC RX queues and cryptographic accelerator output queues and writes packets to its NIC TX queues and cryptographic accelerator input queues.

Each incoming packet that is read from a NIC RX queue is either directly forwarded to its destination NIC TX port (forwarding path) or first sent to one of the Intel® QuickAssist Technology devices for either encryption or decryption before being sent out on its destination NIC TX port (cryptographic path).

The application supports IPv4 input packets only. For each input packet, the decision between the forwarding path and the cryptographic path is taken at the classification stage based on the value of the IP source address field read from the input packet. Assuming that the IP source address is A.B.C.D, then if:

- D = 0: the forwarding path is selected (the packet is forwarded out directly)
- D = 1: the cryptographic path for encryption is selected (the packet is first encrypted and then forwarded out)
- D = 2: the cryptographic path for decryption is selected (the packet is first decrypted and then forwarded out)

For the cryptographic path cases (D = 1 or D = 2), byte C specifies the cipher algorithm and byte B the cryptographic hash algorithm to be used for the current packet. Byte A is not used and can be any value. The cipher and cryptographic hash algorithms supported by this application are listed in the crypto.h header file.

For each input packet, the destination NIC TX port is decided at the forwarding stage (executed

after the cryptographic stage, if enabled for the packet) by looking at the RX port index of the dst_ports[] array, which was initialized at startup, being the outport the adjacent enabled port. For example, if ports 1,3,5 and 6 are enabled, for input port 1, outport port will be 3 and vice versa, and for input port 5, output port will be 6 and vice versa.

For the cryptographic path, it is the payload of the IPv4 packet that is encrypted or decrypted.

Setup

Building and running this application requires having both the DPDK package and the Quick-Assist Technology Software Library installed, as well as at least one Intel® QuickAssist Technology hardware device present in the system.

For more details on how to build and run DPDK and Intel® QuickAssist Technology applications, please refer to the following documents:

- DPDK Getting Started Guide
- Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started Guide (440005)
- Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started Guide (523128)

For more details on the actual platforms used to validate this application, as well as performance numbers, please refer to the Test Report, which is accessible by contacting your Intel representative.

6.22.2 Building the Application

Steps to build the application:

1. Set up the following environment variables:

```
export RTE_SDK=<Absolute path to the DPDK installation folder>
export ICP_ROOT=<Absolute path to the Intel QAT installation folder>
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

Refer to the *DPDK Getting Started Guide* for possible RTE_TARGET values.

3. Build the application:

```
cd ${RTE_SDK}/examples/dpdk_qat
make
```

6.22.3 Running the Application

Intel® QuickAssist Technology Configuration Files

The Intel® QuickAssist Technology configuration files used by the application are located in the config_files folder in the application folder. There following sets of configuration files are included in the DPDK package:

Stargo CRB (single CPU socket): located in the stargo folder

- dh89xxcc_qa_dev0.conf
- Shumway CRB (dual CPU socket): located in the shumway folder
 - dh89xxcc_qa_dev0.conf
 - dh89xxcc qa dev1.conf
- · Coleto Creek: located in the coleto folder
 - dh895xcc_qa_dev0.conf

The relevant configuration file(s) must be copied to the /etc/ directory.

Please note that any change to these configuration files requires restarting the Intel® Quick-Assist Technology driver using the following command:

```
# service qat service restart
```

Refer to the following documents for information on the Intel® QuickAssist Technology configuration files:

- Intel® Communications Chipset 8900 to 8920 Series Software Programmer's Guide
- Intel® Communications Chipset 8925 to 8955 Series Software Programmer's Guide
- Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started Guide.
- Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started Guide.

Traffic Generator Setup and Application Startup

The application has a number of command line options:

```
dpdk_qat [EAL options] - -p PORTMASK [-no-promisc] [-config '(port,queue,lcore)[,(port,queue,lcore)]']
```

where,

- -p PORTMASK: Hexadecimal bitmask of ports to configure
- -no-promisc: Disables promiscuous mode for all ports, so that only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted. By default promiscuous mode is enabled so that packets are accepted regardless of the packet's Ethernet MAC destination address.
- -config'(port,queue,lcore)[,(port,queue,lcore)]': determines which queues from which ports are mapped to which cores.

Refer to Chapter 10, "L3 Forwarding Sample Application" for more detailed descriptions of the –config command line option.

As an example, to run the application with two ports and two cores, which are using different Intel® QuickAssist Technology execution engines, performing AES-CBC-128 encryption with AES-XCBC-MAC-96 hash, the following settings can be used:

- Traffic generator source IP address: 0.9.6.1
- Command line:

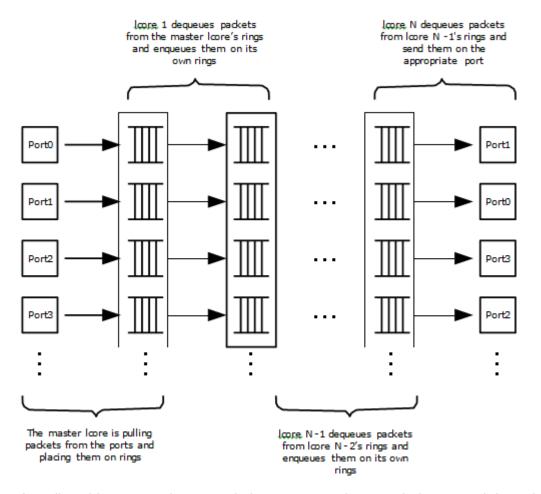
```
./build/dpdk qat -c 0xff -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'
```

Refer to the *DPDK Test Report* for more examples of traffic generator setup and the application startup command lines. If no errors are generated in response to the startup commands, the application is running correctly.

6.23 Quota and Watermark Sample Application

The Quota and Watermark sample application is a simple example of packet processing using Data Plane Development Kit (DPDK) that showcases the use of a quota as the maximum number of packets enqueue/dequeue at a time and low and high watermarks to signal low and high ring usage respectively.

Additionally, it shows how ring watermarks can be used to feedback congestion notifications to data producers by temporarily stopping processing overloaded rings and sending Ethernet flow control frames.


This sample application is split in two parts:

- qw The core quota and watermark sample application
- qwctl A command line tool to alter quota and watermarks while qw is running

6.23.1 Overview

The Quota and Watermark sample application performs forwarding for each packet that is received on a given port. The destination port is the adjacent port from the enabled port mask, that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other. The MAC addresses of the forwarded Ethernet frames are not affected.

Internally, packets are pulled from the ports by the master logical core and put on a variable length processing pipeline, each stage of which being connected by rings, as shown in Figure 12. **Figure 12. Pipeline Overview**



An adjustable quota value controls how many packets are being moved through the pipeline per enqueue and dequeue. Adjustable watermark values associated with the rings control a back-off mechanism that tries to prevent the pipeline from being overloaded by:

- Stopping enqueuing on rings for which the usage has crossed the high watermark threshold
- Sending Ethernet pause frames
- Only resuming enqueuing on a ring once its usage goes below a global low watermark threshold

This mechanism allows congestion notifications to go up the ring pipeline and eventually lead to an Ethernet flow control frame being send to the source.

On top of serving as an example of quota and watermark usage, this application can be used to benchmark ring based processing pipelines performance using a traffic- generator, as shown in Figure 13. **Figure 13. Ring-based Processing Pipeline Performance Setup**

6.23.2 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/quota_watermark
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.23.3 Running the Application

The core application, qw, has to be started first.

Once it is up and running, one can alter quota and watermarks while it runs using the control application, qwctl.

Running the Core Application

The application requires a single command line option:

```
./qw/build/qw [EAL options] -- -p PORTMASK
```

where,

-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linuxapp environment with four logical cores and ports 0 and 2, issue the following command:

```
./qw/build/qw - c f - n 4 - - - p 5
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

Running the Control Application

The control application requires a number of command line options:

```
./qwctl/build/qwctl [EAL options] --proc-type=secondary
```

The -proc-type=secondary option is necessary for the EAL to properly initialize the control application to use the same huge pages as the core application and thus be able to access its rings.

To run the application in a linuxapp environment on logical core 0, issue the following command:

```
./qwctl/build/qwctl -c 1 -n 4 --proc-type=secondary
```

Refer to the *DPDK Getting Started* Guide for general information on running applications and the Environment Abstraction Layer (EAL) options.

qwctl is an interactive command line that let the user change variables in a running instance of qw. The help command gives a list of available commands:

```
$ qwctl > help
```

6.23.4 Code Overview

The following sections provide a quick guide to the application's source code.

Core Application - qw

EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

```
ret = rte_eal_init(argc, argv);
if (ret < 0)
    rte_exit(EXIT_FAILURE, "Cannot initialize EAL\n");
argc -= ret;
argv += ret;</pre>
```

Then, a call to init dpdk(), defined in init.c, is made to initialize the poll mode drivers:

```
void
init_dpdk(void)
{
   int ret;
   /* Bind the drivers to usable devices */
```

```
ret = rte_eal_pci_probe();
if (ret < 0)
    rte_exit(EXIT_FAILURE, "rte_eal_pci_probe(): error %d\n", ret);

if (rte_eth_dev_count() < 2)
    rte_exit(EXIT_FAILURE, "Not enough ethernet port available\n");
}</pre>
```

To fully understand this code, it is recommended to study the chapters that relate to the *Poll Mode Driver* in the *DPDK Getting Started Guide* and the *DPDK API Reference*.

Shared Variables Setup

The quota and low_watermark shared variables are put into an rte_memzone using a call to setup shared variables():

```
void
setup_shared_variables(void)
{
    const struct rte_memzone *qw_memzone;

    qw_memzone = rte_memzone_reserve(QUOTA_WATERMARK_MEMZONE_NAME, 2 * sizeof(int), rte_socker

    if (qw_memzone == NULL)
        rte_exit(EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));

    quota = qw_memzone->addr;
    low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);
}
```

These two variables are initialized to a default value in main() and can be changed while qw is running using the qwctl control program.

Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be used by the application. At least two ports are needed to run the application and there should be an even number of ports given in the port mask.

The port mask parsing is done in parse qw args(), defined in args.c.

Mbuf Pool Initialization

Once the application's arguments are parsed, an mbuf pool is created. It contains a set of mbuf objects that are used by the driver and the application to store network packets:

```
/* Create a pool of mbuf to store packets */
mbuf_pool = rte_mempool_create("mbuf_pool", MBUF_PER_POOL, MBUF_SIZE, 32, sizeof(struct rte_pkintering rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);
if (mbuf_pool == NULL)
    rte_panic("%s\n", rte_strerror(rte_errno));
```

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a pool that will be used by the driver, which expects to have some reserved space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a size of MBUF_SIZE each. A per-lcore cache of 32 mbufs is kept. The memory is allocated in on the master lcore's socket, but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte mempool create() function:

- The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private data of the mempool, which is needed by the driver. This function is provided by the mbuf API, but can be copied and extended by the developer.
- The second callback pointer given to rte_mempool_create() is the mbuf initializer.

The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a more complex application wants to extend the rte_pktmbuf structure for its own needs, a new function derived from rte_pktmbuf_init() can be created.

Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master lcore's array of rings. This ring is the first in the pipeline and will hold the packets directly coming from the port.

```
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
    if (is_bit_set(port_id, portmask)) {
        configure_eth_port(port_id);
        init_ring(master_lcore_id, port_id);
    }
pair ports();</pre>
```

The configure_eth_port() and init_ring() functions are used to configure a port and a ring respectively and are defined in init.c. They make use of the DPDK APIs defined in rte_eth.h and rte_ring.h.

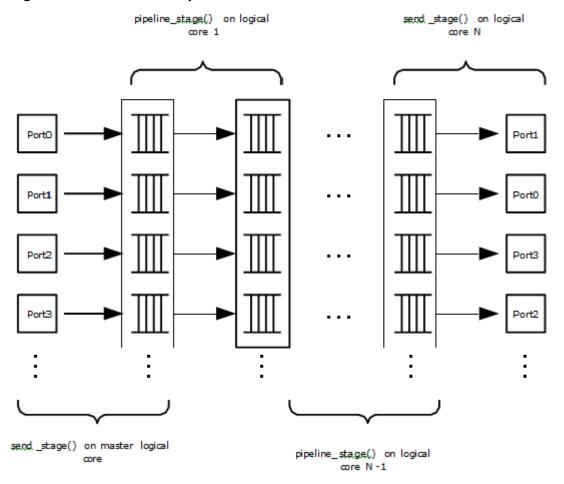
pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between reception and transmission ports. It is defined in init.c.

Logical Cores Assignment

The application uses the master logical core to poll all the ports for new packets and enqueue them on a ring associated with the port.

Each logical core except the last runs pipeline_stage() after a ring for each used port is initialized on that core. pipeline_stage() on core X dequeues packets from core X-1's rings and enqueue them on its own rings. See Figure 14.

```
rte_eal_remote_launch(pipeline_stage, NULL, lcore_id);
}
```


The last available logical core runs send_stage(), which is the last stage of the pipeline dequeuing packets from the last ring in the pipeline and sending them out on the destination port setup by pair_ports().

```
/* Start send_stage() on the last slave core */
rte_eal_remote_launch(send_stage, NULL, last_lcore_id);
```

Receive, Process and Transmit Packets

Figure 14 shows where each thread in the pipeline is. It should be used as a reference while reading the rest of this section.

Figure 14. Threads and Pipelines

In the receive_stage() function running on the master logical core, the main task is to read ingress packets from the RX ports and enqueue them on the port's corresponding first ring in the pipeline. This is done using the following code:

```
lcore_id = rte_lcore_id();
/* Process each port round robin style */
for (port id = 0; port id < RTE MAX ETHPORTS; port id++) {</pre>
```

```
if (!is bit set(port id, portmask))
        continue;
    ring = rings[lcore_id][port_id];
    if (ring state[port id] != RING READY) {
        if (rte_ring_count(ring) > *low_watermark)
            continue;
    else
        ring_state[port_id] = RING_READY;
    /* Enqueue received packets on the RX ring */
    nb_rx_pkts = rte_eth_rx_burst(port_id, 0, pkts, *quota);
    ret = rte_ring_enqueue_bulk(ring, (void *) pkts, nb_rx_pkts);
    if (ret == -EDQUOT) {
        ring_state[port_id] = RING_OVERLOADED;
        send_pause_frame(port_id, 1337);
    }
}
```

For each port in the port mask, the corresponding ring's pointer is fetched into ring and that ring's state is checked:

- If it is in the RING_READY state, *quota packets are grabbed from the port and put on the ring. Should this operation make the ring's usage cross its high watermark, the ring is marked as overloaded and an Ethernet flow control frame is sent to the source.
- If it is not in the RING_READY state, this port is ignored until the ring's usage crosses the *low_watermark value.

The pipeline_stage() function's task is to process and move packets from the preceding pipeline stage. This thread is running on most of the logical cores to create and arbitrarily long pipeline.

```
lcore id = rte lcore id();
previous lcore id = get previous lcore id(lcore id);
for (port id = 0; port id < RTE MAX ETHPORTS; port id++) {</pre>
    if (!is bit set(port id, portmask))
        continue;
    tx = rings[lcore id][port id];
    rx = rings[previous lcore id][port id];
    if (ring state[port id] != RING READY) {
        if (rte ring count(tx) > *low watermark)
            continue;
    else
        ring state[port id] = RING READY;
    /* Dequeue up to quota mbuf from rx */
    nb dq pkts = rte ring dequeue burst(rx, pkts, *quota);
    if (unlikely(nb dq pkts < 0))
        continue;
    /* Engueue them on tx */
    ret = rte ring enqueue bulk(tx, pkts, nb dq pkts);
```

```
if (ret == -EDQUOT)
     ring_state[port_id] = RING_OVERLOADED;
}
```

The thread's logic works mostly like receive_stage(), except that packets are moved from ring to ring instead of port to ring.

In this example, no actual processing is done on the packets, but pipeline_stage() is an ideal place to perform any processing required by the application.

Finally, the send_stage() function's task is to read packets from the last ring in a pipeline and send them on the destination port defined in the port_pairs[] array. It is running on the last available logical core only.

```
lcore_id = rte_lcore_id();
previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
    if (!is_bit_set(port_id, portmask)) continue;

    dest_port_id = port_pairs[port_id];
    tx = rings[previous_lcore_id][port_id];

    if (rte_ring_empty(tx)) continue;

    /* Dequeue packets from tx and send them */

    nb_dq_pkts = rte_ring_dequeue_burst(tx, (void *) tx_pkts, *quota);
    nb_tx_pkts = rte_eth_tx_burst(dest_port_id, 0, tx_pkts, nb_dq_pkts);
}</pre>
```

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline and sent on the destination port paired with the current port.

Control Application - gwctl

The qwctl application uses the rte_cmdline library to provide the user with an interactive command line that can be used to modify and inspect parameters in a running qw application. Those parameters are the global quota and low_watermark value as well as each ring's built-in high watermark.

Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything related to the rte_cmdline library.

Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and low_watermark from the rte_memzone previously created by qw.

```
static void
setup_shared_variables(void)
{
```

```
const struct rte_memzone *qw_memzone;

qw_memzone = rte_memzone_lookup(QUOTA_WATERMARK_MEMZONE_NAME);
if (qw_memzone == NULL)
    rte_exit(EXIT_FAILURE, "Could't find memzone\n");

quota = qw_memzone->addr;

low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);
}
```

6.24 Timer Sample Application

The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK application. This application prints some messages from different lcores regularly, demonstrating the use of timers.

6.24.1 Compiling the Application

1. Go to the example directory:

```
export RTE SDK=/path/to/rte sdk cd ${RTE SDK}/examples/timer
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

6.24.2 Running the Application

To run the example in linuxapp environment:

```
$ ./build/timer -c f -n 4
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.24.3 Explanation

The following sections provide some explanation of the code.

Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte timer subsystem init() function.

```
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)</pre>
```

```
rte_panic("Cannot init EAL\n");
/* init RTE timer library */
rte_timer_subsystem_init();
```

After timer creation (see the next paragraph), the main loop is executed on each slave lcore using the well-known rte eal remote launch() and also on the master.

```
/* call lcore_mainloop() on every slave lcore */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
    rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);
}
/* call it on master lcore too */
(void) lcore_mainloop(NULL);
```

The main loop is very simple in this example:

```
while (1) {
    /*
    * Call the timer handler on each core: as we don't
    * need a very precise timer, so only call
    * rte_timer_manage() every ~10ms (at 2 Ghz). In a real
    * application, this will enhance performances as
    * reading the HPET timer is not efficient.
    */

    cur_tsc = rte_rdtsc();

    diff_tsc = cur_tsc - prev_tsc;

    if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
        rte_timer_manage();
        prev_tsc = cur_tsc;
    }
}
```

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the rte_timer_manage() function must be called or not. In this example, the resolution of the timer is 10 milliseconds.

Managing Timers

In the main() function, the two timers are initialized. This call to rte_timer_init() is necessary before doing any other operation on the timer structure.

```
/* init timer structures */
rte_timer_init(&timer0);
rte_timer_init(&timer1);
```

Then, the two timers are configured:

- The first timer (timer0) is loaded on the master lcore and expires every second. Since the PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem. The callback function is timer0 cb().
- The second timer (timer1) is loaded on the next available lcore every 333 ms. The SIN-GLE flag means that the timer expires only once and must be reloaded manually if re-

```
quired. The callback function is timer1_cb().
/* load timer0, every second, on master lcore, reloaded automatically */
```

```
hz = rte_get_hpet_hz();
lcore_id = rte_lcore_id();
rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);
/* load timer1, every second/3, on next lcore, reloaded manually */
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
rte timer reset(&timer1, hz/3, SINGLE, lcore id, timer1 cb, NULL);
```

The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after 20 seconds). In this case, the timer is stopped using the rte timer stop() function.

```
/* timer0 callback */
static void
timer0_cb( attribute ((unused)) struct rte_timer *tim, __attribute ((unused)) void *arg)
{
    static unsigned counter = 0;
    unsigned lcore_id = rte_lcore_id();
    printf("%s() on lcore %u\n", FUNCTION , lcore_id);
    /* this timer is automatically reloaded until we decide to stop it, when counter reaches 20
    if ((counter ++) == 20)
        rte_timer_stop(tim);
}
```

The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore, using the rte_timer_reset() function:

```
/* timer1 callback */
static void
timer1_cb( attribute ((unused)) struct rte_timer *tim, _attribute ((unused)) void *arg)
{
    unsigned lcore_id = rte_lcore_id();
    uint64_t hz;

    printf("%s() on lcore %u\\n", FUNCTION , lcore_id);

    /* reload it on another lcore */
    hz = rte_get_hpet_hz();

    lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

    rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}
```

6.25 Packet Ordering Application

The Packet Ordering sample app simply shows the impact of reordering a stream. It's meant to stress the library with different configurations for performance.

6.25.1 Overview

The application uses at least three CPU cores:

- RX core (maser core) receives traffic from the NIC ports and feeds Worker cores with traffic through SW queues.
- Worker core (slave core) basically do some light work on the packet. Currently it modifies
 the output port of the packet for configurations with more than one port enabled.
- TX Core (slave core) receives traffic from Woker cores through software queues, inserts out-of-order packets into reorder buffer, extracts ordered packets from the reorder buffer and sends them to the NIC ports for transmission.

6.25.2 Compiling the Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/helloworld
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.25.3 Running the Application

Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

Application Command Line

The application execution command line is:

```
./test-pipeline [EAL options] -- -p PORTMASK [--disable-reorder]
```

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores. The first CPU core in the core mask is the master core and would be assigned to RX core, the last to TX core and the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers. When setting more than 1 port, traffic would be forwarderd in pairs. For example, if we enable 4 ports, traffic from port 0 to 1 and from 1 to 0, then the other pair from 2 to 3 and from 3 to 2, having [0,1] and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering of traffic, which should help evaluate reordering performance impact.

6.26 VMDQ and DCB Forwarding Sample Application

The VMDQ and DCB Forwarding sample application is a simple example of packet processing using the DPDK. The application performs L2 forwarding using VMDQ and DCB to divide the incoming traffic into 128 queues. The traffic splitting is performed in hardware by the VMDQ and DCB features of the Intel® 82599 10 Gigabit Ethernet Controller.

6.26.1 Overview

This sample application can be used as a starting point for developing a new application that is based on the DPDK and uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on VLAN traffic to divide the traffic into 128 input queues on the basis of the VLAN ID field and VLAN user priority field. VMDQ filters split the traffic into 16 or 32 groups based on the VLAN ID. Then, DCB places each packet into one of either 4 or 8 queues within that group, based upon the VLAN user priority field.

In either case, 16 groups of 8 queues, or 32 groups of 4 queues, the traffic can be split into 128 hardware queues on the NIC, each of which can be polled individually by a DPDK application.

All traffic is read from a single incoming port (port 0) and output on port 1, without any processing being performed. The traffic is split into 128 queues on input, where each thread of the application reads from multiple queues. For example, when run with 8 threads, that is, with the -c FF option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 16 pools with 8 queues each as indicated in Figure 15. The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the splitting of traffic into 32 pools of 4 queues each and this can be used by changing the NUM_POOLS parameter in the supplied code. The NUM_POOLS parameter can be passed on the command line, after the EAL parameters:

```
./build/vmdg dcb [EAL options] -- -p PORTMASK --nb-pools NP
```

where, NP can be 16 or 32. Figure 15. Packet Flow Through the VMDQ and DCB Sample Application

In Linux* user space, the application can display statistics with the number of packets received on each queue. To have the application display the statistics, send a SIGHUP signal to the running application process, as follows:

where, <pid> is the process id of the application process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2 Forwarding application (see Chapter 9, "L2 Forwarding Sample Application (in Real and Virtualized Environments)") as it performs unidirectional L2 forwarding of packets from one port to a second port. No command-line options are taken by this application apart from the standard EAL command-line options.

Note: Since VMD queues are being used for VMM, this application works correctly when VTd is disabled in the BIOS or Linux* kernel (intel_iommu=off).

6.26.2 Compiling the Application

1. Go to the examples directory:

```
export RTE SDK=/path/to/rte sdk cd ${RTE SDK}/examples/vmdq dcb
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE TARGET values.

3. Build the application:

make

6.26.3 Running the Application

To run the example in a linuxapp environment:

```
user@target:~$ ./build/vmdq_dcb -c f -n 4 -- -p 0x3 --nb-pools 16
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.26.4 Explanation

The following sections provide some explanation of the code.

Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application, as is the creation of the mbuf pool. See Chapter 9, "L2 Forwarding Sample Application (in Real and Virtualized Environments)". Where this example application differs is in the configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the appropriate values in the rte_eth_conf structure passed to the rte_eth_dev_configure() API. Initially in the application, a default structure is provided for VMDQ and DCB configuration to be filled in later by the application.

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values, based on the global vlan_tags array, and dividing up the possible user priority values equally among the individual queues (also referred to as traffic classes) within each pool, that is, if the number of pools is 32, then the user priority fields are allocated two to a queue. If 16 pools are used, then each of the 8 user priority fields is allocated to its own queue within the pool. For the VLAN IDs, each one can be allocated to possibly multiple pools of queues, so the pools parameter in the rte eth vmdq dcb conf structure is specified as a bitmask value.

```
const uint16_t vlan_tags[] = {
    0, 1, 2, 3, 4, 5, 6, 7,
    8, 9, 10, 11, 12, 13, 14, 15,
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
};
/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array
 * given above, and the number of traffic classes available for use. */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf, enum rte eth nb pools num pools)
    struct rte_eth_vmdq_dcb_conf conf;
    unsigned i;
    if (num pools != ETH 16 POOLS && num pools != ETH 32 POOLS ) return -1;
    conf.nb_queue_pools = num_pools;
    conf.enable_default_pool = 0;
    conf.default_pool = 0; /* set explicit value, even if not used */
    conf.nb_pool_maps = sizeof( vlan_tags )/sizeof( vlan_tags[ 0 ]);
    for (i = 0; i < conf.nb_pool_maps; i++){</pre>
        conf.pool map[i].vlan id = vlan tags[ i ];
        conf.pool_map[i].pools = 1 << (i % num_pools);</pre>
    }
    for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){</pre>
        conf.dcb_queue[i] = (uint8_t)(i % (NUM_QUEUES/num_pools));
    }
    (void) rte memcpy(eth conf, &vmdq dcb conf default, sizeof(\*eth conf));
    (void) rte_memcpy(&eth_conf->rx_adv_conf.vmdq_dcb_conf, &conf, sizeof(eth_conf->rx_adv_con
    return 0;
}
```

Once the network port has been initialized using the correct VMDQ and DCB values, the initialization of the port's RX and TX hardware rings is performed similarly to that in the L2 Forwarding sample application. See Chapter 9, "L2 Forwarding Sample Aplication (in Real and Virtualized Environments)" for more information.

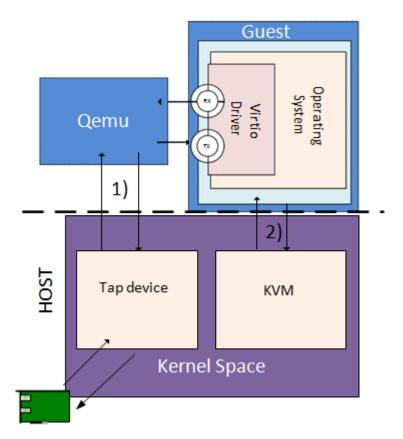
Statistics Display

When run in a linuxapp environment, the VMDQ and DCB Forwarding sample application can display statistics showing the number of packets read from each RX queue. This is provided by way of a signal handler for the SIGHUP signal, which simply prints to standard output the packet counts in grid form. Each row of the output is a single pool with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

```
user@host$ sudo killall -HUP vmdq_dcb_app
```

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is running, rather than the terminal from which the HUP signal was sent.

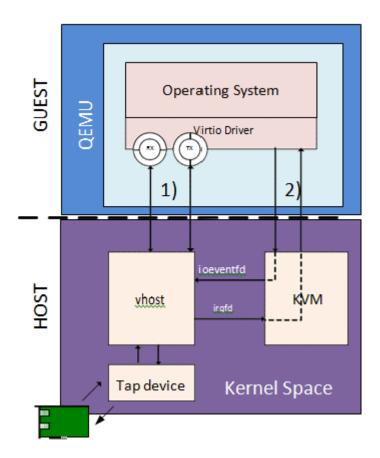

6.27 Vhost Sample Application

The vhost sample application demonstrates integration of the Data Plane Development Kit (DPDK) with the Linux* KVM hypervisor by implementing the vhost-net offload API. The sample application performs simple packet switching between virtual machines based on Media Access Control (MAC) address or Virtual Local Area Network (VLAN) tag. The splitting of ethernet traffic from an external switch is performed in hardware by the Virtual Machine Device Queues (VMDQ) and Data Center Bridging (DCB) features of the Intel® 82599 10 Gigabit Ethernet Controller.

6.27.1 Background

Virtio networking (virtio-net) was developed as the Linux* KVM para-virtualized method for communicating network packets between host and guest. It was found that virtio-net performance was poor due to context switching and packet copying between host, guest, and QEMU. The following figure shows the system architecture for a virtio-based networking (virtio-net).

Figure 16. QEMU Virtio-net (prior to vhost-net)



The Linux* Kernel vhost-net module was developed as an offload mechanism for virtio-net. The vhost-net module enables KVM (QEMU) to offload the servicing of virtio-net devices to the vhost-net kernel module, reducing the context switching and packet copies in the virtual dataplane.

This is achieved by QEMU sharing the following information with the vhost-net module through the vhost-net API:

- The layout of the guest memory space, to enable the vhost-net module to translate addresses.
- The locations of virtual queues in QEMU virtual address space, to enable the vhost module to read/write directly to and from the virtqueues.
- An event file descriptor (eventfd) configured in KVM to send interrupts to the virtio- net device driver in the guest. This enables the vhost-net module to notify (call) the guest.
- An eventfd configured in KVM to be triggered on writes to the virtio-net device's Peripheral Component Interconnect (PCI) config space. This enables the vhost-net module to receive notifications (kicks) from the guest.

The following figure shows the system architecture for virtio-net networking with vhost-net of-fload. Figure 17. Virtio with Linux* Kernel Vhost

6.27.2 Sample Code Overview

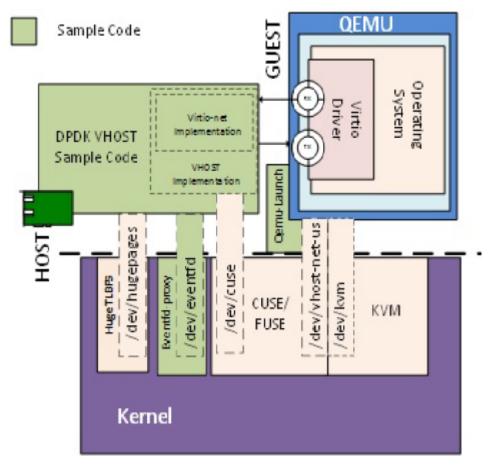
The DPDK vhost-net sample code demonstrates KVM (QEMU) offloading the servicing of a Virtual Machine's (VM's) virtio-net devices to a DPDK-based application in place of the kernel's vhost-net module.

The DPDK vhost-net sample code is based on vhost library. Vhost library is developed for user space ethernet switch to easily integrate with vhost functionality.

The vhost library implements the following features:

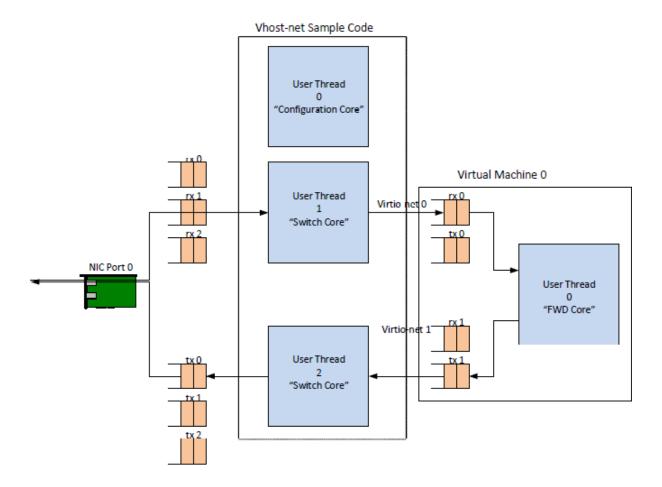
- Management of virtio-net device creation/destruction events.
- Mapping of the VM's physical memory into the DPDK vhost-net's address space.
- Triggering/receiving notifications to/from VMs via eventfds.
- A virtio-net back-end implementation providing a subset of virtio-net features.

There are two vhost implementations in vhost library, vhost cuse and vhost user. In vhost cuse, a character device driver is implemented to receive and process vhost requests through ioctl messages. In vhost user, a socket server is created to received vhost requests through socket messages. Most of the messages share the same handler routine.


Note: Any vhost cuse specific requirement in the following sections will be emphasized.

Two impelmentations are turned on and off statically through configure file. Only one implementation could be turned on. They don't co-exist in current implementation.

The vhost sample code application is a simple packet switching application with the following feature:


• Packet switching between virtio-net devices and the network interface card, including using VMDQs to reduce the switching that needs to be performed in software.

The following figure shows the architecture of the Vhost sample application based on vhost-cuse. **Figure 18. Vhost-net Architectural Overview**

The following figure shows the flow of packets through the vhost-net sample application.

Figure 19. Packet Flow Through the vhost-net Sample Application

6.27.3 Supported Distributions

The example in this section have been validated with the following distributions:

- Fedora* 18
- Fedora* 19
- Fedora* 20

6.27.4 Prerequisites

This section lists prerequisite packages that must be installed.

Installing Packages on the Host(vhost cuse required)

The vhost cuse code uses the following packages; fuse, fuse-devel, and kernel-modules-extra. The vhost user code don't rely on those modules as eventfds are already installed into vhost process through unix domain socket.

1. Install Fuse Development Libraries and headers:

```
yum -y install fuse fuse-devel
```

2. Install the Cuse Kernel Module:

```
yum -y install kernel-modules-extra
```

QEMU simulator

For vhost user, gemu 2.2 is required.

Setting up the Execution Environment

The vhost sample code requires that QEMU allocates a VM's memory on the hugetlbfs file system. As the vhost sample code requires hugepages, the best practice is to partition the system into separate hugepage mount points for the VMs and the vhost sample code.

Note: This is best-practice only and is not mandatory. For systems that only support 2 MB page sizes, both QEMU and vhost sample code can use the same hugetlbfs mount point without issue.

QEMU

VMs with gigabytes of memory can benefit from having QEMU allocate their memory from 1 GB huge pages. 1 GB huge pages must be allocated at boot time by passing kernel parameters through the grub boot loader.

- 1. Calculate the maximum memory usage of all VMs to be run on the system. Then, round this value up to the nearest Gigabyte the execution environment will require.
- 2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX entry:

```
y:
GRUB CMDLINE LINUX="... hugepagesz=1G hugepages=<Number of hugepages reguired> default hu
```

3. Update the grub boot loader:

```
grub2-mkconfig -o /boot/grub2/grub.cfg
```

- 4. Reboot the system.
- 5. The hugetlbfs mount point (/dev/hugepages) should now default to allocating gigabyte pages.

Note: Making the above modification will change the system default hugepage size to 1 GB for all applications.

Vhost Sample Code

In this section, we create a second hugetlbs mount point to allocate hugepages for the DPDK vhost sample code.

1. Allocate sufficient 2 MB pages for the DPDK vhost sample code:

```
echo 256 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
```

2. Mount hugetlbs at a separate mount point for 2 MB pages:

```
mount -t hugetlbfs nodev /mnt/huge -o pagesize=2M
```

The above steps can be automated by doing the following:

1. Edit /etc/fstab to add an entry to automatically mount the second hugetlbfs mount point:

```
hugetlbfs <tab> /mnt/huge <tab> hugetlbfs defaults,pagesize=1G 0 0
```

2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX entry:

```
GRUB CMDLINE LINUX="... hugepagesz=2M hugepages=256 ... default hugepagesz=1G"
```

3. Update the grub bootloader:

```
grub2-mkconfig -o /boot/grub2/grub.cfg
```

4. Reboot the system.

Note: Ensure that the default hugepage size after this setup is 1 GB.

Setting up the Guest Execution Environment

It is recommended for testing purposes that the DPDK testpmd sample application is used in the guest to forward packets, the reasons for this are discussed in Section 22.7, "Running the Virtual Machine (QEMU)".

The testpmd application forwards packets between pairs of Ethernet devices, it requires an even number of Ethernet devices (virtio or otherwise) to execute. It is therefore recommended to create multiples of two virtio-net devices for each Virtual Machine either through libvirt or at the command line as follows.

Note: Observe that in the example, "-device" and "-netdev" are repeated for two virtio-net devices.

For vhost cuse:

```
user@target:~$ qemu-system-x86_64 ... \
-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet1,id=net1 \
-netdev tap,id=hostnet2,vhost=on,vhostfd=<open fd> \
-device virtio-net-pci, netdev=hostnet2,id=net1
```

For vhost user:

```
user@target:~$ qemu-system-x86_64 ... \
-chardev socket,id=char1,path=<sock_path> \
-netdev type=vhost-user,id=hostnet1,chardev=char1 \
-device virtio-net-pci,netdev=hostnet1,id=net1 \
-chardev socket,id=char2,path=<sock_path> \
-netdev type=vhost-user,id=hostnet2,chardev=char2 \
-device virtio-net-pci,netdev=hostnet2,id=net2
```

sock_path is the path for the socket file created by vhost.

6.27.5 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG RTE LIBRTE VHOST=n

vhost user is turned on by default in the lib/librte_vhost/Makefile. To enable vhost cuse, uncomment vhost cuse and comment vhost user manually. In future, a configure will be created for switch between two implementations.

```
SRCS-$(CONFIG_RTE_LIBRTE_VHOST) += vhost_cuse/vhost-net-cdev.c vhost_cuse/virtio-net-c
#SRCS-$(CONFIG_RTE_LIBRTE_VHOST) += vhost_user/vhost-net-user.c vhost_user/virtio-net-
```

After vhost is enabled and the implementation is selected, build the vhost library.

2. Go to the examples directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/vhost
```

3. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

```
cd ${RTE_SDK}
make config ${RTE_TARGET}
make install ${RTE_TARGET}
cd ${RTE_SDK}/examples/vhost
make
```

5. Go to the eventfd_link directory(vhost cuse required):

```
cd ${RTE_SDK}/lib/librte_vhost/eventfd_link
```

6. Build the eventfd_link kernel module(vhost cuse required):

make

6.27.6 Running the Sample Code

1. Install the cuse kernel module(vhost cuse required):

```
modprobe cuse
```

2. Go to the eventfd_link directory(vhost cuse required):

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/lib/librte vhost/eventfd link
```

Install the eventfd_link module(vhost cuse required):

```
insmod ./eventfd_link.ko
```

4. Go to the examples directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/vhost
```

5. Run the vhost-switch sample code:

vhost cuse:

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-b
```

vhost user: a socket file named usvhost will be created under current directory. Use its path as the socket path in guest's gemu commandline.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-b
```

Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB page hugetlbfs.

Parameters

Basename and Index. vhost cuse uses a Linux* character device to communicate with QEMU. The basename and the index are used to generate the character devices name.

```
/dev/<basename>-<index>
```

The index parameter is provided for a situation where multiple instances of the virtual switch is required.

For compatibility with the QEMU wrapper script, a base name of "usvhost" and an index of "1" should be used:

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-basenar
```

vm2vm. The vm2vm parameter disable/set mode of packet switching between guests in the host. Value of "0" means disabling vm2vm implies that on virtual machine packet transmission will always go to the Ethernet port; Value of "1" means software mode packet forwarding between guests, it needs packets copy in vHOST, so valid only in one-copy implementation, and invalid for zero copy implementation; value of "2" means hardware mode packet forwarding between guests, it allows packets go to the Ethernet port, hardware L2 switch will determine which guest the packet should forward to or need send to external, which bases on the packet destination MAC address and VLAN tag.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --vm2vm [0,1,2]
```

Mergeable Buffers. The mergeable buffers parameter controls how virtio-net descriptors are used for virtio-net headers. In a disabled state, one virtio-net header is used per packet buffer; in an enabled state one virtio-net header is used for multiple packets. The default value is 0 or disabled since recent kernels virtio-net drivers show performance degradation with this feature is enabled.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --mergeable [0,1]
```

Stats. The stats parameter controls the printing of virtio-net device statistics. The parameter specifies an interval second to print statistics, with an interval of 0 seconds disabling statistics.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --stats [0,n]
```

RX Retry. The rx-retry option enables/disables enqueue retries when the guests RX queue is full. This feature resolves a packet loss that is observed at high data-rates, by allowing it to delay and retry in the receive path. This option is enabled by default.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry [0,1]
```

RX Retry Number. The rx-retry-num option specifies the number of retries on an RX burst, it takes effect only when rx retry is enabled. The default value is 4.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry 1 --rx-re
```

RX Retry Delay Time. The rx-retry-delay option specifies the timeout (in micro seconds) between retries on an RX burst, it takes effect only when rx retry is enabled. The default value is 15.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry 1 --rx-re
```

Zero copy. The zero copy option enables/disables the zero copy mode for RX/TX packet, in the zero copy mode the packet buffer address from guest translate into host physical address and then set directly as DMA address. If the zero copy mode is disabled, then one copy mode is utilized in the sample. This option is disabled by default.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy [0,1]
```

RX descriptor number. The RX descriptor number option specify the Ethernet RX descriptor number, Linux legacy virtio-net has different behaviour in how to use the vring descriptor from DPDK based virtio-net PMD, the former likely allocate half for virtio header, another half for frame buffer, while the latter allocate all for frame buffer, this lead to different number for available frame buffer in vring, and then lead to different Ethernet RX descriptor number could be used in zero copy mode. So it is valid only in zero copy mode is enabled. The value is 32 by default.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy 1 --rx-de
```

TX descriptornumber. The TX descriptor number option specify the Ethernet TX descriptor number, it is valid only in zero copy mode is enabled. The value is 64 by default.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy 1 --tx-de
```

VLAN strip. The VLAN strip option enable/disable the VLAN strip on host, if disabled, the guest will receive the packets with VLAN tag. It is enabled by default.

```
user@target:~$ ./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --vlan-strip [0, 1]
```

6.27.7 Running the Virtual Machine (QEMU)

QEMU must be executed with specific parameters to:

Ensure the guest is configured to use virtio-net network adapters.

```
user@target:~$ qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1,id=net1 ...
```

Ensure the guest's virtio-net network adapter is configured with offloads disabled.

 Redirect QEMU to communicate with the DPDK vhost-net sample code in place of the vhost-net kernel module(vhost cuse).

```
user@target:~$ qemu-system-x86_64 ... -netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd>
```

user@target:~\$ qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1,id=net1,csum

• Enable the vhost-net sample code to map the VM's memory into its own process address space.

```
user@target:~$ qemu-system-x86_64 ... -mem-prealloc -mem-path / dev/hugepages ...
```

Note: The QEMU wrapper (qemu-wrap.py) is a Python script designed to automate the QEMU configuration described above. It also facilitates integration with libvirt, although the script may also be used standalone without libvirt.

Redirecting QEMU to vhost-net Sample Code(vhost cuse)

To redirect QEMU to the vhost-net sample code implementation of the vhost-net API, an open file descriptor must be passed to QEMU running as a child process.

```
#!/usr/bin/python
fd = os.open("/dev/usvhost-1", os.0_RDWR)
subprocess.call("qemu-system-x86_64 ... -netdev tap,id=vhostnet0,vhost=on,vhostfd=" + fd +".
```

Note: This process is automated in the QEMU wrapper script discussed in Section 24.7.3.

Mapping the Virtual Machine's Memory

For the DPDK vhost-net sample code to be run correctly, QEMU must allocate the VM's memory on hugetlbfs. This is done by specifying mem-prealloc and mem-path when executing QEMU. The vhost-net sample code accesses the virtio-net device's virtual rings and packet buffers by finding and mapping the VM's physical memory on hugetlbfs. In this case, the path passed to the guest should be that of the 1 GB page hugetlbfs:

```
user@target:~$ qemu-system-x86_64 ... -mem-prealloc -mem-path / dev/hugepages ...
```

Note: This process is automated in the QEMU wrapper script discussed in Section 24.7.3. The following two sections only applies to vhost cuse. For vhost-user, please make corresponding changes to gemu-wrapper script and guest XML file.

QEMU Wrapper Script

The QEMU wrapper script automatically detects and calls QEMU with the necessary parameters required to integrate with the vhost sample code. It performs the following actions:

- Automatically detects the location of the hugetlbfs and inserts this into the command line parameters.
- Automatically open file descriptors for each virtio-net device and inserts this into the command line parameters.
- Disables offloads on each virtio-net device.
- Calls Qemu passing both the command line parameters passed to the script itself and those it has auto-detected.

The QEMU wrapper script will automatically configure calls to QEMU:

```
user@target:~$ qemu-wrap.py -machine pc-i440fx-1.4,accel=kvm,usb=off -cpu SandyBridge -smp 4,se
-netdev tap,id=hostnet1,vhost=on -device virtio-net-pci,netdev=hostnet1,id=net1 -hda <disk img</pre>
```

which will become the following call to QEMU:

```
/usr/local/bin/qemu-system-x86\_64 - machine pc-i440fx-1.4, accel=kvm, usb=off - cpu SandyBridge - sum-off - cpu SandyBridge - cpu
```

Libvirt Integration

The QEMU wrapper script (qemu-wrap.py) "wraps" libvirt calls to QEMU, such that QEMU is called with the correct parameters described above. To call the QEMU wrapper automatically from libvirt, the following configuration changes must be made:

- Place the QEMU wrapper script in libvirt's binary search PATH (\$PATH). A good location is in the directory that contains the QEMU binary.
- Ensure that the script has the same owner/group and file permissions as the QEMU binary.
- Update the VM xml file using virsh edit <vm name>:
 - Set the VM to use the launch script
 - Set the emulator path contained in the #<emulator><emulator>> tags For example, replace <emulator>/usr/bin/qemu-kvm<emulator/> with <emulator>/usr/bin/qemuwrap.py<emulator/>
 - Set the VM's virtio-net device's to use vhost-net offload:

```
<interface type="network">
<model type="virtio"/>
<driver name="vhost"/>
<interface/>
```

 Enable libvirt to access the DPDK Vhost sample code's character device file by adding it to controllers cgroup for libvirtd using the following steps:

```
cgroup_controllers = [ ... "devices", ... ] clear_emulator_capabilities = 0
user = "root" group = "root"
cgroup_device_acl = [
    "/dev/null", "/dev/full", "/dev/zero",
    "/dev/random", "/dev/urandom",
    "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
    "/dev/rtc", "/dev/hpet", "/dev/net/tun",
    "/dev/<devbase-name>-<index>",
]
```

- Disable SELinux or set to permissive mode.
- Mount cgroup device controller:

```
user@target:~$ mkdir /dev/cgroup
user@target:~$ mount -t cgroup none /dev/cgroup -o devices
```

Restart the libvirtd system process

For example, on Fedora* "systemctl restart libvirtd.service"

- Edit the configuration parameters section of the script:
 - Configure the "emul path" variable to point to the QEMU emulator.

```
emul path = "/usr/local/bin/qemu-system-x86 64"
```

 Configure the "us_vhost_path" variable to point to the DPDK vhost-net sample code's character devices name. DPDK vhost-net sample code's character device will be in the format "/dev/<basename>-<index>".

```
us_vhost_path = "/dev/usvhost-1"
```

Common Issues

QEMU failing to allocate memory on hugetlbfs, with an error like the following:

```
file ram alloc: can't mmap RAM pages: Cannot allocate memory
```

When running QEMU the above error indicates that it has failed to allocate memory for the Virtual Machine on the hugetlbfs. This is typically due to insufficient hugepages being free to support the allocation request. The number of free hugepages can be checked as follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU's allocation request.

• User space VHOST when the guest has 2MB sized huge pages:

The guest may have 2MB or 1GB sized huge pages. The user space VHOST should work properly in both cases.

• User space VHOST will not work with QEMU without the -mem-prealloc option:

The current implementation works properly only when the guest memory is pre-allocated, so it is required to use a QEMU version (e.g. 1.6) which supports -mem-prealloc. The -mem-prealloc option must be specified explicitly in the QEMU command line.

• User space VHOST will not work with a QEMU version without shared memory mapping:

As shared memory mapping is mandatory for user space VHOST to work properly with the guest, user space VHOST needs access to the shared memory from the guest to receive and transmit packets. It is important to make sure the QEMU version supports shared memory mapping.

• Issues with virsh destroy not destroying the VM:

Using libvirt virsh create the qemu-wrap.py spawns a new process to run qemu-kvm. This impacts the behavior of virsh destroy which kills the process running qemu-wrap.py without actually destroying the VM (it leaves the qemu-kvm process running):

This following patch should fix this issue: http://dpdk.org/ml/archives/dev/2014-June/003607.html

• In an Ubuntu environment, QEMU fails to start a new guest normally with user space VHOST due to not being able to allocate huge pages for the new guest:

The solution for this issue is to add -boot c into the QEMU command line to make sure the huge pages are allocated properly and then the guest should start normally.

Use cat /proc/meminfo to check if there is any changes in the value of HugePages Total and HugePages Free after the guest startup.

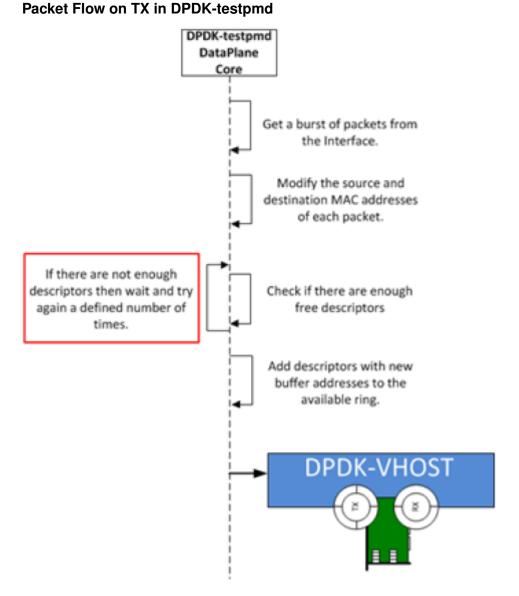
• Log message: eventfd_link: module verification failed: signature and/or required key missing - tainting kernel:

This log message may be ignored. The message occurs due to the kernel module eventfd_link, which is not a standard Linux module but which is necessary for the user space VHOST current implementation (CUSE-based) to communicate with the guest.

6.27.8 Running DPDK in the Virtual Machine

For the DPDK vhost-net sample code to switch packets into the VM, the sample code must first learn the MAC address of the VM's virtio-net device. The sample code detects the address

from packets being transmitted from the VM, similar to a learning switch.


This behavior requires no special action or configuration with the Linux* virtio-net driver in the VM as the Linux* Kernel will automatically transmit packets during device initialization. However, DPDK-based applications must be modified to automatically transmit packets during initialization to facilitate the DPDK vhost- net sample code's MAC learning.

The DPDK testpmd application can be configured to automatically transmit packets during initialization and to act as an L2 forwarding switch.

Testpmd MAC Forwarding

At high packet rates, a minor packet loss may be observed. To resolve this issue, a "wait and retry" mode is implemented in the testpmd and vhost sample code. In the "wait and retry" mode if the virtqueue is found to be full, then testpmd waits for a period of time before retrying to enqueue packets.

The "wait and retry" algorithm is implemented in DPDK testpmd as a forwarding method call "mac_retry". The following sequence diagram describes the algorithm in detail. **Figure 20.**

Running Testpmd

The testpmd application is automatically built when DPDK is installed. Run the testpmd application as follows:

```
user@target:~$ x86_64-native-linuxapp-gcc/app/testpmd -c 0x3 -- n 4 -socket-mem 128 -- --burst
```

The destination MAC address for packets transmitted on each port can be set at the command line:

```
user@target:~$ x86_64-native-linuxapp-gcc/app/testpmd -c 0x3 -- n 4 -socket-mem 128 -- --burst
```

- Packets received on port 1 will be forwarded on port 0 to MAC address aa:bb:cc:dd:ee:ff.
- Packets received on port 0 will be forwarded on port 1 to MAC address ff,ee,dd,cc,bb,aa.

The testpmd application can then be configured to act as an L2 forwarding application:

```
testpmd> set fwd mac retry
```

The testpmd can then be configured to start processing packets, transmitting packets first so the DPDK vhost sample code on the host can learn the MAC address:

```
testpmd> start tx first
```

Note: Please note "set fwd mac_retry" is used in place of "set fwd mac_fwd" to ensure the retry feature is activated.

6.27.9 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic's Layer 2 header must include both the virtio-net device's MAC address and VLAN tag. The DPDK sample code behaves in a similar manner to a learning switch in that it learns the MAC address of the virtio-net devices from the first transmitted packet. On learning the MAC address, the DPDK vhost sample code prints a message with the MAC address and VLAN tag virtio-net device. For example:

```
DATA: (0) MAC ADDRESS cc:bb:bb:bb:bb:bb and VLAN TAG 1000 registered
```

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and VLAN tag 1000. Any packets received on the NIC with these values is placed on the devices receive queue. When a virtio-net device transmits packets, the VLAN tag is added to the packet by the DPDK vhost sample code.

6.28 Netmap Compatibility Sample Application

6.28.1 Introduction

The Netmap compatibility library provides a minimal set of APIs to give the ability to programs written against the Netmap APIs to be run with minimal changes to their source code, using the DPDK to perform the actual packet I/O.

Since Netmap applications use regular system calls, like open(), ioctl() and mmap() to communicate with the Netmap kernel module performing the packet I/O, the compat_netmap library provides a set of similar APIs to use in place of those system calls, effectively turning a Netmap application into a DPDK one.

The provided library is currently minimal and doesn't support all the features that Netmap supports, but is enough to run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section. Please refer to the Netmap distribution for details about Netmap.

6.28.2 Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap applications:rte_netmap_close()

- rte netmap ioctl()
- rte_netmap_open()
- rte_netmap_mmap()
- rte netmap poll()

They use the same signature as their libc counterparts, and can be used as drop-in replacements in most cases.

6.28.3 Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O, there are caveats and limitations to be aware of when trying to use the compat_netmap library, the most important of which are listed below. Additional caveats are presented in the \$RTE_SDK/examples/netmap_compat/README.md file. These can change as the library is updated:

• Any system call that can potentially affect file descriptors cannot be used with a descriptor returned by the rte_netmap_open() function.

Note that:

- rte_netmap_mmap() merely returns the address of a DPDK memzone. The address, length, flags, offset, and so on arguments are therefore ignored completely.
- rte_netmap_poll() only supports infinite (negative) or zero time outs. It effectively turns calls to the poll() system call made in a Netmap application into polling of the DPDK ports, changing the semantics of the usual POSIX defined poll.
- Not all of Netmap's features are supported: "host rings", slot flags and so on are not supported or are simply not relevant in the DPDK model.
- The Netmap manual page states that "a device obtained through /dev/netmap also supports the ioctl supported by network devices". It is not the case with this compatibility layer.
- The Netmap kernel module exposes a sysfs interface to change some internal parameters, such as the size of the shared memory region. This interface is not available when using this compatibility layer.

6.28.4 Porting Netmap Applications

Porting Netmap applications typically involves two major steps:

- Changing the system calls to use their compat_netmap library counterparts
- Adding further DPDK initialization code

Since the compat_netmap functions have the same signature as the usual libc calls, the change is in most cases trivial.

The usual DPDK initialization code involving rte_eal_init() and rte_eal_pci_probe() has to be added to the Netmap application in the same way it is used in all other DPDK sample applications. Please refer to the *DPDK Programmer's Guide* - Rel 1.4 EAR and example source code for details about initialization.

In addition of the regular DPDK initialization code, the ported application needs to call initialization functions for the compat_netmap library, namely rte_netmap_init() and rte_netmap_init_port().

These two initialization functions take compat_netmap specific data structures as parameters: struct rte_netmap_conf and struct rte_netmap_port_conf. Those structures' fields are Netmap related and are self-explanatory for developers familiar with Netmap. They are definedin \$RTE_SDK/examples/netmap_compat/ lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with the Netmap distribution. It shows how a minimal Netmap application with minimal and straightforward source code changes can be run on top of the DPDK. Please refer to \$RTE_SDK/examples/netmap_compat/bridge/bridge.c for an example of ported application.

6.28.5 Compiling the "bridge" Sample Application

1. Go to the example directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/netmap_compat
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

See the *DPDK Getting Started Guide* for possible RTE TARGET values.

3. Build the application:

make

6.28.6 Running the "bridge" Sample Application

The application requires a single command line option:

```
./build/packet_ordering [EAL options] -- -p PORT_A [-p PORT_B]
where,
```

-p INTERFACE is the number of a valid DPDK port to use.

If a single -p parameter is given, the interface will send back all the traffic it receives. If two -p parameters are given, the two interfaces form a bridge, where traffic received on one interface is replicated and sent by the other interface.

To run the application in a linuxapp environment using port 0 and 2, issue the following command:

```
./build/packet ordering [EAL options] -- -p 0 -p 2
```

Refer to the *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.

Note that unlike a traditional bridge or the l2fwd sample application, no MAC address changes are done on the frames. Do not forget to take that into account when configuring your traffic generators if you decide to test this sample application.

6.29 Internet Protocol (IP) Pipeline Sample Application

The Internet Protocol (IP) Pipeline application illustrates the use of the DPDK Packet Framework tool suite. The DPDK pipeline methodology is used to implement functional blocks such as packet RX, packet TX, flow classification, firewall, routing, IP fragmentation, IP reassembly, etc which are then assigned to different CPU cores and connected together to create complex multi-core applications.

6.29.1 Overview

The pipelines for packet RX, packet TX, flow classification, firewall, routing, IP fragmentation, IP reassembly, management, etc are instantiated and different CPU cores and connected together through software queues. One of the CPU cores can be designated as the management core to run a Command Line Interface (CLI) to add entries to each table (e.g. flow table, firewall rule database, routing table, Address Resolution Protocol (ARP) table, and so on), bring NIC ports up or down, and so on.

6.29.2 Compiling the Application

1. Go to the examples directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_pipeline
```

2. Set the target (a default target is used if not specified):

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

3. Build the application:

make

6.29.3 Running the Sample Code

The application execution command line is:

```
./ip_pipeline [EAL options] -- -p PORTMASK [-f CONFIG_FILE]
```

The number of ports in the PORTMASK can be either 2 or 4.

The config file assigns functionality to the CPU core by deciding the pipeline type to run on each CPU core (e.g. master, RX, flow classification, firewall, routing, IP fragmentation, IP reassembly, TX) and also allows creating complex topologies made up of CPU cores by interconnecting the CPU cores through SW queues.

Once the application is initialized, the CLI is available for populating the application tables, bringing NIC ports up or down, and so on.

The flow classification pipeline implements the flow table by using a large (multi-million entry) hash table with a 16-byte key size. The lookup key is the IPv4 5-tuple, which is extracted from the input packet by the packet RX pipeline and saved in the packet meta-data, has the following format:

[source IP address, destination IP address, L4 protocol, L4 protocol source port, L4 protocol destination port]

The firewall pipeline implements the rule database using an ACL table.

The routing pipeline implements an IP routing table by using an LPM IPv4 table and an ARP table by using a hash table with an 8-byte key size. The IP routing table lookup provides the output interface ID and the next hop IP address, which are stored in the packet meta-data, then used as the lookup key into the ARP table. The ARP table lookup provides the destination MAC address to be used for the output packet. The action for the default entry of both the IP routing table and the ARP table is packet drop.

The following CLI operations are available:

- Enable/disable NIC ports (RX pipeline)
- Add/delete/list flows (flow classification pipeline)
- Add/delete/list firewall rules (firewall pipeline)
- Add/delete/list routes (routing pipeline)
- Add/delete/list ARP entries (routing pipeline)

In addition, there are two special commands:

- flow add all: Populate the flow classification table with 16 million flows (by iterating through the last three bytes of the destination IP address). These flows are not displayed when using the flow print command. When this command is used, the following traffic profile must be used to have flow table lookup hits for all input packets. TCP/IPv4 packets with:
 - destination IP address = A.B.C.D with A fixed to 0 and B,C,D random
 - source IP address fixed to 0
 - source TCP port fixed to 0
 - destination TCP port fixed to 0
- run cmd file path: Read CLI commands from an external file and run them one by one.

The full list of the available CLI commands can be displayed by pressing the TAB key while the application is running.

6.30 Test Pipeline Application

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite. Its purpose is to demonstrate the performance of single-table DPDK pipelines.

6.30.1 Overview

The application uses three CPU cores:

- Core A ("RX core") receives traffic from the NIC ports and feeds core B with traffic through SW queues.
- Core B ("Pipeline core") implements a single-table DPDK pipeline whose type is selectable through specific command line parameter. Core B receives traffic from core A through software queues, processes it according to the actions configured in the table entries that are hit by the input packets and feeds it to core C through another set of software queues.
- Core C ("TX core") receives traffic from core B through software queues and sends it to the NIC ports for transmission.

Figure 21.Test Pipeline Application

6.30.2 Compiling the Application

1. Go to the app/test directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/app/test/test-pipeline
```

2. Set the target (a default target is used if not specified):

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

3. Build the application:

make

6.30.3 Running the Application

Application Command Line

The application execution command line is:

```
./test-pipeline [EAL options] -- -p PORTMASK --TABLE TYPE
```

The -c EAL CPU core mask option has to contain exactly 3 CPU cores. The first CPU core in the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

Table Types and Behavior

Table 3 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys. For hash tables, the following parameters can be selected:

- Configurable key size implementation or fixed (specialized) key size implementation (e.g. hash-8-ext or hash-spec-8-ext). The key size specialized implementations are expected to provide better performance for 8-byte and 16-byte key sizes, while the key-size-non-specialized implementation is expected to provide better performance for larger key sizes;
- Key size (e.g. hash-spec-8-ext or hash-spec-16-ext). The available options are 8, 16 and 32 bytes;
- Table type (e.g. hash-spec-16-ext or hash-spec-16-lru). The available options are ext (extendible bucket) or Iru (least recently used).

Table 3. Table Types

#	TABLE_TYPE	Description of Core B Table	Pre-added Table Entries
1	none	Core B is not implementing a DPDK pipeline. Core B is implementing a pass-through from its input set of software queues to its output set of software queues.	N/A
2	stub	Stub table. Core B is implementing the same pass-through functionality as described for the "none" option by using the DPDK Packet Framework by using one stub table for each input NIC port.	N/A
3	hash-[spec]-8-lru	LRU hash table with 8-byte key size and 16 million entries.	16 million entries are successfully added to the hash table with the following key format: [4-byte index, 4 bytes of 0] The action configured for all table entries is "Sendto output port", with the output port index uniformly distributed for the range of output ports. The default table rule (used in the case of a lookup miss) is to drop the packet. At run time, core A is creating the following lookup key and storing it into the packet meta data for core B to use for table lookup: [destination IPv4 address, 4 bytes of 0]
4	hash-[spec]-8-ext	Extendible bucket hash table with 8-byte key size and 16 million entries.	Same as hash-[spec]- 8-Iru table entries, above.
5	hash-[spec]-16-lru	LRU hash table with 16-byte key size and 16 million entries.	16 million entries are successfully added to the hash table with the
6.30. Test Pipeline App	plication		following key for fat: [4-byte index, 12 bytes of 0]

Input Traffic

Regardless of the table type used for the core B pipeline, the same input traffic can be used to hit all table entries with uniform distribution, which results in uniform distribution of packets sent out on the set of output NIC ports. The profile for input traffic is TCP/IPv4 packets with:

- · destination IP address as A.B.C.D with A fixed to 0 and B, C,D random
- source IP address fixed to 0.0.0.0
- destination TCP port fixed to 0
- source TCP port fixed to 0

6.31 Distributor Sample Application

The distributor sample application is a simple example of packet distribution to cores using the Data Plane Development Kit (DPDK).

6.31.1 Overview

The distributor application performs the distribution of packets that are received on an RX_PORT to different cores. When processed by the cores, the destination port of a packet is the port from the enabled port mask adjacent to the one on which the packet was received, that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 RX/TX into each other, and ports 2 and 3 RX/TX into each other.

This application can be used to benchmark performance using the traffic generator as shown in the figure below. **Figure 22. Performance Benchmarking Setup (Basic Environment)**

6.31.2 Compiling the Application

1. Go to the sample application directory:

```
export RTE_SDK=/path/to/rte_sdk
cd ${RTE SDK}/examples/distributor
```

2. Set the target (a default target is used if not specified). For example:

```
export RTE_TARGET=x86_64-native-linuxapp-gcc
```

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

6.31.3 Running the Application

1. The application has a number of command line options:

```
./build/distributor_app [EAL options] -- -p PORTMASK where.
```

-p PORTMASK: Hexadecimal bitmask of ports to configure

2. To run the application in linuxapp environment with 10 lcores, 4 ports, issue the command:

```
$ ./build/distributor_app -c 0x4003fe -n 4 -- -p f
```

3. Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Abstraction Layer (EAL) options.

6.31.4 Explanation

The distributor application consists of three types of threads: a receive thread (lcore_rx()), a set of worker threads(locre_worker()) and a transmit thread(lcore_tx()). How these threads work together is shown in Fig2 below. The main() function launches threads of these three types. Each thread has a while loop which will be doing processing and which is terminated only upon SIGINT or ctrl+C. The receive and transmit threads communicate using a software ring (rte_ring structure).

The receive thread receives the packets using rte_eth_rx_burst() and gives them to the distributor (using rte_distributor_process() API) which will be called in context of the receive thread itself. The distributor distributes the packets to workers threads based on the tagging of the packet - indicated by the hash field in the mbuf. For IP traffic, this field is automatically filled by the NIC with the "usr" hash value for the packet, which works as a per-flow tag.

More than one worker thread can exist as part of the application, and these worker threads do simple packet processing by requesting packets from the distributor, doing a simple XOR operation on the input port mbuf field (to indicate the output port which will be used later for packet transmission) and then finally returning the packets back to the distributor in the RX thread.

Meanwhile, the receive thread will call the distributor api rte_distributor_returned_pkts() to get the packets processed, and will enqueue them to a ring for transfer to the TX thread for transmission on the output port. The transmit thread will dequeue the packets from the ring and transmit them on the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C (or send SIG-INT to the app). Upon this signal, a signal handler provided in the application will terminate all running threads gracefully and print final statistics to the user. **Figure 23. Distributor Sample Application Layout**

6.31.5 Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment the line "#define DEBUG" defined in start of the application in main.c to enable debug logs.

6.31.6 Statistics

Upon SIGINT (or) ctrl+C, the print_stats() function displays the count of packets processed at the different stages in the application.

6.31.7 Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.1, "Command Line Arguments".

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.2, "Mbuf Pool Initialization".

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.3, "Driver Initialization".

RX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.4, "RX Queue Initialization".

TX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Section 9.4.5, "TX Queue Initialization".

6.32 VM Power Management Application

6.32.1 Introduction

Applications running in Virtual Environments have an abstract view of the underlying hardware on the Host, in particular applications cannot see the binding of virtual to physical hardware. When looking at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to Host Physical CPUs(pCPUS) is not apparent to an application and this pinning may change over time. Furthermore, Operating Systems on virtual machines do not have the ability to govern their own power policy; the Machine Specific Registers (MSRs) for enabling P-State transitions are not exposed to Operating Systems running on Virtual Machines(VMs).

The Virtual Machine Power Management solution shows an example of how a DPDK application can indicate its processing requirements using VM local only information(vCPU/lcore) to a Host based Monitor which is responsible for accepting requests for frequency changes for a vCPU, translating the vCPU to a pCPU via libvirt and affecting the change in frequency.

The solution is comprised of two high-level components:

1. Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel management allows adding channels to the Monitor, setting and querying the vCPU to pCPU pinning, inspecting and manually changing the frequency for each CPU. The CLI runs on a single lcore while the thread responsible for managing VM requests runs on a second lcore.

VM requests arriving on a channel for frequency changes are passed to the librte_power ACPI cpufreq sysfs based library. The Host Application relies on both qemu-kvm and libvirt to function.

2. librte power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for frequency changes are forwarded to the host monitor rather than the APCI cpufreq sysfs interface used on the host.

The I3fwd-power application will use this implementation when deployed on a VM (see Chapter 11 "L3 Forwarding with Power Management Application").

Figure 24. Highlevel Solution

6.32.2 Overview

VM Power Management employs qemu-kvm to provide communications channels between the host and VMs in the form of Virtio-Serial which appears as a paravirtualized serial device on a VM and can be configured to use various backends on the host. For this example each Virtio-Serial endpoint on the host is configured as AF_UNIX file socket, supporting poll/select and epoll for event notification. In this example each channel endpoint on the host is monitored via epoll for EPOLLIN events. Each channel is specified as qemu-kvm arguments or as libvirt XML for each VM, where each VM can have a number of channels up to a maximum of 64 per VM, in this example each DPDK lcore on a VM has exclusive access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface is forwarded via Virtio-Serial to the host, each request contains the vCPU and power command(scale up/down/min/max). The API for host and guest librte_power is consistent across environments, with the selection of VM or Host Implementation determined at automatically at runtime based on the environment.

Upon receiving a request, the host translates the vCPU to a pCPU via the libvirt API before forwarding to the host librte power. **Figure 25. VM request to scale frequency**

Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core, earlier Microarchitectures do not offer such fine grained control. When deployed on pre-Haswell platforms greater care must be taken in selecting which cores are assigned to a VM, for instance a core will not scale down until its sibling is similarly scaled.

6.32.3 Configuration

BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used. Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency-based power management cannot be used. Consult the relevant BIOS documentation to determine how these settings can be accessed.

Host Operating System

The Host OS must also have the *apci_cpufreq* module installed, in some cases the *intel_pstate* driver may be the default Power Management environment. To enable *acpi_cpufreq* and disable *intel_pstate*, add the following to the grub linux command line:

```
intel pstate=disable
```

Upon rebooting, load the *acpi_cpufreq* module:

```
modprobe acpi cpufreq
```

Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

Where a single controller of type *virtio-serial* is created and up to 32 channels can be associated with a single controller and multiple controllers can be specified. The convention is to use the name of the VM in the host path {*vm_name*} and to increment {*channel_num*} for each channel, likewise the port value {*N*} must be incremented for each channel.

Each channel on the host will appear in *path*, the directory /tmp/powermonitor/ must first be created and given qemu permissions

```
mkdir /tmp/powermonitor/
chown qemu:qemu /tmp/powermonitor
```

Note that files and directories within /tmp are generally removed upon rebooting the host and the above steps may need to be carried out after each reboot.

The serial device as it appears on a VM is configured with the *target* element attribute *name* and must be in the form of *virtio.serial.port.poweragent.{vm_channel_num}*, where *vm_channel_num* is typically the lcore channel to be used in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}

6.32.4 Compiling and Running the Host Application

Compiling

- export RTE_SDK=/path/to/rte_sdk
- 2. cd \${RTE_SDK}/examples/vm_power_manager
- 3. make

Running

The application does not have any specific command line options other than EAL:

```
./build/vm power mgr [EAL options]
```

The application requires exactly two cores to run, one core is dedicated to the CLI, while the other is dedicated to the channel endpoint monitor, for example to run on cores 0 & 1 on a system with 4 memory channels:

```
./build/vm power mgr -c 0x3 -n 4
```

After successful initialisation the user is presented with VM Power Manager CLI:

```
vm power>
```

Virtual Machines can now be added to the VM Power Manager:

```
vm_power> add_vm {vm_name}
```

When a {vm_name} is specified with the add_vm command a lookup is performed with libvirt to ensure that the VM exists, {vm_name} is used as an unique identifier to associate channels with a particular VM and for executing operations on a VM within the CLI. VMs do not have to be running in order to add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

```
rm vm {vm name}
```

Add communication channels for the specified VM, the virtio channels must be enabled in the VM configuration(qemu/libvirt) and the associated VM must be active. {list} is a comma-separated list of channel numbers to add, using the keyword 'all' will attempt to add all channels for the VM:

```
add channels {vm name} {list}|all
```

Enable or disable the communication channels in {list}(comma-separated) for the specified VM, alternatively list can be replaced with keyword 'all'. Disabled channels will still receive packets on the host, however the commands they specify will be ignored. Set status to 'enabled' to begin processing requests again:

```
set_channel_status {vm_name} {list}|all enabled|disabled
```

Print to the CLI the information on the specified VM, the information lists the number of vCPUS, the pinning to pCPU(s) as a bit mask, along with any communication channels associated with each VM, along with the status of each channel:

```
show vm {vm name}
```

Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU mask:

```
set pcpu mask {vm name} {vcpu} {pcpu}
```

Set the binding of Virtual CPU on VM to the Physical CPU:

```
set_pcpu {vm_name} {vcpu} {pcpu}
```

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

```
show cpu freq mask {mask}
```

Set the current frequency for the cores specified in {core_mask} by scaling each up/down/min/max:

```
set cpu freq {core mask} up|down|min|max
```

Get the current frequency for the specified core:

```
show cpu freq {core num}
```

Set the current frequency for the specified core by scaling up/down/min/max:

```
set_cpu_freq {core_num} up|down|min|max
```

6.32.5 Compiling and Running the Guest Applications

For compiling and running l3fwd-power, see Chapter 11 "L3 Forwarding with Power Management Application".

A guest CLI is also provided for validating the setup.

For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the host application using the *add channels* command on the host.

Compiling

- 1. export RTE SDK=/path/to/rte sdk
- 2. cd \${RTE SDK}/examples/vm power manager/guest cli
- 3. make

Running

The application does not have any specific command line options other than EAL:

```
./build/vm_power_mgr [EAL options]
```

The application for example purposes uses a channel for each lcore enabled, for example to run on cores 0,1,2,3 on a system with 4 memory channels:

```
./build/guest vm power mgr -c 0xf -n 4
```

After successful initialisation the user is presented with VM Power Manager Guest CLI:

```
vm power(guest)>
```

To change the frequency of a lcore, use the set_cpu_freq command. Where {core_num} is the lcore and channel to change frequency by scaling up/down/min/max.

```
set_cpu_freq {core_num} up|down|min|max
```

Figures

Figure 1.Packet Flow

Figure 2.Kernel NIC Application Packet Flow

Figure 3. Performance Benchmark Setup (Basic Environment)

Figure 4.Performance Benchmark Setup (Virtualized Environment)

Figure 5.Load Balancer Application Architecture

Figure 5.Example Rules File

Figure 6.Example Data Flow in a Symmetric Multi-process Application

Figure 7.Example Data Flow in a Client-Server Symmetric Multi-process Application

Figure 8.Master-slave Process Workflow

Figure 9.Slave Process Recovery Process Flow

Figure 10.QoS Scheduler Application Architecture

Figure 11.Intel®QuickAssist Technology Application Block Diagram

Figure 12. Pipeline Overview

Figure 13. Ring-based Processing Pipeline Performance Setup

Figure 14.Threads and Pipelines

Figure 15.Packet Flow Through the VMDQ and DCB Sample Application

Figure 16.QEMU Virtio-net (prior to vhost-net)

Figure 17. Virtio with Linux* Kernel Vhost

Figure 18. Vhost-net Architectural Overview

Figure 19. Packet Flow Through the vhost-net Sample Application

Figure 20. Packet Flow on TX in DPDK-testpmd

Figure 21. Test Pipeline Application

Figure 22. Performance Benchmarking Setup (Basic Environment)

Figure 23. Distributor Sample Application Layout

Figure 24. High level Solution

Figure 25.VM request to scale frequency

Tables

Table 1.Output Traffic Marking

Table 2.Entity Types

Table 3. Table Types

Testpmd Application User Guide

July 04, 2016

Contents

7.1 Introduction

This document is a user guide for the testpmd example application that is shipped as part of the Data Plane Development Kit.

The testpmd application can be used to test the DPDK in a packet forwarding mode and also to access NIC hardware features such as Flow Director. It also serves as a example of how to build a more fully-featured application using the DPDK SDK.

7.1.1 DocumentationRoadmap

The following is a list of DPDK documents in the suggested reading order:

- **Release Notes**: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.
- **Getting Started Guide** (this document): Describes how to install and configure the DPDK; designed to get users up and running quickly with the software.
- Programmer's Guide : Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application
 - Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

• API Reference: Provides detailed information about DPDK functions, data structures and other programming constructs.

• Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

Note: These documents are available for download as a separate documentation package at the same location as the DPDK code package.

7.2 Overview

The following sections show how to build and run the testpmd application and how to configure the application from the command line and the run-time environment.

7.3 Compiling the Application

The testpmd application is compiled as part of the main compilation of the DPDK libraries and tools. Refer to the DPDK Getting Started Guide for details. The basic compilation steps are:

1. Set the required environmental variables and go to the source directory:

```
export RTE_SDK=/path/to/rte_sdk
cd $RTE SDK
```

2. Set the compilation target. For example:

```
export RTE TARGET=x86 64-native-linuxapp-gcc
```

3. Build the application:

```
make install T=$RTE_TARGET
```

The compiled application will be located at:

```
$RTE SDK/$RTE TARGET/build/app/testpmd
```

7.4 Running the Application

7.4.1 EAL Command-line Options

The following are the EAL command-line options that can be used in conjunction with the testpmd, or any other DPDK application. See the DPDK Getting Started Guide for more information on these options.

· -c COREMASK

Set the hexadecimal bitmask of the cores to run on.

-I CORELIST

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...] where c1, c2, etc are core indexes between 0 and 128

7.2. Overview 392

–lcores COREMAP

Map Icore set to physical cpu set

The argument format is '<|cores[@cpus]>[<,|cores[@cpus]>...]'

lcores and cpus list are grouped by '(' and ')' Within the group, '-' is used for range separator, ',' is used for single number separator. '()' can be omitted for single element group, '@' can be omitted if cpus and lcores have the same value

–master-lcore ID

Core ID that is used as master

• -n NUM

Set the number of memory channels to use.

• -b, -pci-blacklist domain:bus:devid.func

Blacklist a PCI devise to prevent EAL from using it. Multiple -b options are allowed.

· -d LIB.so

Load an external driver. Multiple -d options are allowed.

· -w, -pci-whitelist domain:bus:devid:func

Add a PCI device in white list.

-m MB

Memory to allocate. See also -socket-mem.

• -r NUM

Set the number of memory ranks (auto-detected by default).

-V

Display the version information on startup.

–xen-dom0

Support application running on Xen Domain0 without hugetlbfs.

–syslog

Set the syslog facility.

· -socket-mem

Set the memory to allocate on specific sockets (use comma separated values).

• -huge-dir

Specify the directory where the hugetlbfs is mounted.

· -proc-type

Set the type of the current process.

–file-prefix

Prefix for hugepage filenames.

· -vmware-tsc-map

Use VMware TSC map instead of native RDTSC.

–vdev

Add a virtual device, with format "<driver><id>[,key=val, ...]", e.g. - vdev=eth_pcap0,iface=eth2.

–base-virtaddr

Specify base virtual address.

· -create-uio-dev

Create /dev/uioX (usually done by hotplug).

–no-shconf

No shared config (mmap'd files).

–no-pci

Disable pci.

–no-hpet

Disable hpet.

• -no-huge

Use malloc instead of hugetlbfs.

7.4.2 Testpmd Command-line Options

The following are the command-line options for the testpmd applications. They must be separated from the EAL options, shown in the previous section, with a – separator:

```
sudo ./testpmd -c 0xF -n 4 -- -i --portmask=0x1 --nb-cores=2
```

· -i, -interactive

Run testpmd in interactive mode. In this mode, the testpmd starts with a prompt that can be used to start and stop forwarding, configure the application and display stats on the current packet processing session. See the Section 5.0, "Test Runtime Functions" section for more details.

In non-interactive mode, the application starts with the configuration specified on the command-line and immediately enters forwarding mode.

• -h, -help

Display a help message and quit.

-a, –auto-start

Start forwarding on init.

–nb-cores=N

Set the number of forwarding cores, where $1 \le N \le number of cores or RTE_MAX_LCORE from the configuration file. The default value is 1.$

–nb-ports=N

Set the number of forwarding ports, where 1 <= N <= number of ports on the board or RTE_MAX_ETHPORTS from the configuration file. The default value is the number of ports on the board.

–coremask=0xXX

Set the hexadecimal bitmask of the cores running the packet forwarding test. The master lcore is reserved for command line parsing only and cannot be masked on for packet forwarding.

–portmask=0xXX

Set the hexadecimal bitmask of the ports used by the packet forwarding test.

• -numa

Enable NUMA-aware allocation of RX/TX rings and of RX memory buffers (mbufs).

–port-numa-config=(port,socket)[,(port,socket)]

Specify the socket on which the memory pool to be used by the port will be allocated.

-ring-numa-config=(port,flag,socket)[,(port,flag,socket)]

Specify the socket on which the TX/RX rings for the port will be allocated. Where flag is 1 for RX, 2 for TX, and 3 for RX and TX.

-socket-num=N

Set the socket from which all memory is allocated in NUMA mode, where $0 \le N \le N$ number of sockets on the board.

–mbuf-size=N

Set the data size of the mbufs used to N bytes, where N < 65536. The default value is 2048.

-total-num-mbufs=N

Set the number of mbufs to be allocated in the mbuf pools, where N > 1024.

–max-pkt-len=N

Set the maximum packet size to N bytes, where $N \ge 64$. The default value is 1518.

–eth-peers-configfile=name

Use a configuration file containing the Ethernet addresses of the peer ports. The configuration file should contain the Ethernet addresses on separate lines:

XX:XX:XX:XX:01

XX:XX:XX:XX:02

...

–eth-peer=N,XX:XX:XX:XX:XX:XX

Set the MAC address XX:XX:XX:XX:XX of the peer port N, where $0 \le N < RTE_MAX_ETHPORTS$ from the configuration file.

–pkt-filter-mode=mode

Set Flow Director mode where mode is either none (the default), signature or perfect. See the Section 5.6, "Flow Director Functions" for more detail.

· -pkt-filter-report-hash=mode

Set Flow Director hash match reporting mode where mode is none, match (the default) or always.

–pkt-filter-size=N

Set Flow Director allocated memory size, where N is 64K, 128K or 256K. Sizes are in kilobytes. The default is 64.

–pkt-filter-flexbytes-offset=N

Set the flexbytes offset. The offset is defined in words (not bytes) counted from the first byte of the destination Ethernet MAC address, where N is $0 \le N \le 32$. The default value is 0x6.

• -pkt-filter-drop-queue=N

Set the drop-queue. In perfect filter mode, when a rule is added with queue = -1, the packet will be enqueued into the RX drop-queue. If the drop-queue does not exist, the packet is dropped. The default value is N=127.

• -crc-strip

Enable hardware CRC stripping.

–enable-rx-cksum

Enable hardware RX checksum offload.

–disable-hw-vlan

Disable hardware VLAN.

–disable-hw-vlan-filter

Disable hardware VLAN filter.

–disable-hw-vlan-strip

Disable hardware VLAN strip.

–disable-hw-vlan-extend

Disable hardware VLAN extend.

–enable-drop-en

Enable per-queue packet drop for packets with no descriptors.

disable-rss

Disable RSS (Receive Side Scaling).

–port-topology=mode

Set port topology, where mode is paired(the default) or chained. In paired mode, the forwarding is between pairs of ports, for example: (0,1), (2,3), (4,5). In chained mode, the forwarding is to the next available port in the port mask, for example: (0,1), (1,2), (2,0). The ordering of the ports can be changed using the portlist testpmd runtime function.

–forward-mode=N

Set forwarding mode. (N: io|mac|mac_retry|mac_swap|flowgen|rxonly|txonly|csum|icmpecho)

–rss-ip

Set RSS functions for IPv4/IPv6 only.

–rss-udp

Set RSS functions for IPv4/IPv6 and UDP.

-rxq=N

Set the number of RX queues per port to N, where $1 \le N \le 65535$. The default value is 1.

-rxd=N

Set the number of descriptors in the RX rings to N, where N > 0. The default value is 128.

• -txq=N

Set the number of TX queues per port to N, where $1 \le N \le 65535$. The default value is 1.

-txd=N

Set the number of descriptors in the TX rings to N, where N > 0. The default value is 512.

• -burst=N

Set the number of packets per burst to N, where $1 \le N \le 512$. The default value is 16.

-mbcache=N

Set the cache of mbuf memory pools to N, where $0 \le N \le 512$. The default value is 16.

–rxpt=N

Set the prefetch threshold register of RX rings to N, where N >= 0. The default value is 8.

–rxht=N

Set the host threshold register of RX rings to N, where $N \ge 0$. The default value is 8.

–rxfreet=N

Set the free threshold of RX descriptors to N, where $0 \le N \le N \le N$. The default value is 0.

• -rxwt=N

Set the write-back threshold register of RX rings to N, where $N \ge 0$. The default value is 4.

–txpt=N

Set the prefetch threshold register of TX rings to N, where $N \ge 0$. The default value is 36.

• -txht=N

Set the host threshold register of TX rings to N, where $N \ge 0$. The default value is 0.

-txwt=N

Set the write-back threshold register of TX rings to N, where $N \ge 0$. The default value is 0.

–txfreet=N

Set the transmit free threshold of TX rings to N, where $0 \le N \le value$ of -txd. The default value is 0.

–txrst=N

Set the transmit RS bit threshold of TX rings to N, where $0 \le N \le N \le N$ value of -txd. The default value is 0.

-txqflags=0xXXXXXXXXX

Set the hexadecimal bitmask of TX queue flags, where $0 \le N \le 0.00$ V = 0x7FFFFFF. The default value is 0.

Note:

```
When using hardware offload functions such as vlan, checksum..., add txqflags=0, since depending on the PMD, txqflags might be set to a non-zero value.
```

-rx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the RX queues statistics counters mapping 0 <= mapping <= 15.

-tx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the TX queues statistics counters mapping 0 <= mapping <= 15.

–no-flush-rx

Don't flush the RX streams before starting forwarding. Used mainly with PCAP drivers.

-txpkts=X[,Y]

Set TX segment sizes.

–disable-link-check

Disable check on link status when starting/stopping ports.

7.5 Testpmd Runtime Functions

Where the testpmd application is started in interactive mode, (-i|-interactive), it displays a prompt that can be used to start and stop forwarding, configure the application, display statistics, set the Flow Director and other tasks.

```
testpmd>
```

The testpmd prompt has some, limited, readline support. Common bash command- line functions such as Ctrl+a and Ctrl+e to go to the start and end of the prompt line are supported as well as access to the command history via the up-arrow.

There is also support for tab completion. If you type a partial command and hit <TAB> you get a list of the available completions:

```
testpmd> show port <TAB>
  info [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap X
  info [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap all
  stats [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap X
  stats [Mul-choice STRING]: show|clear port info|stats|fdir|stat_qmap all
```

7.5.1 Help Functions

The testpmd has on-line help for the functions that are available at runtime. These are divided into sections and can be accessed using help, help section or help all:

7.5.2 Control Functions

start

Start packet forwarding with current configuration:

start

start tx first

Start packet forwarding with current configuration after sending one burst of packets:

```
start tx_first
```

stop

Stop packet forwarding, and display accumulated statistics:

stop

quit

Quit to prompt:

quit

7.5.3 Display Functions

The functions in the following sections are used to display information about the testpmd configuration or the NIC status.

show port

Display information for a given port or all ports:

show port (info|stats|fdir|stat gmap) (port id|all)

The available information categories are:

info: General port information such as MAC address.

stats: RX/TX statistics.

fdir: Flow Director information and statistics.

stat_qmap: Queue statistics mapping.

For example:

```
testpmd> show port info 0
MAC address: XX:XX:XX:XX:XX
Connect to socket: 0
memory allocation on the socket: 0
Link status: up
Link speed: 40000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 64
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
   strip on
   filter on
   qinq(extend) off
Redirection table size: 512
Supported flow types:
 ipv4-frag
 ipv4-tcp
 ipv4-udp
 ipv4-sctp
 ipv4-other
 ipv6-frag
 ipv6-tcp
 ipv6-udp
 ipv6-sctp
 ipv6-other
 12 payload
```

show port rss reta

Display the rss redirection table entry indicated by masks on port X: show port (port_id) rss reta (size) (mask0, mask1...)

size is used to indicate the hardware supported reta size

show port rss-hash

Display the RSS hash functions and RSS hash key of a port: show port (port_id) rss-hash [key]

clear port

Clear the port statistics for a given port or for all ports:

clear port (info|stats|fdir|stat_qmap) (port_id|all)

For example:

```
testpmd> clear port stats all
```

show config

Displays the configuration of the application. The configuration comes from the command-line, the runtime or the application defaults:

show config (rxtx|cores|fwd)

The available information categories are:

rxtx: RX/TX configuration items.

cores: List of forwarding cores.

fwd: Packet forwarding configuration.

For example:

```
testpmd> show config rxtx

io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=2 - nb forwarding ports=1
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0
```

read rxd

Display an RX descriptor for a port RX queue:

```
read rxd (port_id) (queue_id) (rxd_id)
```

For example:

```
testpmd> read rxd 0 0 4
0x0000000B - 0x001D0180 / 0x0000000B - 0x001D0180
```

read txd

Display a TX descriptor for a port TX queue:

read txd (port_id) (queue_id) (txd_id)

For example:

7.5.4 Configuration Functions

The testpmd application can be configured from the runtime as well as from the command-line.

This section details the available configuration functions that are available.

Note: Configuration changes only become active when forwarding is started/restarted.

set default

Reset forwarding to the default configuration:

set default

set verbose

Set the debug verbosity level:

set verbose (level)

Currently the only available levels are 0 (silent except for error) and 1 (fully verbose).

set nbport

Set the number of ports used by the application:

set nbport (num)

This is equivalent to the –nb-ports command-line option.

set nbcore

Set the number of cores used by the application:

set nbcore (num)

This is equivalent to the –nb-cores command-line option.

Note: The number of cores used must not be greater than number of ports used multiplied by the number of gueues per port.

set coremask

Set the forwarding cores hexadecimal mask:

set coremask (mask)

This is equivalent to the -coremask command-line option.

Note: The master lcore is reserved for command line parsing only and cannot be masked on for packet forwarding.

set portmask

Set the forwarding ports hexadecimal mask:

set portmask (mask)

This is equivalent to the -portmask command-line option.

set burst

Set number of packets per burst:

set burst (num)

This is equivalent to the -burst command-line option.

In mac_retry forwarding mode, the transmit delay time and number of retries can also be set.

set burst tx delay (micrseconds) retry (num)

set txpkts

Set the length of each segment of the TX-ONLY packets:

```
set txpkts (x[,y]*)
```

Where $x[,y]^*$ represents a CSV list of values, without white space.

set corelist

Set the list of forwarding cores:

```
set corelist (x[,y]*)
```

For example, to change the forwarding cores:

```
testpmd> set corelist 3,1
testpmd> show config fwd

io packet forwarding - ports=2 - cores=2 - streams=2 - NUMA support disabled
Logical Core 3 (socket 0) forwards packets on 1 streams:

RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01
Logical Core 1 (socket 0) forwards packets on 1 streams:

RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
```

Note: The cores are used in the same order as specified on the command line.

set portlist

Set the list of forwarding ports:

```
set portlist (x[,y]*)
```

For example, to change the port forwarding:

```
testpmd> set portlist 0,2,1,3
testpmd> show config fwd

io packet forwarding - ports=4 - cores=1 - streams=4
Logical Core 3 (socket 0) forwards packets on 4 streams:
RX P=0/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:01
RX P=2/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
RX P=1/Q=0 (socket 0) -> TX P=3/Q=0 (socket 0) peer=02:00:00:00:00:03
RX P=3/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:00
```

vlan set strip

Set the VLAN strip on a port:

vlan set strip (on|off) (port_id)

vlan set stripq

Set the VLAN strip for a queue on a port:

vlan set stripq (on|off) (port_id,queue_id)

vlan set filter

Set the VLAN filter on a port:

vlan set filter (on|off) (port_id)

vlan set ging

Set the VLAN QinQ (extended gueue in gueue) on for a port:

vlan set qinq (on|off) (port_id)

vlan set tpid

Set the outer VLAN TPID for packet filtering on a port:

vlan set tpid (value) (port_id)

Note: TPID value must be a 16-bit number (value <= 65536).

rx vlan add

Add a VLAN ID, or all identifiers, to the set of VLAN identifiers filtered by port ID:

rx_vlan add (vlan_id|all) (port_id)

Note: VLAN filter must be set on that port. VLAN ID < 4096. Depending on the NIC used, number of vlan_ids may be limited to the maximum entries in VFTA table. This is important if enabling all vlan_ids.

rx vlan rm

Remove a VLAN ID, or all identifiers, from the set of VLAN identifiers filtered by port ID: rx_vlan rm (vlan_id|all) (port_id)

rx_vlan add(for VF)

Add a VLAN ID, to the set of VLAN identifiers filtered for VF(s) for port ID: rx vlan add (vlan id) port (port id) vf (vf mask)

rx_vlan rm(for VF)

Remove a VLAN ID, from the set of VLAN identifiers filtered for VF(s) for port ID: rx vlan rm (vlan id) port (port id) vf (vf mask)

rx_vlan set tpid

Set the outer VLAN TPID for packet filtering on a port:

rx_vlan set tpid (value) (port_id)

tunnel_filter add

Add a tunnel filter on a port:

tunnel_filter add (port_id) (outer_mac) (inner_mac) (ip_addr) (inner_vlan) (tunnel_type) (filter_type) (tenant_id) (queue_id)

tunnel_filter remove

Remove a tunnel filter on a port:

tunnel_filter rm (port_id) (outer_mac) (inner_mac) (ip_addr) (inner_vlan) (tunnel_type) (filter type) (tenant id) (queue id)

rx_vxlan_port add

Add an UDP port for VXLAN packet filter on a port:

rx_vxlan_port add (udp_port) (port_id)

rx_vxlan_port remove

Remove an UDP port for VXLAN packet filter on a port:

rx_vxlan_port rm (udp_port) (port_id)

tx_vlan set

Set hardware insertion of VLAN ID in packets sent on a port:

tx_vlan set (vlan_id) (port_id)

tx_vlan set pvid

Set port based hardware insertion of VLAN ID in pacekts sent on a port:

tx_vlan set pvid (port_id) (vlan_id) (on|off)

tx_vlan reset

Disable hardware insertion of a VLAN header in packets sent on a port:

tx_vlan reset (port_id)

csum set

Select hardware or software calculation of the checksum when transmitting a packet using the csum forward engine:

csum set (ip|udp|tcp|sctp|outer-ip) (hw|sw) (port id)

- ip|udp|tcp|sctp always concern the inner layer.
- outer-ip concerns the outer IP layer in case the packet is recognized as a tunnel packet by the forward engine (vxlan, gre and ipip are supported). See "csum parse-tunnel" command.

Note: Check the NIC Datasheet for hardware limits.

csum parse-tunnel

Define how tunneled packets should be handled by the csum forward engine.

csum parse-tunnel (on|off) (tx_port_id)

If enabled, the csum forward engine will try to recognize supported tunnel headers (vxlan, gre, ipip).

If disabled, treat tunnel packets as non-tunneled packets (a inner header is handled as a packet payload).

Note: The port argument is the TX port like in the "csum set" command.

Example:

Consider a packet as following: "eth_out/ipv4_out/udp_out/vxlan/eth_in/ipv4_in/tcp_in"

- If parse-tunnel is enabled, the ip|udp|tcp|sctp parameters of "csum set" command are about inner headers (here ipv4_in and tcp_in), and the outer-ip parameter is about outer headers (here ipv4_out).
- If parse-tunnel is disabled, the ip|udp|tcp|sctp parameters of "csum set" command are about outer headers, here ipv4_out and udp_out.

csum show

Display tx checksum offload configuration:

csum show (port_id)

tso set

Enable TCP Segmentation Offload in csum forward engine:

tso set (segsize) (port_id)

Note: Check the NIC datasheet for hardware limits

tso show

Display the status of TCP Segmentation Offload:

tso show (port_id)

set fwd

Set the packet forwarding mode:

set fwd (io|mac|mac_retry|macswap|flowgen|rxonly|txonly|csum|icmpecho)

The available information categories are:

- io: forwards packets "as-is" in I/O mode. This is the fastest possible forwarding operation as it does not access packets data. This is the default mode.
- mac: changes the source and the destination Ethernet addresses of packets before forwarding them.
- mac_retry: same as "mac" forwarding mode, but includes retries if the destination queue is full.
- macswap: MAC swap forwarding mode. Swaps the source and the destination Ethernet addresses of packets before forwarding them.
- flowgen: multi-flow generation mode. Originates a bunch of flows (varying destination IP addresses), and terminate receive traffic.
- rxonly: receives packets but doesn't transmit them.
- txonly: generates and transmits packets without receiving any.
- csum: changes the checksum field with HW or SW methods depending on the offload flags on the packet.
- icmpecho: receives a burst of packets, lookup for IMCP echo requests and, if any, send back ICMP echo replies.

Example:

```
testpmd> set fwd rxonly
Set rxonly packet forwarding mode
```

mac addr add

Add an alternative MAC address to a port:

```
mac addr add (port id) (XX:XX:XX:XX:XX)
```

mac_addr remove

Remove a MAC address from a port:

mac_addr remove (port_id) (XX:XX:XX:XX:XX)

mac_addr add(for VF)

Add an alternative MAC address for a VF to a port:

mac_add add port (port_id) vf (vf_id) (XX:XX:XX:XX:XX)

set port-uta

Set the unicast hash filter(s) on/off for a port X:

set port (port_id) uta (XX:XX:XX:XX:XX:XX|all) (on|off)

set promisc

Set the promiscuous mode on for a port or for all ports. In promiscuous mode packets are not dropped if they aren't for the specified MAC address:

set promisc (port_id|all) (on|off)

set allmulti

Set the allmulti mode for a port or for all ports:

set allmulti (port_id|all) (on|off)

Same as the ifconfig (8) option. Controls how multicast packets are handled.

set flow_ctrl rx

Set the link flow control parameter on a port:

set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) (pause_time) (send_xon) (port_id)

Where:

high_water (integer): High threshold value to trigger XOFF.

low water (integer): Low threshold value to trigger XON.

pause_time (integer): Pause quota in the Pause frame.

send_xon (0/1) : Send XON frame.

mac_ctrl_frame_fwd : Enable receiving MAC control frames

set pfc_ctrl rx

Set the priority flow control parameter on a port:

set pfc_ctrl rx (on|off) tx (on|off) (high_water) (low_water) (pause_time) (priority) (port_id)

Where:

priority (0-7): VLAN User Priority.

set stat_qmap

Set statistics mapping (qmapping 0..15) for RX/TX queue on port:

set stat_qmap (tx|rx) (port_id) (queue_id) (qmapping)

For example, to set rx queue 2 on port 0 to mapping 5:

testpmd>set stat_qmap rx 0 2 5

set port - rx/tx(for VF)

Set VF receive/transmit from a port:

set port (port_id) vf (vf_id) (rx|tx) (on|off)

set port - mac address filter (for VF)

Add/Remove unicast or multicast MAC addr filter for a VF:

set port (port_id) vf (vf_id) (mac_addr) (exact-mac|exact-mac-vlan|hashmac|hashmac-vlan) (on|off)

set port - rx mode(for VF)

Set the VF receive mode of a port:

set port (port_id) vf (vf_id) rxmode (AUPE|ROPE|BAM|MPE) (on|off)

The available receive modes are:

- AUPE: accepts untagged VLAN.
- · ROPE: accepts unicast hash.
- · BAM: accepts broadcast packets
- · MPE: accepts all multicast packets

set port - tx rate (for Queue)

Set TX rate limitation for queue of a port ID:

set port (port_id) queue (queue_id) rate (rate_value)

set port - tx_rate (for VF)

Set TX rate limitation for queues in VF of a port ID:

set port (port_id) vf (vf_id) rate (rate_value) queue_mask (queue_mask)

set port - mirror rule

Set port or vlan type mirror rule for a port.

set port (port_id) mirror-rule (rule_id) (pool-mirror|vlan-mirror) (poolmask|vlanid[,vlanid]*) dst-pool (pool_id) (on|off)

For example to enable mirror traffic with vlan 0,1 to pool 0:

```
set port 0 mirror-rule 0 vlan-mirror 0,1 dst-pool 0 on
```

reset port - mirror rule

Reset a mirror rule for a port.

reset port (port_id) mirror-rule (rule_id)

set flush rx

Flush (default) or don't flush RX streams before forwarding. Mainly used with PCAP drivers to avoid the default behavior of flushing the first 512 packets on RX streams.

set flush rx off

set bypass mode

Set the bypass mode for the lowest port on bypass enabled NIC.

set bypass mode (normal|bypass|isolate) (port_id)

set bypass event

Set the event required to initiate specified bypass mode for the lowest port on a bypass enabled NIC where:

- timeout: enable bypass after watchdog timeout.
- os_on: enable bypass when OS/board is powered on.
- os_off: enable bypass when OS/board is powered off.
- power on: enable bypass when power supply is turned on.
- power off: enable bypass when power supply is turned off.

set bypass event (timeout|os_on|os_off|power_on|power_off) mode (normal|bypass|isolate) (port_id)

set bypass timeout

Set the bypass watchdog timeout to 'n' seconds where 0 = instant.

set bypass timeout (0|1.5|2|3|4|8|16|32)

show bypass config

Show the bypass configuration for a bypass enabled NIC using the lowest port on the NIC. show bypass config (port id)

set link up

Set link up for a port.

set link-up port (port id)

set link down

Set link down for a port. set link-down port (port id)

7.5.5 Port Functions

The following sections show functions for configuring ports.

Note: Port configuration changes only become active when forwarding is started/restarted.

port attach

Attach a port specified by pci address or virtual device args.

To attach a new pci device, the device should be recognized by kernel first. Then it should be moved under DPDK management. Finally the port can be attached to testpmd. On the other hand, to attach a port created by virtual device, above steps are not needed.

port attach (identifier)

For example, to attach a port whose pci address is 0000:02:00.0.

```
testpmd> port attach 0000:02:00.0
Attaching a new port...
... snip ...
Port 0 is attached. Now total ports is 1
Done
```

For example, to attach a port created by pcap PMD.

```
testpmd> port attach eth_pcap0,iface=eth0
Attaching a new port...
... snip ...
Port 0 is attached. Now total ports is 1
```

In this case, identifier is "eth_pcap0,iface=eth0". This identifier format is the same as "-vdev" format of DPDK applications.

port detach

Detach a specific port.

Before detaching a port, the port should be closed. Also to remove a pci device completely from the system, first detach the port from testpmd. Then the device should be moved under kernel management. Finally the device can be removed using kernel pci hotplug functionality. On the other hand, to remove a port created by a virtual device, above steps are not needed.

```
port detach (port id)
```

For example, to detach a port 0.

```
testpmd> port detach 0
Detaching a port...
... snip ...
Done
```

port start

```
Start all ports or a specific port:
```

port stop

Stop all ports or a specific port:

port stop (port_id|all)

port start (port_id|all)

port close

Close all ports or a specific port:

port close (port_id|all)

port start/stop queue

Start/stop a rx/tx queue on a specific port:

port (port_id) (rxq|txq) (queue_id) (start|stop)

Only take effect when port is started.

port config - speed

Set the speed and duplex mode for all ports or a specific port:

port config (port_id|all) speed (10|100|1000|10000|auto) duplex (half|full|auto)

port config - queues/descriptors

Set number of queues/descriptors for rxq, txq, rxd and txd:

port config all (rxq|txq|rxd|txd) (value)

This is equivalent to the -rxq, -txq, -rxd and -txd command-line options.

port config - max-pkt-len

Set the maximum packet length:

port config all max-pkt-len (value)

This is equivalent to the -max-pkt-len command-line option.

port config - CRC Strip

Set hardware CRC stripping on or off for all ports:

port config all crc-strip (on|off)

CRC stripping is off by default.

The on option is equivalent to the -crc-strip command-line option.

port config - RX Checksum

Set hardware RX checksum offload to on or off for all ports:

port config all rx-cksum (on|off)

Checksum offload is off by default.

The on option is equivalent to the -enable-rx-cksum command-line option.

port config - VLAN

Set hardware VLAN on or off for all ports:

port config all hw-vlan (on|off)

Hardware VLAN is on by default.

The off option is equivalent to the –disable-hw-vlan command-line option.

port config - VLAN filter

Set hardware VLAN filter on or off for all ports:

port config all hw-vlan-filter (on|off)

Hardware VLAN filter is on by default.

The off option is equivalent to the -disable-hw-vlan-filter command-line option.

port config - VLAN strip

Set hardware VLAN strip on or off for all ports:

port config all hw-vlan-strip (on|off)

Hardware VLAN strip is on by default.

The off option is equivalent to the -disable-hw-vlan-strip command-line option.

port config - VLAN extend

Set hardware VLAN extend on or off for all ports:

port config all hw-vlan-extend (on|off)

Hardware VLAN extend is off by default.

The off option is equivalent to the -disable-hw-vlan-extend command-line option.

port config - Drop Packets

Set packet drop for packets with no descriptors on or off for all ports:

port config all drop-en (on|off)

Packet dropping for packets with no descriptors is off by default.

The on option is equivalent to the —enable-drop-en command-line option.

port config - RSS

Set the RSS (Receive Side Scaling) mode on or off:

port config all rss (all|ip|tcp|udp|sctp|ether|none)

RSS is on by default.

The off option is equivalent to the –disable-rss command-line option.

port config - RSS Reta

Set the RSS (Receive Side Scaling) redirection table:

port config all rss reta (hash,queue)[,(hash,queue)]

port config - DCB

Set the DCB mode for an individual port:

port config (port_id) dcb vt (on|off) (traffic_class) pfc (on|off)

The traffic class should be 4 or 8.

port config - Burst

Set the number of packets per burst:

port config all burst (value)

This is equivalent to the –burst command-line option.

port config - Threshold

Set thresholds for TX/RX queues:

port config all (threshold) (value)

Where the threshold type can be:

- txpt: Set the prefetch threshold register of the TX rings, 0 <= value <= 255.
- txht: Set the host threshold register of the TX rings, 0 <= value <= 255.
- txwt: Set the write-back threshold register of the TX rings, 0 <= value <= 255.
- rxpt: Set the prefetch threshold register of the RX rings, 0 <= value <= 255.
- rxht: Set the host threshold register of the RX rings, 0 <= value <= 255.
- rxwt: Set the write-back threshold register of the RX rings, 0 <= value <= 255.
- txfreet: Set the transmit free threshold of the TX rings, 0 <= value <= txd.
- rxfreet: Set the transmit free threshold of the RX rings, 0 <= value <= rxd.
- txrst: Set the transmit RS bit threshold of TX rings, 0 <= value <= txd. These threshold options are also available from the command-line.

7.5.6 Link Bonding Functions

The Link Bonding functions make it possible to dynamically create and manage link bonding devices from within testpmd interactive prompt.

create bonded device

Create a new bonding device:

create bonded device (mode) (socket)

For example, to create a bonded device in mode 1 on socket 0.

```
testpmd> create bonded 1 0 created new bonded device (port X)
```

add bonding slave

Adds Ethernet device to a Link Bonding device:

add bonding slave (slave id) (port id)

For example, to add Ethernet device (port 6) to a Link Bonding device (port 10).

```
testpmd> add bonding slave 6 10
```

remove bonding slave

Removes an Ethernet slave device from a Link Bonding device:

remove bonding slave (slave id) (port id)

For example, to remove Ethernet slave device (port 6) to a Link Bonding device (port 10).

```
testpmd> remove bonding slave 6 10
```

set bonding mode

Set the Link Bonding mode of a Link Bonding device:

set bonding mode (value) (port id)

For example, to set the bonding mode of a Link Bonding device (port 10) to broadcast (mode 3).

```
testpmd> set bonding mode 3 10
```

set bonding primary

Set an Ethernet slave device as the primary device on a Link Bonding device:

set bonding primary (slave id) (port id)

For example, to set the Ethernet slave device (port 6) as the primary port of a Link Bonding device (port 10).

```
testpmd> set bonding primary 6 10
```

set bonding mac

Set the MAC address of a Link Bonding device:

set bonding mac (port id) (mac)

For example, to set the MAC address of a Link Bonding device (port 10) to 00:00:00:00:00:00:01

```
testpmd> set bonding mac 10 00:00:00:00:00:01
```

set bonding xmit_balance_policy

Set the transmission policy for a Link Bonding device when it is in Balance XOR mode:

```
set bonding xmit_balance_policy (port_id) (I2|I23|I34)
```

For example, set a Link Bonding device (port 10) to use a balance policy of layer 3+4 (IP addresses & UDP ports)

```
testpmd> set bonding xmit_balance_policy 10 l34
```

set bonding mon_period

Set the link status monitoring polling period in milliseconds for a bonding devicie.

This adds support for PMD slave devices which do not support link status interrupts. When the mon_period is set to a value greater than 0 then all PMD's which do not support link status ISR will be queried every polling interval to check if their link status has changed.

```
set bonding mon period (port id) (value)
```

For example, to set the link status monitoring polling period of bonded device (port 5) to 150ms

```
testpmd> set bonding mon_period 5 150
```

show bonding config

Show the current configuration of a Link Bonding device:

show bonding config (port id)

For example, to show the configuration a Link Bonding device (port 9) with 3 slave devices (1, 3, 4) in balance mode with a transmission policy of layer 2+3.

```
testpmd> show bonding config 9
   Bonding mode: 2
   Balance Xmit Policy: BALANCE_XMIT_POLICY_LAYER23
   Slaves (3): [1 3 4]
   Active Slaves (3): [1 3 4]
   Primary: [3]
```

7.5.7 Register Functions

The Register functions can be used to read from and write to registers on the network card referenced by a port number. This is mainly useful for debugging purposes. Reference should be made to the appropriate datasheet for the network card for details on the register addresses and fields that can be accessed.

read req

Display the value of a port register:

```
read reg (port_id) (address)
```

For example, to examine the Flow Director control register (FDIRCTL, 0x0000EE000) on an Intel® 82599 10 GbE Controller:

```
testpmd> read reg 0 0xEE00
port 0 PCI register at offset 0xEE00: 0x4A060029 (1241907241)
```

read regfield

Display a port register bit field:

```
read regfield (port_id) (address) (bit_x) (bit_y)
```

For example, reading the lowest two bits from the register in the example above:

```
testpmd> read regfield 0 0xEE00 0 1 port 0 PCI register at offset 0xEE00: bits[0, 1]=0x1 (1)
```

read regbit

Display a single port register bit:

```
read regbit (port_id) (address) (bit_x)
```

For example, reading the lowest bit from the register in the example above:

```
testpmd> read regbit 0 0xEE00 0
port 0 PCI register at offset 0xEE00: bit 0=1
```

write reg

Set the value of a port register:

write reg (port_id) (address) (value)

For example, to clear a register:

```
testpmd> write reg 0 0xEE00 0x0 port 0 PCI register at offset 0xEE00: 0x00000000 (0)
```

write regfield

Set bit field of a port register:

```
write regfield (port_id) (address) (bit_x) (bit_y) (value)
```

For example, writing to the register cleared in the example above:

```
testpmd> write regfield 0 0xEE00 0 1 2 port 0 PCI register at offset 0xEE00: 0x00000002 (2)
```

write regbit

Set single bit value of a port register:

```
write regbit (port_id) (address) (bit_x) (value)
```

For example, to set the high bit in the register from the example above:

```
testpmd> write regbit 0 0xEE00 31 1 port 0 PCI register at offset 0xEE00: 0x8000000A (2147483658)
```

7.5.8 Filter Functions

This section details the available filter functions that are available.

ethertype_filter

Add or delete a L2 Ethertype filter, which identify packets by their L2 Ethertype mainly assign them to a receive queue.

ethertype_filter (port_id) (add|del) (mac_addr|mac_ignr) (mac_address) ethertype (ether_type) (drop|fwd) queue (queue_id)

The available information parameters are:

- port_id: the port which the Ethertype filter assigned on.
- mac_addr: compare destination mac address.
- mac ignr: ignore destination mac address match.
- mac_address: destination mac address to match.
- ether_type: the EtherType value want to match, for example 0x0806 for ARP packet. 0x0800 (IPv4) and 0x86DD (IPv6) are invalid.
- queue_id : The receive queue associated with this EtherType filter. It is meaningless when deleting or dropping.

Example, to add/remove an ethertype filter rule:

```
testpmd> ethertype_filter 0 add mac_ignr ethertype 0x0806 fwd queue 3 testpmd> ethertype filter 0 del mac_ignr ethertype 0x0806 fwd queue 3
```

2tuple_filter

Add or delete a 2-tuple filter, which identify packets by specific protocol and destination TCP/UDP port and forwards packets into one of the receive queues.

2tuple_filter (port_id) (add|del) dst_port (dst_port_value) protocol (protocol_value) mask (mask_value) tcp_flags (tcp_flags_value) priority (prio_value) queue (queue_id)

The available information parameters are:

- port_id: the port which the 2-tuple filter assigned on.
- dst port value: destination port in L4.
- protocol value: IP L4 protocol.
- mask value: participates in the match or not by bit for field above. 1b means participate.
- tcp_flags_value: TCP control bits. The non-zero value is invalid, when the pro_value is not set to 0x06 (TCP).
- · prio value: priority of this filter.
- queue_id: The receive queue associated with this 2-tuple filter.

Example, to add/remove an 2tuple filter rule:

```
testpmd> 2tuple_filter 0 add dst_port 32 protocol 0x06 mask 0x03 tcp_flags 0x02 priority 3 que
testpmd> 2tuple filter 0 del dst port 32 protocol 0x06 mask 0x03 tcp_flags 0x02 priority 3 que
```

5tuple_filter

Add or delete a 5-tuple filter, which consists of a 5-tuple (protocol, source and destination IP addresses, source and destination TCP/UDP/SCTP port) and routes packets into one of the receive queues.

5tuple_filter (port_id) (add|del) dst_ip (dst_address) src_ip (src_address) dst_port (dst_port_value) src_port (src_port_value) protocol (protocol_value) mask (mask_value) tcp_flags (tcp_flags_value) priority (prio_value) queue (queue_id)

The available information parameters are:

- port_id: the port which the 5-tuple filter assigned on.
- dst_address: destination IP address.
- src_address: source IP address.
- dst_port_value: TCP/UDP destination port.
- src port value: TCP/UDP source port.
- protocol_value: L4 protocol.
- mask_value: participates in the match or not by bit for field above, 1b means participate
- tcp_flags_value: TCP control bits. The non-zero value is invalid, when the protocol_value is not set to 0x06 (TCP).
- prio_value: the priority of this filter.
- queue_id: The receive queue associated with this 5-tuple filter.

Example, to add/remove an 5tuple filter rule:

```
testpmd> 5tuple_filter 0 add dst_ip 2.2.2.5 src_ip 2.2.2.4 dst_port 64 src_port 32 protocol 0x testpmd> 5tuple_filter 0 del dst_ip 2.2.2.5 src_ip 2.2.2.4 dst_port 64 src_port 32 protocol 0x
```

syn_filter

By SYN filter, TCP packets whose SYN flag is set can be forwarded to a separate queue.

syn filter (port id) (add|del) priority (high|low) queue (queue id)

The available information parameters are:

- port id: the port which the SYN filter assigned on.
- high: this SYN filter has higher priority than other filters.
- low: this SYN filter has lower priority than other filters.
- queue id: The receive queue associated with this SYN filter

Example:

```
testpmd> syn filter 0 add priority high queue 3
```

flex_filter

With flex filter, packets can be recognized by any arbitrary pattern within the first 128 bytes of the packet and routes packets into one of the receive queues.

flex_filter (port_id) (add|del) len (len_value) bytes (bytes_value) mask (mask_value) priority (prio_value) queue (queue_id)

The available information parameters are:

- port_id: the port which the Flex filter is assigned on.
- len_value: filter length in bytes, no greater than 128.
- bytes value: a string in hexadecimal, means the value the flex filter needs to match.
- mask_value: a string in hexadecimal, bit 1 means corresponding byte participates in the match.
- · prio value: the priority of this filter.
- queue_id: the receive queue associated with this Flex filter.

Example:

flow_director_filter

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to specific queues.

Two types of filtering are supported which are referred to as Perfect Match and Signature filters, the match mode is set by the –pkt-filter-mode command-line parameter:

- Perfect match filters. The hardware checks a match between the masked fields of the received packets and the programmed filters.
- Signature filters. The hardware checks a match between a hash-based signature of the masked fields of the received packet.

The Flow Director filters can match the different fields for different type of packet: flow type, specific input set per flow type and the flexible payload. The Flow Director can also mask out parts of all of these fields so that filters are only applied to certain fields or parts of the fields.

Different NICs may have different capabilities, command show port fdir (port_id) can be used to acquire the information.

Commands to add flow director filters of different flow types.

flow_director_filter (port_id) (add|del|update) flow (ipv4-other|ipv4-frag|ipv6-other|ipv6-frag) src (src_ip_address) dst (dst_ip_address) vlan (vlan_value) flexbytes (flexbytes_value) (drop|fwd) queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) (add|del|update) flow (ipv4-tcp|ipv4-udp|ipv6-tcp|ipv6-udp) src (src_ip_address) (src_port) dst (dst_ip_address) (dst_port) vlan (vlan_value) flexbytes (flexbytes_value) (drop|fwd) queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) (add|del|update) flow (ipv4-sctp|ipv6-sctp) src (src_ip_address) (src_port) dst (dst_ip_address) (dst_port) tag (verification_tag) vlan (vlan_value) flexbytes (flexbytes_value) (drop|fwd) queue (queue_id) fd_id (fd_id_value)

For example, to add an ipv4-udp flow type filter:

testpmd> flow_director_filter 0 add flow ipv4-udp src 2.2.2.3 32 dst 2.2.2.5 33 vlan 0x1 flexb

For example, add an ipv4-other flow type filter:

testpmd> flow_director_filter 0 add flow ipv4-other src 2.2.2.3 dst 2.2.2.5 vlan 0x1 flexbytes

flush_flow_director

flush all flow director filters on a device:

flush_flow_director (port_id)

Example, to flush all flow director filter on port 0:

testpmd> flush flow director 0

flow_director_mask

set flow director's masks on match input set

flow_director_mask (port_id) vlan (vlan_value) src_mask (ipv4_src) (ipv6_src) (src_port) dst mask (ipv4 dst) (ipv6 dst) (dst port)

Example, to set flow director mask on port 0:

flow_director_flex_mask

set masks of flow director's flexible payload based on certain flow type:

flow_director_flex_mask (port_id) flow (none|ipv4-other|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv6-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|all) (mask)

Example, to set flow director's flex mask for all flow type on port 0:

flow_director_flex_payload

Configure flexible payload selection.

flow_director_flex_payload (port_id) (raw||2||3||4) (config)

For example, to select the first 16 bytes from the offset 4 (bytes) of packet's payload as flexible payload.

testpmd> flow director flex payload 0 l4 (4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

get_sym_hash_ena_per_port

Get symmetric hash enable configuration per port.

```
get_sym_hash_ena_per_port (port_id)
```

For example, to get symmetric hash enable configuration of port 1.

```
testpmd> get_sym_hash_ena_per_port 1
```

set_sym_hash_ena_per_port

Set symmetric hash enable configuration per port to enable or disable.

```
set_sym_hash_ena_per_port (port_id) (enable|disable)
```

For example, to set symmetric hash enable configuration of port 1 to enable.

```
testpmd> set sym hash ena per port 1 enable
```

get_hash_global_config

Get the global configurations of hash filters.

```
get_hash_global_config (port_id)
```

For example, to get the global configurations of hash filters of port 1.

```
testpmd> get hash global config 1
```

set hash global config

Set the global configurations of hash filters.

set_hash_global_config (port_id) (toeplitz|simple_xor|default) (ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2_payload) (enable|disable)

For example, to enable simple_xor for flow type of ipv6 on port 2.

```
testpmd> set_hash_global_config 2 simple_xor ipv6 enable
```

Release Notes

Package Version: 2.0

July 04, 2016

Contents

8.1 Description of Release

These release notes cover the new features, fixed bugs and known issues for Data Plane Development Kit (DPDK) release version 2.0.0.

For instructions on compiling and running the release, see the DPDK Getting Started Guide.

8.1.1 Using DPDK Upgrade Patches

For minor updates to the main DPDK releases, the software may be made available both as a new full package and as a patch file to be applied to the previously released package. In the latter case, the following commands should be used to apply the patch on top of the already-installed package for the previous release:

```
# cd $RTE_SDK
# patch -p1 < /path/to/patch/file</pre>
```

Once the patch has been applied cleanly, the DPDK can be recompiled and used as before (described in the *DPDK Getting Started Guide*).

Note: If the patch does not apply cleanly, perhaps because of modifications made locally to the software, it is recommended to use the full release package for the minor update, instead of using the patch.

8.1.2 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• **Release Notes** (this document): Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.

- **Getting Started Guide**: Describes how to install and configure the DPDK software; designed to get users up and running quickly with the software.
- FreeBSD* Getting Started Guide: A document describing the use of the DPDK with FreeBSD* has been added in DPDK Release 1.6.0. Refer to this guide for installation and configuration instructions to get started using the DPDK with FreeBSD*.
- Programmer's Guide : Describes:
 - The software architecture and how to use it (through examples), specifically in a Linux* application (linuxapp) environment
 - The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and an application) and guidelines for porting an application
 - Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

- **API Reference**: Provides detailed information about DPDK functions, data structures and other programming constructs.
- Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

The following sample applications are included:

- Command Line
- Exception Path (into Linux* for packets using the Linux TUN/TAP driver)
- Hello World
- Integration with Intel® QuickAssist Technology
- Link Status Interrupt (Ethernet* Link Status Detection)
- IP Reassembly
- IP Pipeline
- IP Fragmentation
- IPv4 Multicast
- L2 Forwarding (supports virtualized and non-virtualized environments)
- L2 Forwarding IVSHMEM
- L2 Forwarding Jobstats
- L3 Forwarding
- L3 Forwarding with Access Control
- L3 Forwarding with Power Management
- L3 Forwarding in a Virtualized Environment
- Link Bonding
- Link Status Interrupt

- Load Balancing
- Multi-process
- QoS Scheduler + Dropper
- QoS Metering
- Quota & Watermarks
- Timer
- VMDQ and DCB L2 Forwarding
- VMDQ L2 Forwarding
- Userspace vhost
- Userspace vhost switch
- Netmap
- Kernel NIC Interface (KNI)
- VM Power Management
- Distributor
- RX-TX Callbacks
- Skeleton

In addition, there are some other applications that are built when the libraries are created. The source for these applications is in the DPDK/app directory and are called:

- test
- testpmd

Once the libraries are created, they can be found in the build/app directory.

- The test application provides a variety of specific tests for the various functions in the DPDK.
- The testpmd application provides a number of different packet throughput tests and examples of features such as how to use the Flow Director found in the Intel® 82599 10 Gigabit Ethernet Controller.

The testpmd application is documented in the *DPDK Testpmd Application Note*. The test application is not currently documented. However, you should be able to run and use test application with the command line help that is provided in the application.

8.2 New Features

- Poll-mode driver support for an early release of the PCIE host interface of the Intel(R) Ethernet Switch FM10000.
 - Basic Rx/Tx functions for PF/VF
 - Interrupt handling support for PF/VF
 - Per queue start/stop functions for PF/VF

8.2. New Features 427

- Support Mailbox handling between PF/VF and PF/Switch Manager
- Receive Side Scaling (RSS) for PF/VF
- Scatter receive function for PF/VF
- Reta update/query for PF/VF
- VLAN filter set for PF
- Link status query for PF/VF

Note: The software is intended to run on pre-release hardware and may contain unknown or unresolved defects or issues related to functionality and performance. The poll mode driver is also pre-release and will be updated to a released version post hardware and base driver release. Should the official hardware release be made between DPDK releases an updated poll-mode driver will be made available.

- · Link Bonding
 - Support for adaptive load balancing (mode 6) to the link bonding library.
 - Support for registration of link status change callbacks with link bonding devices.
 - Support for slaves devices which do not support link status change interrupts in the link bonding library via a link status polling mechanism.
- · PCI Hotplug with NULL PMD sample application
- ABI versioning
- x32 ABI
- Non-EAL Thread Support
- Multi-pthread Support
- Re-order Library
- ACL for AVX2
- Architecture Independent CRC Hash
- uio_pci_generic Support
- KNI Optimizations
- Vhost-user support
- Virtio (link, vlan, mac, port IO, perf)
- IXGBE-VF RSS
- RX/TX Callbacks
- Unified Flow Types
- Indirect Attached MBUF Flag
- Use default port configuration in TestPMD
- Tunnel offloading in TestPMD
- Poll Mode Driver 40 GbE Controllers (librte_pmd_i40e)

8.2. New Features 428

- Support for Flow Director
- Support for ethertype filter
- Support RSS in VF
- Support configuring redirection table with different size from 1GbE and 10 GbE
- 128/512 entries of 40GbE PF
- 64 entries of 40GbE VF
- Support configuring hash functions
- Support for VXLAN packet on Intel® 40GbE Controllers
- Packet Distributor Sample Application
- · Job Stats library and Sample Application.

For further features supported in this release, see Chapter 3 Supported Features.

8.3 Supported Features

- Packet Distributor library for dynamic, single-packet at a time, load balancing
- · IP fragmentation and reassembly library
- · Support for IPv6 in IP fragmentation and reassembly sample applications
- Support for VFIO for mapping BARs and setting up interrupts
- Link Bonding PMD Library supporting round-robin, active backup, balance(layer 2, layer 2+3, and layer 3+4), broadcast bonding modes 802.3ad link aggregation (mode 4), transmit load balancing (mode 5) and adaptive load balancing (mode 6)
- Support zero copy mode RX/TX in user space vhost sample
- Support multiple queues in virtio-net PMD
- Support for Intel 40GbE Controllers:
 - Intel® XL710 40 Gigabit Ethernet Controller
 - Intel® X710 40 Gigabit Ethernet Controller
- Support NIC filters in addition to flow director for Intel® 1GbE and 10GbE Controllers
- Virtualization (KVM)
 - Userspace vhost switch:

New sample application to support userspace virtio back-end in host and packet switching between guests.

- Virtualization (Xen)
 - Support for DPDK application running on Xen Domain0 without hugepages.
 - Para-virtualization
 - Support front-end Poll Mode Driver in guest domain
 - Support userspace packet switching back-end example in host domain

- FreeBSD* 9.2 support for librte_pmd_e1000, librte_pmd_ixgbe and Virtual Function variants. Please refer to the DPDK for FreeBSD* Getting Started Guide. Application support has been added for the following:
 - multiprocess/symmetric_mp
 - multiprocess/simple mp
 - 12fwd
 - I3fwd
- Support for sharing data over QEMU IVSHMEM
- Support for Intel® Communications Chipset 8925 to 8955 Series in the DPDK-QAT Sample Application
- New VMXNET3 driver for the paravirtual device presented to a VM by the VMware* ESXi Hypervisor.
- BETA: example support for basic Netmap applications on DPDK
- Support for the wireless KASUMI algorithm in the dpdk_qat sample application
- Hierarchical scheduler implementing 5-level scheduling hierarchy (port, sub-port, pipe, traffic class, queue) with 64K leaf nodes (packet queues).
- Packet dropper based on Random Early Detection (RED) congestion control mechanism.
- Traffic Metering based on Single Rate Three Color Marker (srTCM) and Two Rate Three Color Marker (trTCM).
- · An API for configuring RSS redirection table on the fly
- An API to support KNI in a multi-process environment
- IPv6 LPM forwarding
- Power management library and sample application using CPU frequency scaling
- · IPv4 reassembly sample application
- · Quota & Watermarks sample application
- PCIe Multi-BAR Mapping Support
- Support for Physical Functions in Poll Mode Driver for the following devices:
 - Intel® 82576 Gigabit Ethernet Controller
 - Intel® i350 Gigabit Ethernet Controller
 - Intel® 82599 10-Gigabit Ethernet Controller
 - Intel® XL710/X710 40-Gigabit Ethernet Controller
- Quality of Service (QoS) Hierarchical Scheduler: Sub-port Traffic Class Oversubscription
- Multi-thread Kernel NIC Interface (KNI) for performance improvement
- Virtualization (KVM)
 - Para-virtualization

Support virtio front-end poll mode driver in guest virtual machine Support vHost raw socket interface as virtio back-end via KNI

- SR-IOV Switching for the 10G Ethernet Controller
 - Support Physical Function to start/stop Virtual Function Traffic
 - Support Traffic Mirroring (Pool, VLAN, Uplink and Downlink)
 - Support VF multiple MAC addresses (Exact/Hash match), VLAN filtering
 - Support VF receive mode configuration
- Support VMDq for 1 GbE and 10 GbE NICs
- Extension for the Quality of Service (QoS) sample application to allow statistics polling
- New libpcap -based poll-mode driver, including support for reading from 3rd Party NICs using Linux kernel drivers
- New multi-process example using fork() to demonstrate application resiliency and recovery, including reattachment to and re-initialization of shared data structures where necessary
- New example (vmdq) to demonstrate VLAN-based packet filtering
- Improved scalability for scheduling large numbers of timers using the rte_timer library
- Support for building the DPDK as a shared library
- Support for Intel® Ethernet Server Bypass Adapter X520-SR2
- Poll Mode Driver support for the Intel® Ethernet Connection I354 on the Intel® Atom™
 Processor C2000 Product Family SoCs
- IPv6 exact match flow classification in the I3fwd sample application
- Support for multiple instances of the Intel® DPDK
- Support for Intel® 82574L Gigabit Ethernet Controller Intel® Gigabit CT Desktop Adapter (previously code named "Hartwell")
- Support for Intel® Ethernet Controller I210 (previously code named "Springville")
- Early access support for the Quad-port Intel® Ethernet Server Adapter X520-4 and X520-DA2 (code named "Spring Fountain")
- Support for Intel® X710/XL710 40 Gigabit Ethernet Controller (code named "Fortville")
- Core components:
 - rte mempool: allocator for fixed-sized objects
 - rte ring: single- or multi- consumer/producer queue implementation
 - rte_timer: implementation of timers
 - rte_malloc: malloc-like allocator
 - rte_mbuf: network packet buffers, including fragmented buffers
 - rte_hash: support for exact-match flow classification in software
 - rte_lpm: support for longest prefix match in software for IPv4 and IPv6
 - rte_sched: support for QoS scheduling
 - rte_meter: support for QoS traffic metering

- rte_power: support for power management
- rte_ip_frag: support for IP fragmentation and reassembly
- Poll Mode Driver Common (rte_ether)
 - VLAN support
 - Support for Receive Side Scaling (RSS)
 - IEEE1588
 - Buffer chaining; Jumbo frames
 - TX checksum calculation
 - Configuration of promiscuous mode, and multicast packet receive filtering
 - L2 Mac address filtering
 - Statistics recording
- IGB Poll Mode Driver 1 GbE Controllers (librte pmd e1000)
 - Support for Intel® 82576 Gigabit Ethernet Controller (previously code named "Kawela")
 - Support for Intel® 82580 Gigabit Ethernet Controller (previously code named "Barton Hills")
 - Support for Intel® I350 Gigabit Ethernet Controller (previously code named "Powerville")
 - Support for Intel® 82574L Gigabit Ethernet Controller Intel® Gigabit CT Desktop Adapter (previously code named "Hartwell")
 - Support for Intel® Ethernet Controller I210 (previously code named "Springville")
 - Support for L2 Ethertype filters, SYN filters, 2-tuple filters and Flex filters for 82580 and i350
 - Support for L2 Ethertype filters, SYN filters and L3/L4 5-tuple filters for 82576
- Poll Mode Driver 10 GbE Controllers (librte_pmd_ixgbe)
 - Support for Intel® 82599 10 Gigabit Ethernet Controller (previously code named "Niantic")
 - Support for Intel® Ethernet Server Adapter X520-T2 (previously code named "Iron Pond")
 - Support for Intel® Ethernet Controller X540-T2 (previously code named "Twin Pond")
 - Support for Virtual Machine Device Queues (VMDq) and Data Center Bridging (DCB) to divide incoming traffic into 128 RX queues. DCB is also supported for transmitting packets.
 - Support for auto negotiation down to 1 Gb
 - Support for Flow Director
 - Support for L2 Ethertype filters, SYN filters and L3/L4 5-tuple filters for 82599EB
- Poll Mode Driver 40 GbE Controllers (librte_pmd_i40e)

- Support for Intel® XL710 40 Gigabit Ethernet Controller
- Support for Intel® X710 40 Gigabit Ethernet Controller
- Environment Abstraction Layer (librte_eal)
 - Multi-process support
 - Multi-thread support
 - 1 GB and 2 MB page support
 - Atomic integer operations
 - Querying CPU support of specific features
 - High Precision Event Timer support (HPET)
 - PCI device enumeration and blacklisting
 - Spin locks and R/W locks
- Test PMD application
 - Support for PMD driver testing
- Test application
 - Support for core component tests
- · Sample applications
 - Command Line
 - Exception Path (into Linux* for packets using the Linux TUN/TAP driver)
 - Hello World
 - Integration with Intel® Quick Assist Technology drivers 1.0.0, 1.0.1 and 1.1.0 on Intel® Communications Chipset 89xx Series C0 and C1 silicon.
 - Link Status Interrupt (Ethernet* Link Status Detection
 - IPv4 Fragmentation
 - IPv4 Multicast
 - IPv4 Reassembly
 - L2 Forwarding (supports virtualized and non-virtualized environments)
 - L2 Forwarding Job Stats
 - L3 Forwarding (IPv4 and IPv6)
 - L3 Forwarding in a Virtualized Environment
 - L3 Forwarding with Power Management
 - Bonding mode 6
 - QoS Scheduling
 - QoS Metering + Dropper
 - Quota & Watermarks
 - Load Balancing

- Multi-process
- Timer
- VMDQ and DCB L2 Forwarding
- Kernel NIC Interface (with ethtool support)
- Userspace vhost switch
- Interactive command line interface (rte_cmdline)
- Updated 10 GbE Poll Mode Driver (PMD) to the latest BSD code base providing support of newer ixgbe 10 GbE devices such as the Intel® X520-T2 server Ethernet adapter
- · An API for configuring Ethernet flow control
- Support for interrupt-based Ethernet link status change detection
- Support for SR-IOV functions on the Intel® 82599, Intel® 82576 and Intel® i350 Ethernet Controllers in a virtualized environment
- Improvements to SR-IOV switch configurability on the Intel® 82599 Ethernet Controllers in a virtualized environment.
- · An API for L2 Ethernet Address "whitelist" filtering
- · An API for resetting statistics counters
- Support for RX L4 (UDP/TCP/SCTP) checksum validation by NIC
- Support for TX L3 (IPv4/IPv6) and L4 (UDP/TCP/SCTP) checksum calculation offloading
- Support for IPv4 packet fragmentation and reassembly
- Support for zero-copy Multicast
- New APIs to allow the "blacklisting" of specific NIC ports.
- Header files for common protocols (IP, SCTP, TCP, UDP)
- Improved multi-process application support, allowing multiple co-operating DPDK processes to access the NIC port queues directly.
- CPU-specific compiler optimization
- Job stats library for load/cpu utilization measurements
- Improvements to the Load Balancing sample application
- The addition of a PAUSE instruction to tight loops for energy-usage and performance improvements
- Updated 10 GbE Transmit architecture incorporating new upstream PCIe* optimizations.
- · IPv6 support:
 - Support in Flow Director Signature Filters and masks
 - RSS support in sample application that use RSS
 - Exact match flow classification in the L3 Forwarding sample application
 - Support in LPM for IPv6 addresses
- Tunneling packet support:

Provide the APIs for VXLAN destination UDP port and VXLAN packet filter configuration and support VXLAN TX checksum offload on Intel® 40GbE Controllers.

8.4 Supported Operating Systems

The following Linux* distributions were successfully used to generate or run DPDK.

- FreeBSD* 10
- Fedora release 20
- Ubuntu* 14.04 LTS
- Wind River* Linux* 6
- Red Hat* Enterprise Linux 6.5
- SUSE Enterprise Linux* 11 SP3

These distributions may need additional packages that are not installed by default, or a specific kernel. Refer to the *DPDK Getting Started Guide* for details.

8.5 Updating Applications from Previous Versions

Although backward compatibility is being maintained across DPDK releases, code written for previous versions of the DPDK may require some code updates to benefit from performance and user experience enhancements provided in later DPDK releases.

8.5.1 DPDK 1.7 to DPDK 1.8

Note that in DPDK 1.8, the structure of the rte_mbuf has changed considerably from all previous versions. It is recommended that users familiarize themselves with the new structure defined in the file rte_mbuf.h in the release package. The follow are some common changes that need to be made to code using mbufs, following an update to DPDK 1.8:

- Any references to fields in the pkt or ctrl sub-structures of the mbuf, need to be replaced with references to the field directly from the rte_mbuf, i.e. buf->pkt.data_len should be replace by buf->data_len.
- Any direct references to the data field of the mbuf (original buf->pkt.data) should now be replace by the macro rte_pktmbuf_mtod to get a computed data address inside the mbuf buffer area.
- Any references to the in port mbuf field should be replace by references to the port field.

NOTE: The above list is not exhaustive, but only includes the most commonly required changes to code using mbufs.

8.5.2 Intel® DPDK 1.6 to DPDK 1.7

Note the following difference between 1.6 and 1.7:

The "default" target has been renamed to "native"

8.5.3 Intel® DPDK 1.5 to Intel® DPDK 1.6

Note the following difference between 1.5 and 1.6:

• The CONFIG_RTE_EAL _UNBIND_PORTS configuration option, which was deprecated in Intel® DPDK 1.4.x, has been removed in Intel® DPDK 1.6.x. Applications using the Intel® DPDK must be explicitly unbound to the igb_uio driver using the dpdk_nic_bind.py script included in the Intel® DPDK release and documented in the Intel® DPDK Getting Started Guide.

8.5.4 Intel® DPDK 1.4 to Intel® DPDK 1.5

Note the following difference between 1.4 and 1.5:

Starting with version 1.5, the top-level directory created from unzipping the release package will now contain the release version number, that is, DPDK-1.5.2/ rather than just DPDK/.

8.5.5 Intel® DPDK 1.3 to Intel® DPDK 1.4.x

Note the following difference between releases 1.3 and 1.4.x:

- In Release 1.4.x, Intel® DPDK applications will no longer unbind the network ports from the Linux* kernel driver when the application initializes. Instead, any ports to be used by Intel® DPDK must be unbound from the Linux driver and bound to the igb_uio driver before the application starts. This can be done using the pci_unbind.py script included with the Intel® DPDK release and documented in the Intel® DPDK Getting Started Guide.
 - If the port unbinding behavior present in previous Intel® DPDK releases is required, this can be re-enabled using the CONFIG_RTE_EAL_UNBIND_PORTS setting in the appropriate Intel® DPDK compile-time configuration file.
- In Release 1.4.x, HPET support is disabled in the Intel® DPDK build configuration files, which means that the existing rte_eal_get_hpet_hz() and rte_eal_get_hpet_cycles() APIs are not available by default. For applications that require timing APIs, but not the HPET timer specifically, it is recommended that the API calls rte_get_timer_cycles() and rte_get_timer_hz() be used instead of the HPET-specific APIs. These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application, and on what is available on the system at runtime.

For more details on this and how to re-enable the HPET if it is needed, please consult the *Intel® DPDK Getting Started Guide*.

8.5.6 Intel® DPDK 1.2 to Intel® DPDK 1.3

Note the following difference between releases 1.2 and 1.3:

• In release 1.3, the Intel® DPDK supports two different 1 GBe drivers: igb and em. Both of them are located in the same library: lib_pmd_e1000.a. Therefore, the name of the library to link with for the igb PMD has changed from librte_pmd_igb.a to library end e1000.a.

- The rte_common.h macros, RTE_ALIGN, RTE_ALIGN_FLOOR and RTE_ALIGN_CEIL
 were renamed to, RTE_PTR_ALIGN, RTE_PTR_ALIGN_FLOOR and
 RTE_PTR_ALIGN_CEIL. The original macros are still available but they have different behavior. Not updating the macros results in strange compilation errors.
- The rte_tailq is now defined statically. The rte_tailq APIs have also been changed from being public to internal use only. The old public APIs are maintained for backward compatibility reasons. Details can be found in the Intel® DPDK API Reference.
- The method for managing mbufs on the NIC RX rings has been modified to improve performance. To allow applications to use the newer, more optimized, code path, it is recommended that the rx_free_thresh field in the rte_eth_conf structure, which is passed to the Poll Mode Driver when initializing a network port, be set to a value of 32.

8.5.7 Intel® DPDK 1.1 to Intel® DPDK 1.2

Note the following difference between release 1.1 and release 1.2:

 The names of the 1G and 10G Ethernet drivers have changed between releases 1.1 and 1.2. While the old driver names still work, it is recommended that code be updated to the new names, since the old names are deprecated and may be removed in a future release.

The items affected are as follows:

- Any macros referring to RTE_LIBRTE_82576_PMD should be updated to refer to RTE_LIBRTE_IGB_PMD.
- Any macros referring to RTE_LIBRTE_82599_PMD should be updated to refer to RTE_LIBRTE_IXGBE_PMD.
- Any calls to the rte_82576_pmd_init() function should be replaced by calls to rte_igb_pmd_init().
- Any calls to the rte_82599_pmd_init() function should be replaced by calls to rte_ixgbe_pmd_init().
- The method used for managing mbufs on the NIC TX rings for the 10 GbE driver has been modified to improve performance. As a result, different parameter values should be passed to the rte_eth_tx_queue_setup() function. The recommended default values are to have tx_thresh.tx_wt hresh, tx_free_thresh, as well as the new parameter tx_rs_thresh (all in the struct rte_eth_txconf datatype) set to zero. See the "Configuration of Transmit and Receive Queues" section in the Intel® DPDK Programmer's Guide for more details.

Note: If the tx_free_thresh field is set to TX_RING_SIZE+1 , as was previously used in some cases to disable free threshold check, then an error is generated at port initialization time. To avoid this error, configure the TX threshold values as suggested above.

8.6 Known Issues and Limitations

This section describes known issues with the DPDK software.

8.6.1 Unit Test for Link Bonding may fail at test_tlb_tx_burst()

Title	Unit Test for Link Bonding may fail at test tlb tx burst()
Reference #	IXA00390304
Description	Unit tests will fail at test_tlb_tx_burst function with error for
	uneven distribution of packets.
Implication	Unit test link_bonding_autotest will fail
Resolution/	There is no workaround available.
Workaround	
Affected Environment/	Fedora 20
Platform	
Driver/Module	Link Bonding

8.6.2 Pause Frame Forwarding does not work properly on igb

Title	Pause Frame forwarding does not work properly on igb
Reference #	IXA00384637
Description	For igb devices rte_eth_flow_ctrl_set is not working as expected. Pause
	frames are always forwarded on igb, regardless of the RFCE, MPMCF
	and DPF registers.
Implication	Pause frames will never be rejected by the host on 1G NICs and they will
	always be forwarded.
Resolution/	There is no workaround available.
Workaround	
Affected	All
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.3 In packets provided by the PMD, some flags are missing

Title	In packets provided by the PMD, some flags are missing
Reference #	3
Description	In packets provided by the PMD, some flags are missing. The application
	does not have access to information provided by the hardware (packet is
	broadcast, packet is multicast, packet is IPv4 and so on).
Implication	The "ol_flags" field in the "rte_mbuf" structure is not correct and should
	not be used.
Resolution	The application has to parse the Ethernet header itself to get the
	information, which is slower.
Affected	All
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.4 The rte_malloc library is not fully implemented

Title	The rte_malloc library is not fully implemented
Reference #	6
Description	The rte_malloc library is not fully implemented.
Implication	All debugging features of rte_malloc library described in architecture
	documentation are not yet implemented.
Resolution	No workaround available.
Affected	All
Environment/	
Platform	
Driver/Module	rte_malloc

8.6.5 HPET reading is slow

Title	HPET reading is slow
Reference #	7
Description	Reading the HPET chip is slow.
Implication	An application that calls "rte_get_hpet_cycles()" or "rte_timer_manage()" runs slower.
Resolution	The application should not call these functions too often in the main loop. An alternative is to use the TSC register through "rte_rdtsc()" which is faster, but specific to an lcore and is a cycle reference, not a time reference.
Affected	All
Environment/	
Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.6.6 HPET timers do not work on the Osage customer reference platform

Title	HPET timers do not work on the Osage customer reference platform
Reference #	17
Description	HPET timers do not work on the Osage customer reference platform which includes an Intel® Xeon® processor 5500 series processor) using the released BIOS from Intel.
Implication	On Osage boards, the implementation of the "rte_delay_us()" function must be changed to not use the HPET timer.
Resolution	This can be addressed by building the system with the "CON-FIG_RTE_LIBEAL_USE_HPET=n" configuration option or by using the —no-hpet EAL option.
Affected Environment/ Platform	The Osage customer reference platform. Other vendor platforms with Intel® Xeon® processor 5500 series processors should work correctly, provided the BIOS supports HPET.
Driver/Module	lib/librte_eal/common/include/rte_cycles.h

8.6.7 Not all variants of supported NIC types have been used in testing

Title	Not all variants of supported NIC types have been used in testing
Reference #	28
Description	The supported network interface cards can come in a number of variants with different device ID's. Not all of these variants have been tested with the Intel® DPDK. The NIC device identifiers used during testing: Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1584] Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1583] Intel® Ethernet Controller X710 for 10GbE SFP+ [8086:1572] Intel® 82576 Gigabit Ethernet Controller [8086:10c9] Intel® 82576 Quad Copper Gigabit Ethernet Controller [8086:10e8] Intel® 82580 Dual Copper Gigabit Ethernet Controller [8086:150e] Intel® 82580 Dual Copper Gigabit Ethernet Controller [8086:150e] Intel® 82599 Dual Fibre 10 Gigabit Ethernet Controller [8086:1521] Intel® 82599 Dual Fibre 10 Gigabit Ethernet Controller [8086:10fb] Intel® Ethernet Server Adapter X520-T2 [8086: 151c] Intel® Ethernet Controller X540-T2 [8086:1528] Intel® 82574L Gigabit Network Connection [8086:10d3] Emulated Intel® 82540EM Gigabit Ethernet Controller [8086:100e] Emulated Intel® 82545EM Gigabit Ethernet Controller [8086:100f] Intel® Ethernet Server Adapter X520-4 [8086:154a] Intel® Ethernet Server Adapter X520-4 [8086:1533]
Implication	Risk of issues with untested variants.
Resolution	Use tested NIC variants. For those supported Ethernet controllers, additional device IDs may be added to the software if required.
Affected Environment/ Platform	All
Driver/Module	Poll-mode drivers

8.6.8 Multi-process sample app requires exact memory mapping

Title	Multi-process sample app requires exact memory mapping
Reference #	30
Description	The multi-process example application assumes that it is possible to map the hugepage memory to the same virtual addresses in client and server applications. Occasionally, very rarely with 64-bit, this does not occur and a client application will fail on startup. The Linux "address-space layout randomization" security feature can sometimes cause this to occur.
Implication	A multi-process client application fails to initialize.
Resolution	See the "Multi-process Limitations" section in the Intel® DPDK
	Programmer's Guide for more information.
Affected	All
Environment/	
Platform	
Driver/Module	Multi-process example application

8.6.9 Packets are not sent by the 1 GbE/10 GbE SR-IOV driver when the source MAC address is not the MAC address assigned to the VF NIC

Title	Packets are not sent by the 1 GbE/10 GbE SR-IOV driver when the
	source MAC address is not the MAC address assigned to the VF NIC
Reference #	IXA00168379
Description	The 1 GbE/10 GbE SR-IOV driver can only send packets when the
	Ethernet header's source MAC address is the same as that of the VF
	NIC. The reason for this is that the Linux "ixgbe" driver module in the
	host OS has its anti-spoofing feature enabled.
Implication	Packets sent using the 1 GbE/10 GbE SR-IOV driver must have the
	source MAC address correctly set to that of the VF NIC. Packets with
	other source address values are dropped by the NIC if the application
	attempts to transmit them.
Resolution/	Configure the Ethernet source address in each packet to match that of
Workaround	the VF NIC.
Affected	All
Environment/	
Platform	
Driver/Module	1 GbE/10 GbE VF Poll Mode Driver (PMD)

8.6.10 SR-IOV drivers do not fully implement the rte_ethdev API

Title	SR-IOV drivers do not fully implement the
	rte_ethdev API
Reference #	59
Description	The SR-IOV drivers only supports the follow-
	ing rte_ethdev API functions:
	rte_eth_dev_configure()
	rte_eth_tx_queue_setup()
	rte_eth_rx_queue_setup()
	rte_eth_dev_info_get()
	rte_eth_dev_start()
	rte_eth_tx_burst()
	rte_eth_rx_burst()
	rte_eth_dev_stop()
	rte_eth_stats_get()
	rte_eth_stats_reset()
	rte_eth_link_get()
	rte_eth_link_get_no_wait()
Implication	Calling an unsupported function will result in
	an application error.
Resolution/ Workaround	Do not use other rte_ethdev API functions in
	applications that use the SR-IOV drivers.
Affected Environment/ Platform	All
Driver/Module	VF Poll Mode Driver (PMD)

8.6.11 PMD does not work with -no-huge EAL command line parameter

Title	PMD does not work with -no-huge EAL command line parameter
Reference #	IXA00373461
Description	Currently, the DPDK does not store any information about memory
	allocated by malloc() (for example, NUMA node, physical address),
	hence PMD drivers do not work when the -no-huge command line
	parameter is supplied to EAL.
Implication	Sending and receiving data with PMD will not work.
Resolution/	Use huge page memory or use VFIO to map devices.
Workaround	
Affected	Systems running the DPDK on Linux
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.12 Some hardware off-load functions are not supported by the VF Driver

Title	Some hardware off-load functions are not supported by the VF Driver
Reference #	IXA00378813
Description	Currently, configuration of the following items is not supported by the VF driver: • IP/UDP/TCP checksum offload • Jumbo Frame Receipt • HW Strip CRC
Implication	Any configuration for these items in the VF register will be ignored. The behavior is dependent on the current PF setting.
Resolution/ Workaround	For the PF (Physical Function) status on which the VF driver depends, there is an option item under PMD in the config file. For others, the VF will keep the same behavior as PF setting.
Affected Environment/ Platform	All
Driver/Module	VF (SR-IOV) Poll Mode Driver (PMD)

8.6.13 Kernel crash on IGB port unbinding

Title	Kernel crash on IGB port unbinding
Reference #	74
Description	Kernel crash may occur when unbinding 1G ports from the igb_uio driver, on 2.6.3x kernels such as shipped with Fedora 14.
Implication	Kernel crash occurs.
Resolution/	Use newer kernels or do not unbind ports.
Workaround	
Affected	2.6.3x kernels such as shipped with Fedora 14
Environment/	
Platform	
Driver/Module	IGB Poll Mode Driver (PMD)

8.6.14 Twinpond and Ironpond NICs do not report link status correctly

Title	Twinpond and Ironpond NICs do not report link status correctly
Reference #	IXA00378800
Description	Twin Pond/Iron Pond NICs do not bring the physical link down when
	shutting down the port.
Implication	The link is reported as up even after issuing "shutdown" command
	unless the cable is physically disconnected.
Resolution/	None.
Workaround	
Affected	Twin Pond and Iron Pond NICs
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.15 Discrepancies between statistics reported by different NICs

Title	Discrepancies between statistics reported by different NICs
Reference #	IXA00378113
Description	Gigabit Ethernet devices from Intel include CRC bytes when calculating packet reception statistics regardless of hardware CRC stripping state, while 10-Gigabit Ethernet devices from Intel do so only when hardware CRC stripping is disabled.
Implication	There may be a discrepancy in how different NICs display packet reception statistics.
Resolution/	None
Workaround	
Affected	All
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.16 Error reported opening files on DPDK initialization

Title	Error reported opening files on DPDK initialization
Reference #	91
Description	On DPDK application startup, errors may be reported when opening files as part of the initialization process. This occurs if a large number, for example, 500 or more, or if hugepages are used, due to the per-process limit on the number of open files.
Implication	The DPDK application may fail to run.
Resolution/	If using 2 MB hugepages, consider switching to a fewer number of 1 GB
Workaround	pages. Alternatively, use the "ulimit" command to increase the number of
	files which can be opened by a process.
Affected	All
Environment/	
Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.6.17 Intel® QuickAssist Technology sample application does not work on a 32-bit OS on Shumway

Title	Intel® QuickAssist Technology sample applications does not work on a 32- bit OS on Shumway
Reference #	93
Description	The Intel® Communications Chipset 89xx Series device does not fully support NUMA on a 32-bit OS. Consequently, the sample application cannot work properly on Shumway, since it requires NUMA on both nodes.
Implication	The sample application cannot work in 32-bit mode with emulated NUMA, on multi-socket boards.
Resolution/	There is no workaround available.
Workaround	
Affected	Shumway
Environment/	
Platform	
Driver/Module	All

8.6.18 IEEE1588 support possibly not working with an Intel® Ethernet Controller I210 NIC

Title	IEEE1588 support may not work with an Intel® Ethernet
	Controller I210 NIC
Reference #	IXA00380285
Description	IEEE1588 support is not working with an Intel® Ethernet
	Controller I210 NIC.
Implication	IEEE1588 packets are not forwarded correctly by the Intel®
	Ethernet Controller I210 NIC.
Resolution/	There is no workaround available.
Workaround	
Affected Environment/	All
Platform	
Driver/Module	IGB Poll Mode Driver

8.6.19 Differences in how different Intel NICs handle maximum packet length for jumbo frame

Title	Differences in how different Intel NICs handle maximum packet length for
	jumbo frame
Reference #	96
Description	10 Gigabit Ethernet devices from Intel do not take VLAN tags into
	account when calculating packet size while Gigabit Ethernet devices do
	so for jumbo frames.
Implication	When receiving packets with VLAN tags, the actual maximum size of
	useful payload that Intel Gigabit Ethernet devices are able to receive is 4
	bytes (or 8 bytes in the case of packets with extended VLAN tags) less
	than that of Intel 10 Gigabit Ethernet devices.
Resolution/	Increase the configured maximum packet size when using Intel Gigabit
Workaround	Ethernet devices.
Affected	All
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.6.20 Binding PCI devices to igb_uio fails on Linux* kernel 3.9 when more than one device is used

Title	Binding PCI devices to igb_uio fails on Linux* kernel 3.9 when more
	than one device is used
Reference #	97
Description	A known bug in the uio driver included in Linux* kernel version 3.9
	prevents more than one PCI device to be bound to the igb_uio driver.
Implication	The Poll Mode Driver (PMD) will crash on initialization.
Resolution/	Use earlier or later kernel versions, or apply the following patch .
Workaround	
Affected	Linux* systems with kernel version 3.9
Environment/	
Platform	
Driver/Module	igb_uio module

8.6.21 GCC might generate Intel® AVX instructions forprocessors without Intel® AVX support

Title	Gcc might generate Intel® AVX instructions for processors without Intel®
	AVX support
Reference #	IXA00382439
Description	When compiling Intel® DPDK (and any DPDK app), gcc may generate
	Intel® AVX instructions, even when the processor does not support
	Intel® AVX.
Implication	Any DPDK app might crash while starting up.
Resolution/	Either compile using icc or set EXTRA_CFLAGS='-O3' prior to
Workaround	compilation.
Affected	Platforms which processor does not support Intel® AVX.
Environment/	
Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.6.22 Ethertype filter could receive other packets (non-assigned) in Niantic

Title	Ethertype filter could receive other packets
	(non-assigned) in Niantic
Reference #	IXA00169017
Description	On Intel® Ethernet Controller 82599EB: When Ethertype filter (priority enable) was set, unmatched packets also could be received on the assigned queue, such as ARP packets without 802.1q tags or with the user priority not equal to set value. Launch the testpmd by disabling RSS and with multiply queues, then add the ethertype filter like: "add_ethertype_filter 0 ethertype 0x0806 priority enable 3 queue 2 index 1", and then start forwarding. When sending ARP packets without 802.1q tag and with user priority as non-3 by tester, all the ARP packets can be received on the assigned queue.
Implication	The user priority comparing in Ethertype filter cannot work probably. It is the NIC's issue due to the response from PAE: "In fact, ETQF.UP is not functional, and the information will be added in errata of 82599 and X540."
Resolution/ Workaround	None
Affected Environment/ Platform	All
Driver/Module	Poll Mode Driver (PMD)

8.6.23 Cannot set link speed on Intel® 40G ethernet controller

Title	Cannot set link speed on Intel® 40G ethernet
	controller
Reference #	IXA00386379
Description	On Intel® 40G Ethernet Controller:
	It cannot set the link to specific speed.
Implication	The link speed cannot be changed forcedly,
	though it can be configured by application.
Resolution/ Workaround	None
Affected Environment/ Platform	All
Driver/Module	Poll Mode Driver (PMD)

8.6.24 Stopping the port does not down the link on Intel® 40G ethernet controller

Title	Stopping the port does not down the link on
	Intel® 40G ethernet controller
Reference #	IXA00386380
Description	On Intel® 40G Ethernet Controller:
	Stopping the port does not really down the
	port link.
Implication	The port link will be still up after stopping the
	port.
Resolution/ Workaround	None
Affected Environment/ Platform	All
Driver/Module	Poll Mode Driver (PMD)

8.6.25 Devices bound to igb_uio with VT-d enabled do not work on Linux* kernel 3.15-3.17

Title	Devices bound to igb_uio with VT-d enabled do not work on Linux* kernel 3.15-3.17
Description	
	When VT-d is enabled (iommu=pt intel_iommu=on), devices are 1:1 mapped. In the Linux* kernel unbinding devices from drivers removes that mapping which result in IOMMU errors. Introduced in Linux kernel 3.15 commit, solved in Linux kernel 3.18 commit.
Implication	
	Devices will not be allowed to access memory, resulting in following kernel errors: dmar: DRHD: handling fault status reg 2 dmar: DMAR:[DMA Read] Request device [02:00.0] fault addr a0c58000 DMAR:[fault reason 02] Present bit in context entry is clear
Resolution/ Workaround	
	Use earlier or later kernel versions, or avoid driver binding on boot by blacklisting the driver modules.
	ie. in the case of ixgbe, we can pass the kernel command line option:
	modprobe.blacklist=ixgbe
	This way we do not need to unbind the device to bind it to igb_uio.
Affected Environment/ Platform	Linux* systems with kernel versions 3.15 to 3.17
Driver/Module	igb_uio module

8.7 Resolved Issues

This section describes previously known issues that have been resolved since release version 1.2.

8.7.1 Running TestPMD with SRIOV in Domain U may cause it to hang when XENVIRT switch is on

Title	Running TestPMD with SRIOV in Domain U
	may cause it to hang when XENVIRT switch
	is on
Reference #	IXA00168949
Description	When TestPMD is run with only SRIOV port
	/testpmd -c f -n 4 — -i, the following error oc-
	curs:
	PMD: gntalloc: ioctl error
	EAL: Error - exiting with code: 1
	Cause: Creation of mbuf pool for socket 0
	failed
	Then, alternately run SRIOV port and virtIO
	with testpmd:
	testpmd -c f -n 4 – -i
	testpmd -c f -n 4 -use-dev="eth_xenvirt0" -
	-i
Implication	DomU will not be accessible after you repeat
	this action some times
Resolution/ Workaround	Run testpmd with a "-total-num-
	mbufs=N(N<=3500)"
Affected Environment/ Platform	Fedora 16, 64 bits + Xen hypervisor 4.2.3 +
	Domain 0 kernel 3.10.0 +Domain U kernel
	3.6.11
Driver/Module	TestPMD Sample Application

8.7.2 Vhost-xen cannot detect Domain U application exit on Xen version 4.0.1

Title	Vhost-xen cannot detect Domain U application exit on Xen 4.0.1.	
Reference #	IXA00168947	
Description	When using DPDK applications on Xen 4.0.1, e.g. TestPMD Sample Application, on killing the application (e.g. killall testmd) vhost-switch cannot detect the domain U exited and does not free the Virtio device.	
Implication	Virtio device not freed after application is 4.0.1	killed when us
Resolution	Resolved in DPDK 1.8	-
Affected Environment/ Platform	Xen 4.0.1	-
Driver/Module	Vhost-switch	1

8.7.3 Virtio incorrect header length used if MSI-X is disabled by kernel driver

Title	Virtio incorrect header length used if MSI- X is disabled by kernel driver or if VIR-
5.	TIO_NET_F_MAC is not negotiated.
Reference #	IXA00384256
Description	The Virtio header for host-guest communication is of variable length and is dependent on whether MSI-X has been enabled by the kernel driver for the network device. The base header length of 20 bytes will be extended by 4 bytes to accommodate MSI-X vectors and the Virtio Network Device header will appear at byte offset 24. The Userspace Virtio Poll Mode Driver tests the guest feature bits for the presence of VIR-TIO_PCI_FLAG_MISIX, however this bit field is not part of the Virtio specification and resolves to the VIRTIO_NET_F_MAC feature instead.
Implication	The DPDK kernel driver will enable MSI-X by default, however if loaded with "intr_mode=legacy" on a guest with a Virtio Network Device, a KVM-Qemu guest may crash with the following error: "virtio-net header not in first element". If VIRTIO_NET_F_MAC feature has not been negotiated, then the Userspace Poll Mode Driver will assume that MSI-X has been disabled and will prevent the proper functioning of the driver.
Resolution	Ensure #define VIRTIO_PCI_CONFIG(hw) returns the correct offset (20 or 24 bytes) for the devices where in rare cases MSI-X is disabled or VIRTIO_NET_F_MAC has not been negotiated.
Affected Environment/ Platform	Virtio devices where MSI-X is disabled or VIRTIO_NET_F_MAC feature has not been negotiated.
Driver/Module	librte_pmd_virtio

8.7.4 Unstable system performance across application executions with 2MB pages

Title	Unstable system performance across application executions with 2MB pages
Reference #	IXA00372346
Description	The performance of an DPDK application may vary across executions of an application due to a varying number of TLB misses depending on the location of accessed structures in memory. This situation occurs on rare occasions.
Implication	Occasionally, relatively poor performance of DPDK applications is encountered.
Resolution/	Using 1 GB pages results in lower usage of TLB entries, resolving this
Workaround	issue.
Affected	Systems using 2 MB pages
Environment/	
Platform	
Driver/Module	All

8.7.5 Link status change not working with MSI interrupts

Title	Link status change not working with MSI interrupts
Reference #	IXA00378191
Description	MSI interrupts are not supported by the PMD.
Implication	Link status change will only work with legacy or MSI-X interrupts.
Resolution/	The igb_uio driver can now be loaded with either legacy or MSI-X
Workaround	interrupt support. However, this configuration is not tested.
Affected	All
Environment/	
Platform	
Driver/Module	Poll Mode Driver (PMD)

8.7.6 KNI does not provide Ethtool support for all NICs supported by the Poll-Mode Drivers

Title	KNI does not provide ethtool support for all
	NICs supported by the Poll Mode Drivers
Reference #	IXA00383835
Description	To support ethtool functionality using the
	KNI, the KNI libray includes seperate driver
	code based off the Linux kernel drivers, be-
	cause this driver code is seperate from the
	poll-mode drivers, the set of supported NICs
	for these two components may differ.
	Because of this, in this release, the KNI
	driver does not provide "ethtool" support for
	the Intel® Ethernet Connection I354 on the Intel Atom Processor C2000 product Family
	SoCs.
Implication	Ethtool support with KNI will not work for
Implication	NICs such as the Intel® Ethernet Connec-
	tion I354. Other KNI functionality, such as
	injecting packets into the Linux kernel is un-
	affected.
Resolution/Workaround	Updated for Intel® Ethernet Connection
	1354.
Affected Environment/Platform	Platforms using the Intel® Ethernet Connec-
	tion I354 or other NICs unsupported by KNI
	ethtool
Driver/Module	KNI

8.7.7 Linux IPv4 forwarding is not stable with vhost-switch on high packet rate

Title	Linux IPv4 forwarding is not stable with vhost-switch on high packet rate.
Refererence #	IXA00384430
Description	Linux IPv4 forwarding is not stable in Guest when Tx traffic is high from
	traffic generator using two virtio devices in VM with 10G in host.
Implication	Packets cannot be forwarded by user space vhost-switch and Linux IPv4
	forwarding if the rate of incoming packets is greater than 1 Mpps.
Resolu-	N/A
tion/Workaround	
AffectedEnvi-	All
ron-	
ment/Platform	
Driver/Module	Sample application

8.7.8 PCAP library overwrites mbuf data before data is used

Title	PCAP library overwrites mbuf data before data is used
Reference #	IXA00383976
Description	PCAP library allocates 64 mbufs for reading packets from PCAP file, but declares them as static and reuses the same mbufs repeatedly rather than handing off to the ring for allocation of new mbuf for each read from the PCAP file.
Implication	In multi-threaded applications ata in the mbuf is overwritten.
Resolu-	Fixed in eth_pcap_rx() in rte_eth_pcap.c
tion/Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	Multi-threaded applications using PCAP library

8.7.9 MP Client Example app - flushing part of TX is not working for some ports if set specific port mask with skipped ports

Title	MP Client Example app - flushing part of TX
	is not working for some ports if set specific
	port mask with skipped ports
Reference #	52
Description	When ports not in a consecutive set, for ex-
	ample, ports other than ports 0, 1 or 0,1,2,3
	are used with the client-service sample app,
	when no further packets are received by a
	client, the application may not flush correctly
	any unsent packets already buffered inside it.
Implication	Not all buffered packets are transmitted if
	traffic to the clients application is stopped.
	While traffic is continually received for trans-
	mission on a port by a client, buffer flushing
	happens normally.
Resolution/Workaround	Changed line 284 of the client.c file:
	from "send_packets(ports);" to
	"send_packets(ports->id[port]);"
Affected Environment/Platform	All
Driver/Module	Client - Server Multi-process Sample appli-
	cation

8.7.10 Packet truncation with Intel® I350 Gigabit Ethernet Controller

Title	Packet truncation with Intel I350 Gigabit Ethernet Controller
Reference #	IXA00372461
Description	The setting of the hw_strip_crc field in the rte_eth_conf structure passed
	to the rte_eth_dev_configure() function is not respected and hardware
	CRC stripping is always enabled. If the field is set to 0, then the software
	also tries to strip the CRC, resulting in packet truncation.
Implication	The last 4 bytes of the packets received will be missing.
Resolu-	Fixed an omission in device initialization (setting the STRCRC bit in the
tion/Workaround	DVMOLR register) to respect the CRC stripping selection correctly.
Affected	Systems using the Intel® I350 Gigabit Ethernet Controller
Environ-	
ment/Platform	
Driver/Module	1 GbE Poll Mode Driver (PMD)

8.7.11 Device initialization failure with Intel® Ethernet Server Adapter X520-T2

Title	Device initialization failure with Intel® Ethernet Server Adapter X520-T2
Reference #	55
Description	If this device is bound to the Linux kernel IXGBE driver when the DPDK is initialized, DPDK is initialized, the device initialization fails with error code -17 "IXGBE ERR PHY ADDR INVALID".
Implication	The device is not initialized and cannot be used by an application.
Resolu-	Introduced a small delay in device initialization to allow DPDK to always
tion/Workaround	find the device.
Affected	Systems using the Intel® Ethernet Server Adapter X520-T2
Environ-	
ment/Platform	
Driver/Module	10 GbE Poll Mode Driver (PMD)

8.7.12 DPDK kernel module is incompatible with Linux kernel version 3.3

Title	DPDK kernel module is incompatible with Linux kernel version 3.3
Reference #	IXA00373232
Description	The igb_uio kernel module fails to compile on systems with Linux kernel
	version 3.3 due to API changes in kernel headers
Implication	The compilation fails and Ethernet controllers fail to initialize without the
	igb_uio module.
Resolu-	Kernel functions pci_block_user_cfg_access() / pci_cfg_access_lock()
tion/Workaround	and pci_unblock_user_cfg_access() / pci_cfg_access_unlock() are
	automatically selected at compile time as appropriate.
Affected	Linux systems using kernel version 3.3 or later
Environ-	
ment/Platform	
Driver/Module	UIO module

8.7.13 Initialization failure with Intel® Ethernet Controller X540-T2

Title	Initialization failure with Intel® Ethernet Controller X540-T2
Reference #	57
Description	This device causes a failure during initialization when the software
	tries to read the part number from the device EEPROM.
Implication	Device cannot be used.
Resolu-	Remove unnecessary check of the PBA number from the device.
tion/Workaround	
Affected Environ-	Systems using the Intel® Ethernet Controller X540-T2
ment/Platform	
Driver/Module	10 GbE Poll Mode Driver (PMD)

8.7.14 rte_eth_dev_stop() function does not bring down the link for 1 GB NIC ports

Title	rte_eth_dev_stop() function does not bring down the link for 1 GB NIC
	ports
Reference #	IXA00373183
Description	When the rte_eth_dev_stop() function is used to stop a NIC port, the
	link is not brought down for that port.
Implication	Links are still reported as up, even though the NIC device has been
	stopped and cannot perform TX or RX operations on that port.
Resolution	The rte_eth_dev_stop() function now brings down the link when called.
Affected	All
Environ-	
ment/Platform	
Driver/Module	1 GbE Poll Mode Driver (PMD)

8.7.15 It is not possible to adjust the duplex setting for 1GB NIC ports

Title	It is not possible to adjust the duplex setting for 1 GB NIC ports
Reference #	66
Description	The rte_eth_conf structure does not have a parameter that allows a port
	to be set to half-duplex instead of full-duplex mode, therefore, 1 GB NICs
	cannot be configured explicitly to a full- or half-duplex value.
Implication	1 GB port duplex capability cannot be set manually.
Resolution	The PMD now uses a new field added to the rte_eth_conf structure to
	allow 1 GB ports to be configured explicitly as half- or full-duplex.
Affected	All
Environ-	
ment/Platform	
Driver/Module	1 GbE Poll Mode Driver (PMD)

8.7.16 Calling rte_eth_dev_stop() on a port does not free all the mbufs in use by that port

Title	Calling rte_eth_dev_stop() on a port does not free all the mbufs in use by
	that port
Reference #	67
Description	The rte_eth_dev_stop() function initially frees all mbufs used by that
	port's RX and TX rings, but subsequently repopulates the RX ring again
	later in the function.
Implication	Not all mbufs used by a port are freed when the port is stopped.
Resolution	The driver no longer re-populates the RX ring in the rte_eth_dev_stop()
	function.
Affected	All
Environ-	
ment/Platform	
Driver/Module	IGB and IXGBE Poll Mode Drivers (PMDs)

8.7.17 PMD does not always create rings that are properly aligned in memory

Title	PMD does not always create rings that are properly aligned in memory
Reference #	IXA00373158
Description	The NIC hardware used by the PMD requires that the RX and TX rings
	used must be aligned in memory on a 128-byte boundary. The memzone
	reservation function used inside the PMD only guarantees that the rings
	are aligned on a 64-byte boundary, so errors can occur if the rings are
	not aligned on a 128-byte boundary.
Implication	Unintended overwriting of memory can occur and PMD behavior may
	also be effected.
Resolution	A new rte_memzone_reserve_aligned() API has been added to allow
	memory reservations from hugepage memory at alignments other than
	64-bytes. The PMD has been modified so that the rings are allocated
	using this API with minimum alignment of 128-bytes.
Affected	All
Environ-	
ment/Platform	
Driver/Module	IGB and IXGBE Poll Mode Drivers (PMDs)

8.7.18 Checksum offload might not work correctly when mixing VLAN-tagged and ordinary packets

Title	Checksum offload might not work correctly when mixing
	VLAN-tagged and ordinary packets
Reference #	IXA00378372
Description	Incorrect handling of protocol header lengths in the PMD driver
Implication	The checksum for one of the packets may be incorrect.
Resolu-	Corrected the offset calculation.
tion/Workaround	
Affected	All
Environment/Platform	
Driver/Module	Poll Mode Driver (PMD)

8.7.19 Port not found issue with Intel® 82580 Gigabit Ethernet Controller

Title	Port not found issue with Intel® 82580 Gigabit Ethernet Controller
Reference #	50
Description	After going through multiple driver unbind/bind cycles, an Intel® 82580
	Ethernet Controller port may no longer be found and initialized by the
	DPDK.
Implication	The port will be unusable.
Resolu-	Issue was not reproducible and therefore no longer considered an issue.
tion/Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	1 GbE Poll Mode Driver (PMD)

8.7.20 Packet mbufs may be leaked from mempool if rte_eth_dev_start() function fails

Title	Packet mbufs may be leaked from mempool if rte_eth_dev_start()
	function fails
Reference #	IXA00373373
Description	The rte_eth_dev_start() function allocates mbufs to populate the NIC RX
	rings. If the start function subsequently fails, these mbufs are not freed
	back to the memory pool from which they came.
Implication	mbufs may be lost to the system if rte_eth_dev_start() fails and the
	application does not terminate.
Resolu-	mbufs are correctly deallocated if a call to rte_eth_dev_start() fails.
tion/Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	Poll Mode Driver (PMD)

8.7.21 Promiscuous mode for 82580 NICs can only be enabled after a call to rte_eth_dev_start for a port

Title	Promiscuous mode for 82580 NICs can only be enabled after a call to rte eth dev_start
	for a port
Reference #	IXA00373833
Description	For 82580-based network ports, the
	rte_eth_dev_start() function can over-
	write the setting of the promiscuous mode
	for the device.
	Therefore, the
	rte_eth_promiscuous_enable() API call
	should be called after rte_eth_dev_start() for
	these devices.
Implication	Promiscuous mode can only be enabled if
	API calls are in a specific order.
Resolution/Workaround	The NIC now restores most of its configura-
	tion after a call to rte_eth_dev_start().
Affected Environment/Platform	All
Driver/Module	Poll Mode Driver (PMD)

8.7.22 Incorrect CPU socket information reported in /proc/cpuinfo can prevent the DPDK from running

Title	Incorrect CPU socket information reported in /proc/cpuinfo can prevent
	the Intel® DPDK from running
Reference #	63
Description	The DPDK users information supplied by the Linux kernel to determine the hardware properties of the system being used. On rare occasions, information supplied by /proc/cpuinfo does not match that reported elsewhere. In some cases, it has been observed that the CPU socket numbering given in /proc/cpuinfo is incorrect and this can prevent DPDK from operating.
Implication	The DPDK cannot run on systems where /proc/cpuinfo does not report the correct CPU socket topology.
Resolu- tion/Workaround	CPU socket information is now read from /sys/devices/cpu/pcuN/topology
Affected Environ- ment/Platform	All
Driver/Module	Environment Abstraction Layer (EAL)

8.7. Resolved Issues

460

8.7.23 L3FWD sample application may fail to transmit packets under extreme conditions

Title	L3FWD sample application may fail to transmit packets under extreme
	conditions
Reference #	IXA00372919
Description	Under very heavy load, the L3 Forwarding sample application may fail to
	transmit packets due to the system running out of free mbufs.
Implication	Sending and receiving data with the PMD may fail.
Resolution/	The number of mbufs is now calculated based on application
Workaround	parameters.
Affected	All
Environ-	
ment/Platform	
Driver/Module	L3 Forwarding sample application

8.7.24 L3FWD-VF might lose CRC bytes

Title	L3FWD-VF might lose CRC bytes
Reference #	IXA00373424
Description	Currently, the CRC stripping configuration does not affect the VF driver.
Implication	Packets transmitted by the DPDK in the VM may be lacking 4 bytes (packet CRC).
Resolution/	Set "strip_crc" to 1 in the sample applications that use the VF
Workaround	PMD.
Affected	All
Environment/Platform	
Driver/Module	IGB and IXGBE VF Poll Mode Drivers (PMDs)

8.7.25 32-bit DPDK sample applications fails when using more than one 1 GB hugepage

Title	32-bit Intel® DPDK sample applications fails when using more than one
	1 GB hugepage
Reference #	31
Description	32-bit applications may have problems when running with multiple 1 GB
	pages on a 64-bit OS. This is due to the limited address space available
	to 32-bit processes.
Implication	32-bit processes need to use either 2 MB pages or have their memory
	use constrained to 1 GB if using 1 GB pages.
Resolution	EAL now limits virtual memory to 1 GB per page size.
Affected	64-bit systems running 32-bit Intel® DPDK with 1 GB hugepages
Environ-	
ment/Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.7.26 I2fwd fails to launch if the NIC is the Intel® 82571EB Gigabit Ethernet Controller

Title	I2fwd fails to launch if the NIC is the Intel® 82571EB Gigabit Ethernet
	Controller
Reference #	IXA00373340
Description	The 82571EB NIC can handle only one TX per port. The original
	implementation allowed for a more complex handling of multiple queues
	per port.
Implication	The I2fwd application fails to launch if the NIC is 82571EB.
Resolution	I2fwd now uses only one TX queue.
Affected	All
Environ-	
ment/Platform	
Driver/Module	Sample Application

8.7.27 32-bit DPDK applications may fail to initialize on 64-bit OS

Title	32-bit DPDK applications may fail to initialize on 64-bit OS
Reference #	IXA00378513
Description	The EAL used a 32-bit pointer to deal with physical addresses. This
	could create problems when the physical address of a hugepage
	exceeds the 4 GB limit.
Implication	32-bit applications may not initialize on a 64-bit OS.
Resolu-	The physical address pointer is now 64-bit.
tion/Workaround	
Affected	32-bit applications in a 64-bit Linux* environment
Environ-	
ment/Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.7.28 Lpm issue when using prefixes > 24

Title	Lpm issue when using prefixes > 24
Reference #	IXA00378395
Description	Extended tbl8's are overwritten by multiple lpm rule entries when the
	depth is greater than 24.
Implication	LPM tbl8 entries removed by additional rules.
Resolution/	Adding tbl8 entries to a valid group to avoid making the entire table
Workaround	invalid and subsequently overwritten.
Affected Environ-	All
ment/Platform	
Driver/Module	Sample applications

8.7.29 IXGBE PMD hangs on port shutdown when not all packets have been sent

Title	IXGBE PMD hangs on port shutdown when not all packets have been
	sent
Reference #	IXA00373492
Description	When the PMD is forwarding packets, and the link goes down, and port
	shutdown is called, the port cannot shutdown. Instead, it hangs due to
	the IXGBE driver incorrectly performing the port shutdown procedure.
Implication	The port cannot shutdown and does not come back up until re-initialized.
Resolu-	The port shutdown procedure has been rewritten.
tion/Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	IXGBE Poll Mode Driver (PMD)

8.7.30 Config file change can cause build to fail

Title	Config file change can cause build to fail
Reference #	IXA00369247
Description	If a change in a config file results in some DPDK files that were needed no longer being needed, the build will fail. This is because the *.o file will still exist, and the linker will try to link it.
Implication	DPDK compilation failure
Resolution	The Makefile now provides instructions to clean out old kernel module object files.
Affected	All
Environ-	
ment/Platform	
Driver/Module	Load balance sample application

8.7.31 rte_cmdline library should not be used in production code due to limited testing

Title	rte_cmdline library should not be used in production code due to limited
	testing
Reference #	34
Description	The rte_cmdline library provides a command line interface for use in
	sample applications and test applications distributed as part of DPDK.
	However, it is not validated to the same standard as other DPDK libraries.
Implication	It may contain bugs or errors that could cause issues in production
	applications.
Resolution	The rte_cmdline library is now tested correctly.
Affected	All
Environ-	
ment/Platform	
Driver/Module	rte_cmdline

8.7.32 Some *_INITIALIZER macros are not compatible with C++

Title	Some *_INITIALIZER macros are not compatible with C++
Reference #	IXA00371699
Description	These macros do not work with C++ compilers, since they use the C99 method of named field initialization. The TOKEN_*_INITIALIZER macros in librte_cmdline have this problem.
Implication	C++ application using these macros will fail to compile.
Resolution/	Macros are now compatible with C++ code.
Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	rte_timer, rte_cmdline

8.7.33 No traffic through bridge when using exception_path sample application

Title	No traffic through bridge when using excep-
	tion_path sample application
Reference #	IXA00168356
Description	On some systems, packets are sent from the
	exception_path to the tap device, but are not
	forwarded by the bridge.
Implication	The sample application does not work as de-
	scribed in its sample application quide.
Resolution/Workaround	If you cannot get packets though the bridge,
	it might be because IP packet filtering rules
	are up by default on the bridge. In that case
	you can disable it using the following:
	# for i in /proc/sys/net/bridge/bridge_nf-*; do
	echo 0 > \$i; done
Affected Environment/Platform	Linux
Driver/Module	Exception path sample application

8.7.34 Segmentation Fault in testpmd after config fails

Title	Segmentation Fault in testpmd after config fails
Reference #	IXA00378638
Description	Starting testpmd with a parameter that causes port queue setup to fail,
	for example, set TX WTHRESH to non 0 when tx_rs_thresh is greater
	than 1, then doing "port start all".
Implication	Seg fault in testpmd
Resolution/	Testpmd now forces port reconfiguration if the initial configuration failed.
Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	Testpmd Sample Application

8.7.35 Linux kernel pci_cfg_access_lock() API can be prone to deadlock

Title	Linux kernel pci_cfg_access_lock() API can be prone to deadlock
Reference #	IXA00373232
Description	The kernel APIs used for locking in the igb_uio driver can cause a
	deadlock in certain situations.
Implication	Unknown at this time; depends on the application.
Resolution/	The igb_uio driver now uses the pci_cfg_access_trylock() function
Workaround	instead of pci_cfg_access_lock().
Affected Environ-	All
ment/Platform	
Driver/Module	IGB UIO Driver

8.7.36 When running multi-process applications, "rte_malloc" functions cannot be used in secondary processes

Title	When running multi-process applications, "rte_malloc" functions cannot
	be used in secondary processes
Reference #	35
Description	The rte_malloc library provides a set of malloc-type functions that
	reserve memory from hugepage shared memory. Since secondary
	processes cannot reserve memory directly from hugepage memory,
	rte_malloc functions cannot be used reliably.
Implication	The librte_malloc functions, for example, rte_malloc(), rte_zmalloc() and
	rte_realloc() cannot be used reliably in secondary processes.
Resolution/	In addition to re-entrancy support, the Intel® DPDK now supports the
Workaround	reservation of a memzone from the primary thread or secondary threads.
	This is achieved by putting the reservation-related control data structure
	of the memzone into shared memory. Since rte_malloc functions request
	memory directly from the memzone, the limitation for secondary threads
	no longer applies.
Affected	All
Environ-	
ment/Platform	
Driver/Module	rte_malloc

8.7.37 Configuring maximum packet length for IGB with VLAN enabled may not take intoaccount the length of VLAN tag

Title	Configuring maximum packet length for IGB with VLAN enabled may not take into account the length of VLAN tag
Reference #	IXA00379880
Description	For IGB, the maximum packet length configured may not include the
	length of the VLAN tag even if VLAN is enabled.
Implication	Packets with a VLAN tag with a size close to the maximum may be
	dropped.
Resolu-	NIC registers are now correctly initialized.
tion/Workaround	
Affected Environ-	All with IGB NICs
ment/Platform	
Driver/Module	IGB Poll Mode Driver (PMD)

8.7.38 Intel® I210 Ethernet controller always strips CRC of incoming packets

Title	Intel® I210 Ethernet controller always strips CRC of incoming packets
Reference #	IXA00380265
Description	The Intel® I210 Ethernet controller (NIC) removes 4 bytes from the end
	of the packet regardless of whether it was configured to do so or not.
Implication	Packets will be missing 4 bytes if the NIC is not configured to strip CRC.
Resolution/	NIC registers are now correctly initialized.
Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	IGB Poll Mode Driver (PMD)

8.7.39 EAL can silently reserve less memory than requested

Title	EAL can silently reserve less memory than requested
Reference #	IXA00380689
Description	During application initialization, the EAL can silently reserve less
	memory than requested by the user through the -m application option.
Implication	The application fails to start.
Resolution	EAL will detect if this condition occurs and will give anappropriate error
	message describing steps to fix the problem.
Affected	All
Environ-	
ment/Platform	
Driver/Module	Environmental Abstraction Layer (EAL)

8.7.40 SSH connectivity with the board may be lost when starting a DPDK application

Title	SSH connectivity with the board may be lost when starting a DPDK
	application
Reference #	26
Description	Currently, the Intel® DPDK takes over all the NICs found on the board
	that are supported by the DPDK. This results in these NICs being
	removed from the NIC set handled by the kernel, which has the side effect
	of any SSH connection being terminated. See also issue #27.
Implication	Loss of network connectivity to board.
Resolution	DPDK now no longer binds ports on startup. Please refer to the Getting
	Started Guide for information on how to bind/unbind ports from DPDK.
Affected	Systems using a Intel®DPDK supported NIC for remote system access
Environ-	
ment/Platform	
Driver/Module	Environment Abstraction Layer (EAL)

8.7.41 Remote network connections lost when running autotests or sample applications

Title	Remote network connections lost when running autotests or sample
	applications
Reference #	27
Description	The PCI autotest and sample applications will scan for PCI devices and
	will remove from Linux* control those recognized by it. This may result in
	the loss of network connections to the system.
Implication	Loss of network connectivity to board when connected remotely.
Resolution	DPDK now no longer binds ports on startup. Please refer to the Getting
	Started Guide for information on how to bind/unbind ports from DPDK.
Affected	Systems using a DPDK supported NIC for remote system access
Environ-	
ment/Platform	
Driver/Module	Sample applications

8.7.42 KNI may not work properly in a multi-process environment

Title	KNI may not work properly in a multi-process environment
Reference #	IXA00380475
Description	Some of the network interface operations such as, MTU change or link UP/DOWN, when executed on KNI interface, might fail in a multi-process environment, although they are normally successful in the DPDK single process environment.
Implication	Some network interface operations on KNI cannot be used in a DPDK multi-process environment.
Resolution	The ifconfig callbacks are now explicitly set in either master or secondary process.
Affected	All
Environ- ment/Platform	
Driver/Module	Kernel Network Interface (KNI)
Dilvei/Module	Neither Network Internace (INNI)

8.7.43 Hash library cannot be used in multi-process applications with multiple binaries

Title	Hash library cannot be used in multi-process applications with multiple
	binaries
Reference #	IXA00168658
Description	The hash function used by a given hash-table implementation is referenced in the code by way of a function pointer. This means that it cannot work in cases where the hash function is at a different location in the code segment in different processes, as is the case where a DPDK multi-process application uses a number of different binaries, for example, the client-server multi-process example.
Implication	The Hash library will not work if shared by multiple processes.
Resolu-	New API was added for multiprocess scenario. Please refer to DPDK
tion/Workaround	Programmer's Guide for more information.
Affected	All
Environ-	
ment/Platform	
Driver/Module	librte_hash library

8.7.44 Unused hugepage files are not cleared after initialization

Title	Hugepage files are not cleared after initialization
Reference #	IXA00383462
Description	EAL leaves hugepages allocated at initialization in the hugetlbfs even
	if they are not used.
Implication	Reserved hugepages are not freed back to the system, preventing
	other applications that use hugepages from running.
Resolu-	Reserved and unused hugepages are now freed back to the system.
tion/Workaround	
Affected Environ-	All
ment/Platform	
Driver/Module	EAL

8.7.45 Packet reception issues when virtualization is enabled

Title	Packet reception issues when virtualization is enabled
Reference #	IXA00369908
Description	Packets are not transmitted or received on when VT-d is enabled in the
	BIOS and Intel IOMMU is used. More recent kernels do not exhibit this
	issue.
Implication	An application requiring packet transmission or reception will not function.
Resolu-	DPDK Poll Mode Driver now has the ability to map correct physical
tion/Workaround	addresses to the device structures.
Affected	All
Environ-	
ment/Platform	
Driver/Module	Poll mode drivers

8.7.46 Double VLAN does not work on Intel® 40GbE ethernet contoller

Title	Double VLAN does not work on Intel® 40GbE ethernet controller
Reference #	IXA00369908
Description	On Intel® 40 GbE ethernet controller double VLAN does not work. This
	was confirmed as a Firmware issue which will be fixed in later versions of
	firmware.
Implication	After setting double vlan to be enabled on a port, no packets can be
	transmitted out on that port.
Resolu-	Resolved in latest release with firmware upgrade.
tion/Workaround	
Affected	All
Environ-	
ment/Platform	
Driver/Module	Poll mode drivers

8.8 ABI policy

ABI versions are set at the time of major release labeling, and ABI may change multiple times between the last labeling and the HEAD label of the git tree without warning.

ABI versions, once released are available until such time as their deprecation has been noted here for at least one major release cycle, after it has been tagged. E.g. the ABI for DPDK 2.0 is shipped, and then the decision to remove it is made during the development of DPDK 2.1. The decision will be recorded here, shipped with the DPDK 2.1 release, and actually removed when DPDK 2.2 ships.

ABI versions may be deprecated in whole, or in part as needed by a given update.

Some ABI changes may be too significant to reasonably maintain multiple versions of. In those events ABI's may be updated without backward compatibility provided. The requirements for doing so are:

- 1. At least 3 acknowldgements of the need on the dpdk.org
- 2. A full deprecation cycle must be made to offer downstream consumers sufficient warning of the change. E.g. if dpdk 2.0 is under development when the change is proposed, a deprecation notice must be added to this file, and released with dpdk 2.0. Then the change may be incorporated for dpdk 2.1
- 3. The LIBABIVER variable in the makefile(s) where the ABI changes are incorporated must be incremented in parallel with the ABI changes themselves

Note that the above process for ABI deprecation should not be undertaken lightly. ABI stability is extremely important for downstream consumers of the DPDK, especially when distributed in shared object form. Every effort should be made to preserve ABI whenever possible. For instance, reorganizing public structure field for astetic or readability purposes should be avoided as it will cause ABI breakage. Only significant (e.g. performance) reasons should be seen as cause to alter ABI.

8.8.1 Examples of Deprecation Notices

- The Macro #RTE_FOO is deprecated and will be removed with version 2.0, to be replaced with the inline function rte_bar()
- The function rte_mbuf_grok has been updated to include new parameter in version 2.0.
 Backwards compatibility will be maintained for this function until the release of version 2.1
- The members struct foo have been reorganized in release 2.0. Existing binary applications will have backwards compatibility in release 2.0, while newly built binaries will need to reference new structure variant struct foo2. Compatibility will be removed in release 2.2, and all applications will require updating and rebuilding to the new structure at that time, which will be renamed to the original struct foo.
- Significant ABI changes are planned for the librte_dostuff library. The upcoming release 2.0 will not contain these changes, but release 2.1 will, and no backwards compatibility is planned due to the invasive nature of these changes. Binaries using this library built prior to version 2.1 will require updating and recompilation.

8.8. ABI policy 470

8.8.2 Deprecation Notices

8.9 Frequently Asked Questions (FAQ)

8.9.1 When running the test application, I get "EAL: map_all_hugepages(): open failed: Permission denied Cannot init memory"?

This is most likely due to the test application not being run with sudo to promote the user to a superuser. Alternatively, applications can also be run as regular user. For more information, please refer to *DPDK Getting Started Guide*.

8.9.2 If I want to change the number of TLB Hugepages allocated, how do I remove the original pages allocated?

The number of pages allocated can be seen by executing the cat /proc/meminfo|grep Huge command. Once all the pages are mmapped by an application, they stay that way. If you start a test application with less than the maximum, then you have free pages. When you stop and restart the test application, it looks to see if the pages are available in the /dev/huge directory and mmaps them. If you look in the directory, you will see n number of 2M pages files. If you specified 1024, you will see 1024 files. These are then placed in memory segments to get contiguous memory.

If you need to change the number of pages, it is easier to first remove the pages. The tools/setup.sh script provides an option to do this. See the "Quick Start Setup Script" section in the *DPDK Getting Started Guide* for more information.

8.9.3 If I execute "I2fwd -c f -m 64 -n 3 - -p 3", I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?

I have set up a total of 1024 Hugepages (that is, allocated 512 2M pages to each NUMA node).

The -m command line parameter does not guarantee that huge pages will be reserved on specific sockets. Therefore, allocated huge pages may not be on socket 0. To request memory to be reserved on a specific socket, please use the -socket-mem command-line parameter instead of -m.

8.9.4 I am running a 32-bit DPDK application on a NUMA system, and sometimes the application initializes fine but cannot allocate memory. Why is that happening?

32-bit applications have limitations in terms of how much virtual memory is available, hence the number of hugepages they are able to allocate is also limited (1 GB per page size). If your system has a lot (>1 GB per page size) of hugepage memory, not all of it will be allocated. Due to hugepages typically being allocated on a local NUMA node, the hugepages allocation the application gets during the initialization depends on which NUMA node it is running on (the EAL does not affinitize cores until much later in the initialization process). Sometimes, the Linux OS runs the DPDK application on a core that is located on a different NUMA node from DPDK master core and therefore all the hugepages are allocated on the wrong socket.

To avoid this scenario, either lower the amount of hugepage memory available to 1 GB per page size (or less), or run the application with taskset affinitizing the application to a would-be master core. For example, if your EAL coremask is 0xff0, the master core will usually be the first core in the coremask (0x10); this is what you have to supply to taskset, for example, taskset 0x10 ./l2fwd -c 0xff0 -n 2. In this way, the hugepages have a greater chance of being allocated to the correct socket. Additionally, a –socket-mem option could be used to ensure the availability of memory for each socket, so that if hugepages were allocated on the wrong socket, the application simply will not start.

8.9.5 On application startup, there is a lot of EAL information printed. Is there any way to reduce this?

Yes, each EAL has a configuration file that is located in the /config directory. Within each configuration file, you will find CONFIG_RTE_LOG_LEVEL=8. You can change this to a lower value, such as 6 to reduce this printout of debug information. The following is a list of LOG levels that can be found in the rte_log.h file. You must remove, then rebuild, the EAL directory for the change to become effective as the configuration file creates the rte_config.h file in the EAL directory.

8.9.6 How can I tune my network application to achieve lower latency?

Traditionally, there is a trade-off between throughput and latency. An application can be tuned to achieve a high throughput, but the end-to-end latency of an average packet typically increases as a result. Similarly, the application can be tuned to have, on average, a low end-to-end latency at the cost of lower throughput.

To achieve higher throughput, the DPDK attempts to aggregate the cost of processing each packet individually by processing packets in bursts. Using the testpmd application as an example, the "burst" size can be set on the command line to a value of 16 (also the default value). This allows the application to request 16 packets at a time from the PMD. The testpmd application then immediately attempts to transmit all the packets that were received, in this case, all 16 packets. The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the network port. This behavior is desirable when tuning for high throughput because the cost of tail pointer updates to both the RX and TX queues can be spread across 16 packets, effectively hiding the relatively slow MMIO cost of writing to the PCIe* device.

However, this is not very desirable when tuning for low latency, because the first packet that was received must also wait for the other 15 packets to be received. It cannot be transmitted until the other 15 packets have also been processed because the NIC will not know to transmit the packets until the TX tail pointer has been updated, which is not done until all 16 packets have been processed for transmission.

To consistently achieve low latency even under heavy system load, the application developer should avoid processing packets in bunches. The testpmd application can be configured from

the command line to use a burst value of 1. This allows a single packet to be processed at a time, providing lower latency, but with the added cost of lower throughput.

8.9.7 Without NUMA enabled, my network throughput is low, why?

I have a dual Intel® Xeon® E5645 processors @2.40 GHz with four Intel® 82599 10 Gigabit Ethernet NICs. Using eight logical cores on each processor with RSS set to distribute network load from two 10 GbE interfaces to the cores on each processor.

Without NUMA enabled, memory is allocated from both sockets, since memory is interleaved. Therefore, each 64B chunk is interleaved across both memory domains.

The first 64B chunk is mapped to node 0, the second 64B chunk is mapped to node 1, the third to node 0, the fourth to node 1. If you allocated 256B, you would get memory that looks like this:

```
256B buffer
Offset 0x00 - Node 0
Offset 0x40 - Node 1
Offset 0x80 - Node 0
Offset 0xc0 - Node 1
```

Therefore, packet buffers and descriptor rings are allocated from both memory domains, thus incurring QPI bandwidth accessing the other memory and much higher latency. For best performance with NUMA disabled, only one socket should be populated.

8.9.8 I am getting errors about not being able to open files. Why?

As the DPDK operates, it opens a lot of files, which can result in reaching the open files limits, which is set using the ulimit command or in the limits.conf file. This is especially true when using a large number (>512) of 2 MB huge pages. Please increase the open file limit if your application is not able to open files. This can be done either by issuing a ulimit command or editing the limits.conf file. Please consult Linux* manpages for usage information.

8.9.9 Does my kernel require patching to run the DPDK?

Any kernel greater than version 2.6.33 can be used without any patches applied. The following kernels may require patches to provide hugepage support:

- kernel version 2.6.32 requires the following patches applied:
 - addhugepage support to pagemap
 - fix hugepage memory leak
 - add nodemask arg to huge page alloc

(not mandatory, but recommended on a NUMA system to support per-NUMA node hugepages allocation)

- kernel version 2.6.31, requires the following patches applied:
 - fix hugepage memory leak
 - add hugepage support to pagemap
 - add uio name attributes and port regions

add nodemask arg to huge page alloc

(not mandatory, but recommended on a NUMA system to support per-NUMA node hugepages allocation)

Note: Blue text in the lists above are direct links to the patch downloads.

8.9.10 VF driver for IXGBE devices cannot be initialized.

Some versions of Linux* IXGBE driver do not assign a random MAC address to VF devices at initialization. In this case, this has to be done manually on the VM host, using the following command:

ip link set <interface> vf <VF function> mac <MAC address>

where <interface> being the interface providing the virtual functions for example, eth0, <VF function> being the virtual function number, for example 0, and <MAC address> being the desired MAC address.

8.9.11 Is it safe to add an entry to the hash table while running?

Currently the table implementation is not a thread safe implementation and assumes that locking between threads and processes is handled by the user's application. This is likely to be supported in future releases.

8.9.12 What is the purpose of setting iommu=pt?

DPDK uses a 1:1 mapping and does not support IOMMU. IOMMU allows for simpler VM physical address translation. The second role of IOMMU is to allow protection from unwanted memory access by an unsafe device that has DMA privileges. Unfortunately, the protection comes with an extremely high perfomance cost for high speed NICs.

iommu=pt disables IOMMU support for the hypervisor.

8.9.13 When trying to send packets from an application to itself, meaning smac==dmac, using Intel(R) 82599 VF packets are lost.

Check on register LLE(PFVMTXSSW[n]), which allows an individual pool to send traffic and have it looped back to itself.

8.9.14 Can I split packet RX to use DPDK and have an application's higher order functions continue using Linux* pthread?

The DPDK's lcore threads are Linux* pthreads bound onto specific cores. Configure the DPDK to do work on the same cores and run the application's other work on other cores using the DPDK's "coremask" setting to specify which cores it should launch itself on.

8.9.15 Is it possible to exchange data between DPDK processes and regular userspace processes via some shared memory or IPC mechanism?

Yes - DPDK processes are regular Linux/BSD processes, and can use all OS provided IPC mechanisms.

8.9.16 Can the multiple queues in Intel(R) I350 be used with DPDK?

I350 has RSS support and 8 queue pairs can be used in RSS mode. It should work with multi-queue DPDK applications using RSS.

8.9.17 How can hugepage-backed memory be shared among multiple processes?

See the Primary and Secondary examples in the multi-process sample application.